JPS6312826A - Intake air cooling device for internal combustion engine - Google Patents

Intake air cooling device for internal combustion engine

Info

Publication number
JPS6312826A
JPS6312826A JP15516586A JP15516586A JPS6312826A JP S6312826 A JPS6312826 A JP S6312826A JP 15516586 A JP15516586 A JP 15516586A JP 15516586 A JP15516586 A JP 15516586A JP S6312826 A JPS6312826 A JP S6312826A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
air conditioner
intake air
supercharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15516586A
Other languages
Japanese (ja)
Inventor
Kingo Horii
堀井 欽吾
Toshio Tanahashi
敏雄 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15516586A priority Critical patent/JPS6312826A/en
Publication of JPS6312826A publication Critical patent/JPS6312826A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform simple and efficient cooling of intake air, by a method wherein cooling water in a cooling water container is cooled by means of an air conditioner refrigerant, by means of the cooling water, intake air is cooled, and the cooling water is circulated with the aid of a pump run integrally with a mechanical type supercharger. CONSTITUTION:A water-cooled intake air cooling device 26 is situated in a suction pipe 4 located down a line from a mechanical super charger 7. In this case, a cooling water container 31, through which cooling water from a cooling device 26 is circulated, is situated, an air conditioner refrigerant is circulated through a heat exchange part 34 to cool cooling water. The cooling water container 31 is coupled to a circulating pump 36 through a cooling water passage 35 to form a circulating system for cooling water, and the circulating pump 36 is driven by means of the supercharger 7. This constitution cools the cooling water in the cooling water container 31 by means of the air conditioner refrigerant, and intake air in the suction pipe 4 is cooled by means of the cooling water. The cooling water is circulated with the aid of the circulating pump 36 driven by the mechanical type supercharger 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は過給機を備えた空調器付き車両用内燃機関に
おける吸入空気冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake air cooling device for a vehicle internal combustion engine equipped with an air conditioner and equipped with a supercharger.

〔従来の技術〕[Conventional technology]

過給機を備えた内燃機関では過給による断熱圧縮で高ま
った空気の温度を下げ出力を上げるために吸入空気冷却
装置(所謂インタクーラ)を設置することが行われる。
In an internal combustion engine equipped with a supercharger, an intake air cooling device (so-called intercooler) is installed in order to lower the temperature of air that has increased due to adiabatic compression due to supercharging and increase output.

水冷式のインタクーラのものは外気温が高い夏季に十分
な効果が得られない。
Water-cooled intercoolers are not effective enough in the summer when the outside temperature is high.

又、エンジン室内の熱で冷却媒体である水の温度を十分
低下できず、高過給時にはまだエンジンの性能を十分に
発揮させるには至らない。更には外気温やエンジン室内
の熱の変動によりインタクーラの冷却能力も変動するた
め安定したエンジン性能を引き出せていない。
Furthermore, the temperature of water, which is a cooling medium, cannot be sufficiently lowered due to the heat in the engine room, and the engine performance is not yet fully demonstrated during high supercharging. Furthermore, the intercooler's cooling capacity fluctuates due to fluctuations in the outside temperature and the heat inside the engine compartment, making it difficult to achieve stable engine performance.

この問題点を解決するため、特公昭60−35530号
公報では車室冷房用空調器から分岐し、かっこの空調器
とは独立に作動するサージタンク冷却装置を吸気管に取
付たものが提案されている。即ち、過給機からの空気を
空調器から分岐する低温の冷却媒体によって強力に冷却
しようとするものである。そして、吸入空気の温度を検
知して、これが所定値を超えたときにサージタンク冷却
装置を作動させる制御回路を備えている。その他、関連
する従来技術として、実開昭59−91421等がある
In order to solve this problem, Japanese Patent Publication No. 60-35530 proposes a system in which a surge tank cooling device is attached to the intake pipe, which is branched from the air conditioner for cooling the passenger compartment and operates independently of the air conditioner. ing. That is, the air from the supercharger is strongly cooled by a low-temperature cooling medium branched from the air conditioner. The engine also includes a control circuit that detects the temperature of the intake air and operates the surge tank cooling device when the temperature exceeds a predetermined value. Other related conventional techniques include Utility Model Application Publication No. 59-91421.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術では車室冷房用空調器の冷却媒体の通路を単に
吸気管に接続し、吸入空気との熱交換を行わせるという
思想のものである。従って、車室内の冷房と、吸入空気
の冷却との双方を十分に行わせるには冷却装置の冷却能
力を高くしなければならない。即ち、従来のものでは、
車掌冷房要求の最大と吸入空気冷却要求の最大との和と
しての冷却能力を持つ必要があるのである。
In the prior art, the idea is to simply connect the refrigerant passage of the air conditioner for cooling the passenger compartment to the intake pipe and exchange heat with the intake air. Therefore, in order to sufficiently cool both the interior of the vehicle and the intake air, the cooling capacity of the cooling device must be increased. That is, in the conventional method,
It is necessary to have a cooling capacity equal to the sum of the maximum conductor cooling requirement and the maximum intake air cooling requirement.

この発明の目的は、上述した従来技術の欠点を解決し、
冷却装置の容量を押さえたにも係わらず十分な冷却を行
うことができるようにすることにある。
The purpose of this invention is to solve the above-mentioned drawbacks of the prior art,
To provide sufficient cooling even though the capacity of a cooling device is limited.

〔問題点を解決するための手段〕[Means for solving problems]

この発明によれば、吸気管に機械式過給機を設置し、過
給機の下流に水冷式の吸入空気冷却装置を配置した空調
器付き車両用内燃機関において、独立の冷却水容器を備
え、過給機からの吸気管及び空調器から分岐される冷却
媒体通路が前記冷却水容器と熱交換可能に設置され、空
調器冷却媒体によって冷却された冷却水容器内の冷却水
によって吸入空気の冷却を行われ、冷却水の循環は機械
式過給機の回転と一緒に駆動されるポンプによって行う
ことを特徴とする内燃機関の吸入空気冷却装置が提供さ
れる。
According to this invention, in an internal combustion engine for a vehicle equipped with an air conditioner, in which a mechanical supercharger is installed in the intake pipe and a water-cooled intake air cooling device is arranged downstream of the supercharger, an independent cooling water container is provided. , an intake pipe from the supercharger and a cooling medium passage branched from the air conditioner are installed so as to be able to exchange heat with the cooling water container, and the intake air is cooled by the cooling water in the cooling water container cooled by the air conditioner cooling medium. There is provided an intake air cooling system for an internal combustion engine, characterized in that cooling is performed and cooling water is circulated by a pump driven together with the rotation of a mechanical supercharger.

〔実施例〕〔Example〕

第1図において、■は内燃機関の本体、2は吸気マニホ
ルド、3は排気マニホルド、4は吸気管、5はアクセル
ペダル(図示せず)に連動するスロットル弁、6はエア
ーフローメータである。7は機械式過給機であり、スロ
ットル弁5の下流に設置される。機械式過給機7は例え
ばルーツポンプとして構成され、複数のロータ7a(第
2図)がハウジング7bに対して微小間隙を維持しなが
ら回転することにより吸入空気の圧縮を行うことにより
過給が行われる。歯車ハウジング7d内の歯車7eは一
対のロータ7aを反対方向に回転させる。ロータ7aの
一方の回転軸8にクラッチ付きプーリ10が設置され、
このプーリlOはベルト12によってクランク軸上のプ
ーリ16に連結される。プーリ10のクラッチ部の係合
する高回転高負荷時にクランク軸の回転がプーリ16、
ベルト12、プーリ10を介してロータ7aに伝達され
過給が行われる。
In FIG. 1, ■ is the main body of the internal combustion engine, 2 is an intake manifold, 3 is an exhaust manifold, 4 is an intake pipe, 5 is a throttle valve linked to an accelerator pedal (not shown), and 6 is an air flow meter. 7 is a mechanical supercharger, which is installed downstream of the throttle valve 5. The mechanical supercharger 7 is configured, for example, as a Roots pump, and supercharging is achieved by compressing intake air by rotating a plurality of rotors 7a (Fig. 2) while maintaining a small gap with respect to the housing 7b. It will be done. The gear 7e in the gear housing 7d rotates the pair of rotors 7a in opposite directions. A pulley 10 with a clutch is installed on one rotating shaft 8 of the rotor 7a,
This pulley lO is connected by a belt 12 to a pulley 16 on the crankshaft. When the clutch portion of the pulley 10 engages at high speed and under high load, the rotation of the crankshaft is caused by the pulley 16,
It is transmitted to the rotor 7a via the belt 12 and pulley 10, and supercharging is performed.

第1図において、過給機7を迂回するようにバイパス通
路18が一端で吸気マニホルド2、他端で吸気管4に連
結される。バイパス通路通路18にバイパス制御弁20
が設置される。このバイパス制御弁20は負圧アクチュ
エータ22によって駆動される。即ち、負圧アクチュエ
ータ22は吸気マニホルド2の圧力取出ボート24に連
結され、吸気管圧力に応じたバイパス制御弁20の駆動
を行う。即ち、低負荷時はボート24の圧力が低いため
、アクチュエータ20は負圧作用によってバイパス制御
弁20を開弁じ、吸入空気の一部はバイパス通路1日に
分岐され、過給機7による過給効果は弱められ。一方、
高負荷時はボート24の圧力は高くなるのでアクチュエ
ータ22はバイパス制御弁20を閉弁し、吸入空気が全
量過給機7を介して燃焼室2に供給され、過給機7はそ
の全能力を発揮することになる。
In FIG. 1, a bypass passage 18 is connected to the intake manifold 2 at one end and to the intake pipe 4 at the other end so as to bypass the supercharger 7. A bypass control valve 20 is provided in the bypass passage passage 18.
will be installed. This bypass control valve 20 is driven by a negative pressure actuator 22. That is, the negative pressure actuator 22 is connected to the pressure take-off boat 24 of the intake manifold 2, and drives the bypass control valve 20 according to the intake pipe pressure. That is, when the load is low, the pressure in the boat 24 is low, so the actuator 20 opens the bypass control valve 20 by negative pressure action, and a part of the intake air is branched to the bypass passage 1, and the air is supercharged by the supercharger 7. The effect is weakened. on the other hand,
When the load is high, the pressure in the boat 24 becomes high, so the actuator 22 closes the bypass control valve 20, and the intake air is fully supplied to the combustion chamber 2 via the supercharger 7, and the supercharger 7 is operated at its full capacity. will be demonstrated.

26は水冷式の吸入空気冷却装置(以下インククーラ)
である。インククーラ26は機械式過給機7の下流の吸
気管4に設置される。31は冷却水容器で、インククー
ラ26の冷却水が循環される。冷却水容器31中に熱交
換部34が配置され、この熱交換部34には空調器冷却
媒体が後述のように循環され、冷却水の冷却が行われる
。冷却水容器31は冷却水通路35を介して循環ポンプ
36に連結され、冷却水の循環系が構成される。
26 is a water-cooled intake air cooling device (hereinafter referred to as ink cooler)
It is. The ink cooler 26 is installed in the intake pipe 4 downstream of the mechanical supercharger 7. 31 is a cooling water container through which cooling water for the ink cooler 26 is circulated. A heat exchange section 34 is disposed in the cooling water container 31, and an air conditioner cooling medium is circulated through the heat exchange section 34 as described below, thereby cooling the cooling water. The cooling water container 31 is connected to a circulation pump 36 via a cooling water passage 35, thereby forming a cooling water circulation system.

ウォータポンプ36は機械式過給機によって駆動される
。即ち、第2図においてウォータポンプ36は機械式過
給機7の歯車ハウジング7dに固定されるハウジング3
6aと、機械式過給機7の従動側のロータ軸7上に設置
される羽根36bとより構成される。実施例のようにウ
ォータポンプ36をギヤハウジング7dに設けることで
、ギヤハウジング内の潤滑油がポンプハウジング36a
内の冷却水によって冷却され、潤滑油の温度を適当に維
持することができ、その早期熱劣化の虞がなくなる。
Water pump 36 is driven by a mechanical supercharger. That is, in FIG. 2, the water pump 36 is connected to the housing 3 fixed to the gear housing 7d of the mechanical supercharger 7.
6a, and a blade 36b installed on the rotor shaft 7 on the driven side of the mechanical supercharger 7. By providing the water pump 36 in the gear housing 7d as in the embodiment, the lubricating oil in the gear housing is transferred to the pump housing 36a.
The lubricating oil is cooled by the cooling water inside the lubricating oil, and the temperature of the lubricating oil can be maintained at an appropriate level, eliminating the possibility of premature thermal deterioration of the lubricating oil.

インタクーラ26の熱交換部26aからの冷却水通路の
部分35aは、第2図のように吸気管4の壁面内に形成
することができ、これにより配管構成を単純化すること
ができ、かつこれは吸入空気温度を下げるためにも好ま
しい。この場合通路部分35aは、フランジ面39より
ウォータポンプ36内に開口する。また、通路部分35
aは、ロータハウジング7b内に形成される冷却水ジャ
ケット41に開口させることもできる。これにより、過
給機自体も冷却することができる。その結果、過給機ハ
ウジング7bの温度が降下され、その熱膨張を少なく見
込むことができる。かくして、ロータ7aとハウジング
7bとのクリヤランスをより小さくでき、ポンプ効率を
上げることができる効果がある。また、フランジ39に
よる接続構造をとることにより、配管接続が単純化され
、信顛性を向上することができる。
A portion 35a of the cooling water passage from the heat exchange portion 26a of the intercooler 26 can be formed within the wall surface of the intake pipe 4 as shown in FIG. is also preferable for lowering the intake air temperature. In this case, the passage portion 35a opens into the water pump 36 from the flange surface 39. In addition, the passage section 35
a can also be opened to a cooling water jacket 41 formed within the rotor housing 7b. Thereby, the supercharger itself can also be cooled. As a result, the temperature of the supercharger housing 7b is lowered, and its thermal expansion can be expected to be reduced. In this way, the clearance between the rotor 7a and the housing 7b can be further reduced, which has the effect of increasing pump efficiency. Further, by adopting a connection structure using the flange 39, the piping connection can be simplified and reliability can be improved.

第1図において、空調器用コンプレッサは符号44で示
され、ベルト46によってクランク軸上のブーIJ16
に連結され、その回転駆動力を受けるようになっている
。空調器コンプレッサ44は、コンデンサ48、レシー
バ50、膨張弁52及びエバポレータ54に空調器冷却
媒体通路56を介して順次連結され、空調器の冷却媒体
用の循環系が構成される。図中、空調器における冷却媒
体の流れ方向を矢印をもって示す。
In FIG. 1, the air conditioner compressor is indicated by the reference numeral 44 and is connected to the crankshaft by means of a belt 46.
It is connected to and receives its rotational driving force. The air conditioner compressor 44 is sequentially connected to a condenser 48, a receiver 50, an expansion valve 52, and an evaporator 54 via an air conditioner coolant passage 56, thereby forming a circulation system for the coolant of the air conditioner. In the figure, the flow direction of the cooling medium in the air conditioner is indicated by an arrow.

冷却水容器31内に配置される熱交換部34は空調器用
エバポレータ54と並列に配置される。
The heat exchange section 34 disposed within the cooling water container 31 is disposed in parallel with the air conditioner evaporator 54.

冷媒通路34は一端が膨張弁58及び接合用T字管60
を介してレシーバ50の下流の空調器用冷却媒体通路5
6の下流に接続され、他端はT字管62を介して車室用
エバポレータ54の下流に接続される。空調器用冷却媒
体の流通を選択的に遮断する開閉弁である第1の電磁弁
64、及び第2の電磁弁66が夫々車室用循環系を構成
する通路56と、インタクーラ用冷媒循環系を構成する
通路57に設置される。
The refrigerant passage 34 has an expansion valve 58 and a joining T-tube 60 at one end.
The air conditioner cooling medium passage 5 downstream of the receiver 50 via
6, and the other end is connected to the downstream side of the vehicle interior evaporator 54 via a T-shaped pipe 62. A first solenoid valve 64 and a second solenoid valve 66, which are on-off valves that selectively shut off the flow of the air conditioner refrigerant, connect the passage 56 that constitutes the vehicle interior circulation system and the intercooler refrigerant circulation system, respectively. It is installed in the constituting passage 57.

第1図において、制御回路70は過給機や空調器、この
発明の油冷却装置、更には内燃機関の種々の運転制御を
行うもので、マイクロコンピュータシステムとして構成
することができる。即ち、制御回路70は、中央処理装
置(CPU)70aとメモリ70bと、入力ポードア0
Cと、出力ポードア0dと、これらを接続するバス70
eとより構成される。入カポ−1−70cにはこの発明
の制御実行のため、種々のセンサが接続され、夫々の検
知信号が入力される。エアーフローメータ6からは吸入
空気量信号Qが入る。スロットルセンサ74からはスロ
ットル弁5の開度に応じた信号THが入る。スロットル
センサ74としては、例えば、周知のスロットル弁軸と
ともに動く回転ブラシを具備したものが採用できる。こ
のタイプのスロットルセンサ74はスロットル弁の開度
に応じたパルス信号が得られるディジタル型のものであ
る。76は空調器作動スイッチで、通常は運転席に設置
され、車室の冷房を行うときに操作されるものである。
In FIG. 1, a control circuit 70 controls various operations of a supercharger, an air conditioner, an oil cooling system of the present invention, and an internal combustion engine, and can be configured as a microcomputer system. That is, the control circuit 70 includes a central processing unit (CPU) 70a, a memory 70b, and an input port 0.
C, output port door 0d, and bus 70 connecting these
It is composed of e. Various sensors are connected to the input capo 1-70c in order to execute the control of the present invention, and respective detection signals are inputted thereto. An intake air amount signal Q is input from the air flow meter 6. A signal TH corresponding to the opening degree of the throttle valve 5 is input from the throttle sensor 74 . As the throttle sensor 74, for example, a sensor equipped with a rotating brush that moves together with the well-known throttle valve shaft can be adopted. This type of throttle sensor 74 is a digital type that can obtain a pulse signal depending on the opening degree of the throttle valve. Reference numeral 76 denotes an air conditioner operating switch, which is normally installed in the driver's seat and is operated when cooling the vehicle interior.

インタクーラ26用の冷却水の温度Tを知るため温度セ
ンサ77が冷却水容器77に設置される(第5図参照)
。更に、エンジン回転数Neを知るための回転数センサ
79が設けられる。このセンサは、例えば、クランク軸
の回転パルス信号を発生するパルス発生器として構成す
ることができる。
A temperature sensor 77 is installed in the cooling water container 77 in order to know the temperature T of the cooling water for the intercooler 26 (see FIG. 5).
. Further, a rotation speed sensor 79 is provided to detect the engine rotation speed Ne. This sensor can be configured, for example, as a pulse generator that generates a crankshaft rotation pulse signal.

出力ポードア0dはクラッチ付きプーリ10のクラッチ
作動部、コンプレッサ44のクラッチ部及び第1電磁弁
64、第2電磁弁66に接続される。そして、メモリ7
0bに格納されたプログラムに従ってこれらの制御が実
行される。そのうち過給機7の作動及び運転者が操作す
る空言)」器スイッチ76のON、OFFによる空調器
用コンプレッサ44の作動自体はこの発明と直接関係し
ないので詳細な説明はしない。以下この発明に直接関係
する制御回路の作動を第3図、第4図のフローチャート
を参照しながら説明する。
The output port door 0d is connected to the clutch actuating part of the clutch-equipped pulley 10, the clutch part of the compressor 44, the first solenoid valve 64, and the second solenoid valve 66. And memory 7
These controls are executed according to the program stored in 0b. Of these, the operation of the supercharger 7 and the operation of the air conditioner compressor 44 by turning on and off the air conditioner switch 76 operated by the driver are not directly related to the present invention, and therefore will not be described in detail. The operation of the control circuit directly related to the present invention will be explained below with reference to the flowcharts of FIGS. 3 and 4.

第3図は過給機作動ルーチンを示している。ステ、プ8
0では負荷相当値としての吸入空気量一回転数比Q /
 N e 、及びエンジン回転数Neが入力される。ス
テップ81では過給機の作動か、否かの認識が吸入空気
量−回転数比及び回転数より行われる。過給機7は吸入
空気量一回転数比Q/Ne≧0.6 (1/rev)又
は回転数Ne≧300Orpmである。ステップ82で
は過給機作動域か否か判別し、作動域のときはステップ
83でプーリ10の過給機作動用クラッチへの係合信号
が出され、非作動域のときはステップ84に進み同クラ
ッチの解放信号が出される。
FIG. 3 shows the supercharger operating routine. Ste, Pu8
At 0, the intake air amount per revolution speed ratio as a load equivalent value Q /
N e and engine rotational speed Ne are input. In step 81, it is determined whether the supercharger is operating or not based on the intake air amount-to-rotation speed ratio and the rotation speed. The supercharger 7 has an intake air amount to rotation speed ratio Q/Ne≧0.6 (1/rev) or a rotation speed Ne≧300 Orpm. In step 82, it is determined whether or not the supercharger is in the operating range. If it is in the operating range, an engagement signal for the pulley 10 to the clutch for operating the supercharger is issued in step 83, and if it is in the non-operating range, the process proceeds to step 84. A release signal for the same clutch is issued.

第4図は冷却制御ルーチンを示す。ステップ85では空
調器スイッチ76がONか否か判別される。空調器スイ
ッチ76がOFFのときはステップ86に進み、電磁弁
64が閉鎖される。そのため空AINI器冷媒は空調器
冷媒循環系56を流れるのが禁止される。ステップ87
では冷却水容器31内の冷却水の温度Tが所定値’r+
(例えば30℃以上か否か判別される。T≧T1のとき
はステップ88に進み、コンプレッサ44の作動クラッ
チ(図示せず)が係合される。ステップ89では第2の
電磁弁66が開放される。そのため、コンプレッサ44
よりコンデンサ48、レシーバ50、膨張弁58、イン
タクーラの熱交換部34によって冷却媒体の循環系が構
成される。そのため、冷却水タンク31内のインタクー
ラ用冷却水の冷却が行われる。そして、過給機7の作動
する高負荷、高回転域にはウォータポンプ36が駆動さ
れるため、冷却水容器31内の冷却水はインタクーラ2
6の熱交換部26aに循環され、吸入空気の冷却が行わ
れる。また過給機7の作動しない低負荷、低回転域には
冷却水が循環しないので必要にして十分な冷却が行われ
、無駄な放熱がないので効率を上げることができる。
FIG. 4 shows the cooling control routine. In step 85, it is determined whether the air conditioner switch 76 is on. When the air conditioner switch 76 is OFF, the process proceeds to step 86 and the solenoid valve 64 is closed. Therefore, the air AINI refrigerant is prohibited from flowing through the air conditioner refrigerant circulation system 56. Step 87
Then, the temperature T of the cooling water in the cooling water container 31 is a predetermined value 'r+
(For example, it is determined whether the temperature is 30° C. or higher. If T≧T1, the process proceeds to step 88, and the operating clutch (not shown) of the compressor 44 is engaged. In step 89, the second solenoid valve 66 is opened. Therefore, the compressor 44
A cooling medium circulation system is constituted by the condenser 48, the receiver 50, the expansion valve 58, and the heat exchange section 34 of the intercooler. Therefore, the intercooler cooling water in the cooling water tank 31 is cooled. Since the water pump 36 is driven in the high load and high rotation range where the supercharger 7 operates, the cooling water in the cooling water container 31 is transferred to the intercooler 2.
The intake air is circulated to the heat exchange section 26a of No. 6, and the intake air is cooled. Further, since cooling water is not circulated in the low load and low rotation range where the supercharger 7 does not operate, sufficient cooling is performed as needed, and there is no wasteful heat radiation, so efficiency can be increased.

ステップ92では急加速か否か判別される。この判別は
、例えば、スロットルセンサ74からのパルス信号の間
隔を検出し、この時間間隔が所定値以下のときは急加速
と判別することができる。
In step 92, it is determined whether or not there is sudden acceleration. This determination can be made, for example, by detecting the interval between pulse signals from the throttle sensor 74, and when this time interval is less than a predetermined value, it can be determined that sudden acceleration is occurring.

急加速と判定すれば、ステップ93に進み、空調器コン
プレッサ44の作動を停止する。その結果、コンプレッ
サ44の負荷がエンジンにかからなくなるため、エンジ
ンの負荷は空調器の負荷分だけ軽くなり加速性を向上す
ることができる。
If it is determined that there is a sudden acceleration, the process proceeds to step 93 and the operation of the air conditioner compressor 44 is stopped. As a result, the load of the compressor 44 is no longer applied to the engine, so the load on the engine is reduced by the load of the air conditioner, and acceleration performance can be improved.

急加速でない場合はステップ92よりステップ96に流
れ、急加速後所定時間、例えば5秒経過したか否か判別
される。5秒経過と判別すれば、ステップ9日に進み、
空調器コンプレッサ44のクラッチに係合信号が送られ
、コンプレッサ44は再び駆動される。
If it is not a sudden acceleration, the flow proceeds from step 92 to step 96, where it is determined whether a predetermined period of time, for example 5 seconds, has elapsed since the sudden acceleration. If it is determined that 5 seconds have passed, proceed to step 9,
An engagement signal is sent to the clutch of the air conditioner compressor 44, and the compressor 44 is driven again.

水温が所定値T1未満のときはステップ87よりステッ
プ100に進み、水温Tが所定値T2(〈TI)以下と
なったか否か判別する。第10図参照。Ti <T<T
I のときはステップ100よりステップ92に進み、
′F≧T1のときと同じ作動となる。即ち、空調器の冷
却媒体はその一部が冷却水容器31を循環され、第2電
磁弁66の開放によってインタクーラ30の冷却水は冷
却水容器31内で冷媒通路34の熱交換部34aの冷媒
によって冷却される。また急加速時のコンプレッサ44
の停止も行われる。
When the water temperature is less than the predetermined value T1, the process proceeds from step 87 to step 100, where it is determined whether the water temperature T has become equal to or less than the predetermined value T2 (<TI). See Figure 10. Ti<T<T
If I, proceed from step 100 to step 92,
'The same operation as when F≧T1 occurs. That is, a part of the cooling medium of the air conditioner is circulated through the cooling water container 31, and when the second solenoid valve 66 is opened, the cooling water of the intercooler 30 is transferred to the refrigerant of the heat exchange section 34a of the refrigerant passage 34 within the cooling water container 31. cooled by Also, compressor 44 during sudden acceleration
will also be stopped.

水温がT2以下となると、ステップ100よりステップ
102に進み空調器コンプレッサ44は停止される。ス
テップ104で第2電磁弁66が閉鎖される。即ちT≦
T2のときは冷媒通路34への空調器冷却媒体の導入が
停止されると同時に、冷却水容器31での冷却水の循環
が停止される。
When the water temperature becomes equal to or lower than T2, the process proceeds from step 100 to step 102, and the air conditioner compressor 44 is stopped. In step 104, the second solenoid valve 66 is closed. That is, T≦
At T2, the introduction of the air conditioner cooling medium into the refrigerant passage 34 is stopped, and at the same time, the circulation of the cooling water in the cooling water container 31 is stopped.

水温がT2を超えたがT1まで回復しないときはステッ
プ100よりステップ92に進むため、空調器コンプレ
ッサ44は停止、第2電磁弁66は閉状態を維持し、熱
交換部34への冷媒の循環は行われない。これによって
、空調器コンプレッサ44、第2電磁弁58は温度の降
下と増大とでヒステリシス的な作動を行うことになる。
When the water temperature exceeds T2 but does not recover to T1, the process proceeds from step 100 to step 92, so the air conditioner compressor 44 is stopped, the second electromagnetic valve 66 remains closed, and the refrigerant is circulated to the heat exchange section 34. will not be carried out. As a result, the air conditioner compressor 44 and the second solenoid valve 58 operate in a hysteretic manner as the temperature decreases and increases.

第5図参照。See Figure 5.

再び水温がT、を超えるとステップ87.88゜89.
92と流れるため、空調器コンプレソザ44作動、第2
電磁弁66が開放となる。これは、TST2となる迄引
き続き、そのときステップ100、102と進むため、
空調器コンプレッサ44の停止、第1電磁弁66は閉鎖
となる。
When the water temperature exceeds T again, steps 87.88°89.
92, the air conditioner compressor 44 is activated and the second
The solenoid valve 66 is opened. This continues until TST2, at which time the process proceeds to steps 100 and 102.
The air conditioner compressor 44 is stopped and the first solenoid valve 66 is closed.

空調器作動時にはスイッチ76がONであり、ステップ
85よりステップ10Bに進み、第1電磁弁64が開放
される。そのため、コンプレッサ44からの冷却媒体は
車室冷房用エバポレータ54に行くことができる。イン
タクーラの作動制御のためのステップ110以下の処理
は空調器停止時の作動と殆ど共通している。但し、水温
T2以下のときはステップ112よりステップ104に
進み、ステップ102を迂回するので空調器コンプレッ
サ44は作動状態に維持される。
When the air conditioner is in operation, the switch 76 is ON, and the process proceeds from step 85 to step 10B, where the first solenoid valve 64 is opened. Therefore, the cooling medium from the compressor 44 can go to the evaporator 54 for cooling the passenger compartment. The processing from step 110 onwards for controlling the operation of the intercooler is almost the same as the operation when the air conditioner is stopped. However, when the water temperature is lower than T2, the process proceeds from step 112 to step 104, bypassing step 102, so that the air conditioner compressor 44 is maintained in an operating state.

〔効 果〕〔effect〕

この発明によれば、冷却水容器を設け、吸入空気通路及
び冷媒通路を該容器中の冷却水と熱交換可能に設置して
いる。そして、冷却水の循環は機械式過給機と一緒に駆
動されるウォータポンプによって行っている。そのため
、冷媒によって冷却された冷却水によって、過給機の作
動する吸入空気の冷却の必要なときのみに、冷却を効率
的に行うことができる。
According to this invention, a cooling water container is provided, and the intake air passage and the refrigerant passage are installed to be able to exchange heat with the cooling water in the container. The cooling water is circulated by a water pump that is driven together with a mechanical supercharger. Therefore, the cooling water cooled by the refrigerant can efficiently cool the intake air for the operation of the supercharger only when cooling is necessary.

尚、過給機をクラッチを介せず常時駆動することができ
るが、この場合この発明のように過給機とウォータポン
プを連結することで、歯車7eに常にポンプの負荷がか
かるため、バックラッシュがなくなり、ギヤ鳴りを防止
することができる。
Note that the supercharger can be driven all the time without using a clutch, but in this case, by connecting the supercharger and the water pump as in this invention, the load of the pump is always applied to the gear 7e, so the back up is reduced. Rush is eliminated and gear noise can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の構成図。 第2図は機械式過給機とインタクーラとの接続配管部分
の実施例。 第3図、第4図は第1図の制御回路の作動を説明するフ
ローチャート図。 第5図は冷却水温度に対する電磁弁の作動特性図。 4・・・吸気管 7・・・機械式過給機 10・・・クラッチ付きプーリ 18・・・バイパス通路 20・・・バイパス制御弁 26・・・インタクーラ 31・・・冷却水容器 36・・・ウォータポンプ 44・・・空調器コンプレフサ 64.66・・・電磁弁 70・・・制御回路 76・・・空調器スイッチ
FIG. 1 is a configuration diagram of an embodiment. Figure 2 shows an example of the connection piping between a mechanical supercharger and an intercooler. 3 and 4 are flowcharts illustrating the operation of the control circuit of FIG. 1. FIG. 5 is a diagram showing the operating characteristics of the solenoid valve with respect to the cooling water temperature. 4... Intake pipe 7... Mechanical supercharger 10... Pulley with clutch 18... Bypass passage 20... Bypass control valve 26... Intercooler 31... Cooling water container 36...・Water pump 44...Air conditioner compressor 64.66...Solenoid valve 70...Control circuit 76...Air conditioner switch

Claims (1)

【特許請求の範囲】[Claims] 吸気管に機械式過給機を設置し、過給機の下流に水冷式
の吸入空気冷却装置を配置した空調器付き車両用内燃機
関において、独立の冷却水容器を備え、過給機からの吸
気管及び空調器から分岐される冷却媒体通路が前記冷却
水容器と熱交換可能に設置され、空調器冷却媒体によっ
て冷却された冷却水容器内の冷却水によって吸入空気の
冷却が行われ、冷却水の循環は機械式過給機の回転と一
緒に駆動されるポンプによって行うことを特徴とする内
燃機関の吸入空気冷却装置。
In an internal combustion engine for vehicles equipped with an air conditioner, which has a mechanical supercharger installed in the intake pipe and a water-cooled intake air cooling device located downstream of the supercharger, it is equipped with an independent cooling water container and A cooling medium passage branched from the intake pipe and the air conditioner is installed to be able to exchange heat with the cooling water container, and the cooling water in the cooling water container cooled by the air conditioner cooling medium cools the intake air. An intake air cooling system for an internal combustion engine, characterized in that water circulation is performed by a pump driven together with the rotation of a mechanical supercharger.
JP15516586A 1986-07-03 1986-07-03 Intake air cooling device for internal combustion engine Pending JPS6312826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15516586A JPS6312826A (en) 1986-07-03 1986-07-03 Intake air cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15516586A JPS6312826A (en) 1986-07-03 1986-07-03 Intake air cooling device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6312826A true JPS6312826A (en) 1988-01-20

Family

ID=15599930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15516586A Pending JPS6312826A (en) 1986-07-03 1986-07-03 Intake air cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6312826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435289A (en) * 1992-11-04 1995-07-25 J. C. Bamford Excavators Limited Intercooler apparatus
DE102007036303A1 (en) * 2007-07-31 2009-02-05 Behr Gmbh & Co. Kg A storage tank for storing a refrigeration potential, an engine-charging circuit, an air-conditioning system and a circulation and air conditioning system, and a method of cooling a substantially gaseous fluid intended for engine charging
JP2013160180A (en) * 2012-02-07 2013-08-19 Mazda Motor Corp Air-intake device of vehicle engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5435289A (en) * 1992-11-04 1995-07-25 J. C. Bamford Excavators Limited Intercooler apparatus
DE102007036303A1 (en) * 2007-07-31 2009-02-05 Behr Gmbh & Co. Kg A storage tank for storing a refrigeration potential, an engine-charging circuit, an air-conditioning system and a circulation and air conditioning system, and a method of cooling a substantially gaseous fluid intended for engine charging
JP2013160180A (en) * 2012-02-07 2013-08-19 Mazda Motor Corp Air-intake device of vehicle engine

Similar Documents

Publication Publication Date Title
US9562444B2 (en) Engine waste-heat utilization device
US5996347A (en) Variable-nozzle type turbo charger
JP2712711B2 (en) Method and apparatus for cooling internal combustion engine
US20020116927A1 (en) Intercooler system for internal combustion engine
JPS6312826A (en) Intake air cooling device for internal combustion engine
JP3137802B2 (en) Engine supercharger
JP3319304B2 (en) Vehicle heating system
JP3329123B2 (en) Diesel engine intake temperature control system
JPS6312825A (en) Intake air cooling device for internal combustion engine
JPS62279228A (en) Intake air cooler for internal combustion engine
JPS6394065A (en) Intake air cooler for internal combustion engine
JPS62279227A (en) Intake air cooling device for internal combustion engine
WO2023187852A1 (en) Cooling system for hybrid vehicle
JPH0347422A (en) Cooling method for internal combustion engine
JPS62247123A (en) Intake air cooling device for internal combustion engine
JPS60190623A (en) Overcharger of internal combustion engine
WO2023187853A1 (en) Diagnostic method for vehicle cooling system and diagnostic device for vehicle cooling system
JPH0480208B2 (en)
JP2734695B2 (en) Internal combustion engine cooling system
JPH0512630U (en) Centrifugal mechanical turbocharger
JP2574757B2 (en) Engine with turbocharger
JPS6332913Y2 (en)
JPS60240831A (en) Power turbine power transmission mechanism and turbo-compound system
JPS62276223A (en) Supercharge pressure control device for turbocharger
JP3060472B2 (en) Supercharger for vehicle engine