JPS6312802A - Ceramic blade construction - Google Patents

Ceramic blade construction

Info

Publication number
JPS6312802A
JPS6312802A JP15622686A JP15622686A JPS6312802A JP S6312802 A JPS6312802 A JP S6312802A JP 15622686 A JP15622686 A JP 15622686A JP 15622686 A JP15622686 A JP 15622686A JP S6312802 A JPS6312802 A JP S6312802A
Authority
JP
Japan
Prior art keywords
blade
contact
root
pieces
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15622686A
Other languages
Japanese (ja)
Inventor
Keiichi Katayama
圭一 片山
Takahiro Matsumoto
隆博 松本
Kazumasa Mihara
一正 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15622686A priority Critical patent/JPS6312802A/en
Publication of JPS6312802A publication Critical patent/JPS6312802A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2200/00Mathematical features
    • F05B2200/20Special functions
    • F05B2200/23Logarithm

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To allow friction to occur on the contact surface of each divided piece so as to provide structural damping and raise logarithmic attenuation for reducing resonance stress by dividing a blade mode of ceramics in the direction of thickness into a plural number of pieces, with each divided piece adjoined in contact. CONSTITUTION:A blade 3 made of ceramics used for a fan and the like forms a root 3a at its base, and the root 3a is so constructed, e.g., as to be fit in the circumference of a disc connected to a rotary shaft. In this case, the blade 3 is divided in the direction of thickness into a plural number of pieces and is formed of each piece being adjoined in contact. Further, the blade 3 is provided with a contact face 4, which is designed, e.g., for the contact between flat surfaces. Therefore, the structural damping provided by friction occurring on the contact face 4 permits greater logarithmic attenuation to achieve significant reduction in resonance stress.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はファン、ブロア、ポンプ等のセラミック製のブ
レードの構造に関し、構造減衰を有するように工夫した
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to the structure of ceramic blades of fans, blowers, pumps, etc., and is devised to have structural damping.

〈従来の技術〉 ファン、ブロア、ポンプ等において、例えば1000℃
以上の高温流体を対象とした場合、強い腐食流体を対象
とする場合、あるいは強磁場で使用する場合には、その
材料に金属を用いることは困難又は不可能であるので、
主にセラミック材料が使用されている。
<Prior art> In fans, blowers, pumps, etc., for example, 1000℃
When using high-temperature fluids, strong corrosive fluids, or strong magnetic fields, it is difficult or impossible to use metal as the material.
Ceramic materials are mainly used.

第2図(al、(blには従来のセラミックブレードの
一例を示す。両図に示すように、回転軸01に結合され
ているディスク02の円周部にはブレード(g)03の
ルート(翼根) 03aの形に相当する開孔02aが厚
み方向(軸方向)に形成されており、この開孔02aに
ブレード03のルート03aが嵌め込まれている。この
ルート03aの断面形状は円形であるがその他種々の形
状があり、また、ブレード03の嵌合方向も本例のよう
に軸方向の他に種々のものがある。さらに、ブレード0
3の形状としては長手方向断面形状、スキューの有無、
横断面形状の変化により種々のものが考えられるが、こ
こではテーパ状平板ブレードとする。このような構造に
おいて回転軸01を回転させると流体機構としての機能
が生じるが、その形式としては軸流、斜流、遠心等各種
形式があり、回転軸01の長手方向に対するディスク0
2及びブレード03の位置付けに関しても軸受間に位置
する場合、オーバーハング部に位置ずろ場合等が考丸ら
れろ。
Figures 2 (al and bl) show an example of a conventional ceramic blade. As shown in both figures, the root of the blade (g) 03 ( An opening 02a corresponding to the shape of blade root 03a is formed in the thickness direction (axial direction), and a root 03a of the blade 03 is fitted into this opening 02a.The cross-sectional shape of this root 03a is circular. However, there are various other shapes, and there are various fitting directions of the blade 03 other than the axial direction as in this example.
The shape of 3 is the longitudinal cross-sectional shape, presence or absence of skew,
Although various shapes can be considered depending on the cross-sectional shape, here, a tapered flat blade is used. In such a structure, when the rotating shaft 01 is rotated, a function as a fluid mechanism occurs, and there are various types such as axial flow, diagonal flow, and centrifugal flow.
Regarding the positioning of blade 2 and blade 03, consider cases where they are located between the bearings, or where they are shifted to the overhang part.

〈発明が解決しようとずろ問題点〉 上述のようなセラミックブレードを使用している流体機
械を運転した場合のブレードの耐振強度について考えて
みろと次のような問題がある。
<Problems to be Solved by the Invention> When a fluid machine using ceramic blades as described above is operated, the following problems arise when considering the vibration resistance of the blades.

人 単独ブレードの場合、固有振動数(曲げ、捩り)f
が低くなり、第3図中f1に示すように、運転範囲(N
1.〜NN)において、回転数の低次のハーモニック成
分H(H=回転数Xi;  i=1.2.3  )との
共振を生じ、その振動応力レベルが大きくなる(ここで
低次とは一段にi < 5〜8をいう)B セラミック
は材料減衰が小さいが、一般ブレードのルート結合部の
遠心力による固着化で構造減衰が期待できないので、ブ
レード自体の弾性振動の対数減衰率δがδく0001〜
0.0 O5と非常に小さくなる。
Human In the case of a single blade, the natural frequency (bending, torsion) f
becomes low, and as shown at f1 in Fig. 3, the operating range (N
1. ~NN), resonance occurs with the low-order harmonic component H of the rotational speed (H = rotational speed Xi; i=1.2.3), and the vibration stress level increases (here, low-order is one step higher). (i < 5 to 8)B Ceramics have small material damping, but structural damping cannot be expected due to the fixation of the root joint of a general blade due to centrifugal force, so the logarithmic damping rate δ of the elastic vibration of the blade itself is δ ku0001~
It becomes very small at 0.0 O5.

したがって、ブレード共振応力は、外力レベルが小さく
でも大きな値となってしまう。
Therefore, the blade resonance stress becomes a large value even if the external force level is small.

また、第3図に示すような運転範囲において変速運転す
るような場合、全域で共振を回避するのは不可能である
。さらにこのような結果として、フラッタ等の発生限界
も低下し、サージング、旋回失速等を生じCしよった場
合に早期破損の心配がある。また、作動流体自体に脈動
を含んでいる場合の共振についても上記Bの理由により
応力レベルが大きくなってしまう。このように、従来の
セラミックブレードにおいては疲労破壊に直結しtこ危
険な現象が生じ易すがった。
Further, when variable speed operation is performed in the operating range as shown in FIG. 3, it is impossible to avoid resonance throughout the entire range. Furthermore, as a result of this, the limit for the occurrence of flutter and the like is lowered, and there is a fear of premature failure in the event of surging, turning stall, etc. occurring. Furthermore, due to the reason B mentioned above, the stress level also increases due to resonance when the working fluid itself contains pulsations. As described above, in conventional ceramic blades, a dangerous phenomenon that directly leads to fatigue failure is likely to occur.

本発明は、このような事情に鑑み、材料減衰とともに構
造減衰を併せ持つようにして対数減衰率を大幅に上昇さ
せたセラミンクブレード構造を提供することを目的とす
る。
In view of these circumstances, an object of the present invention is to provide a ceramic blade structure that has both material damping and structural damping, thereby significantly increasing the logarithmic damping rate.

く問題点を解決するための手段〉 前記目的を達成する本発明の構成は、セラミック製のブ
レードにおいて、その厚み方向に複数枚に分割して製作
されろとともにこれらの一部あるいは全体が接触合体さ
れてなることを特徴とする。
Means for Solving the Problems> The structure of the present invention that achieves the above object is that a ceramic blade is manufactured by dividing into a plurality of pieces in the thickness direction, and a part or all of these pieces are brought together in contact with each other. It is characterized by being done.

〈作   用〉 前記構成においては、接触合体された接触面での摩(察
による構造減衰が付与され、対数かλ裏車が大きくなる
<Function> In the above configuration, structural damping is applied due to friction on the contact surfaces that are brought into contact, and the logarithm or λ back wheel becomes large.

く実 施 例〉 以下、本発明の好適な実施例を図面を参照しながら説明
する。
Preferred embodiments of the present invention will be described below with reference to the drawings.

第1図(n1〜+f)に本発明の実施例にかかるセラミ
ックブレード構造を示す。これらのブレードのディスク
への取付けは飼犬ば第2図に示すように従来と同様であ
り、ここでの説明は省略する。なお第1図(11)〜(
C1はセラミックブレードの側面図、第1図(dl〜f
flは横断面図である。
FIG. 1 (n1 to +f) shows a ceramic blade structure according to an embodiment of the present invention. The attachment of these blades to the disc is the same as in the prior art, as shown in FIG. 2, and will not be described here. In addition, Fig. 1 (11) to (
C1 is a side view of the ceramic blade, Figure 1 (dl~f
fl is a cross-sectional view.

これらの図面に示すように全てのブレード3はその厚み
方向に2枚に分割して製作されて、これらが接触合体さ
れ−C1本のブレード3としてディスクに埋め込まれろ
ようになっており、全てのブレード3が接触面4を有し
一部いろ。ここで、(U)は平面同志の接触の例、(b
lは製作時には両方に曲面を設けて、合体時に接触面4
に接圧を付与ずろ例、tc)は接触面4が折線となった
例を示す。この他接触面4が曲線状となるもの、長手方
向に頁って段付きとなるものなどが青火られる。また、
長手方向に対して部分的に接触面4を有することもある
が、この場合でもルート3 aの部分は接合状態とする
のがよい。一方、接触面4の幅方向の形状も、(d)に
示すように全体分割の他に(e)あるいは(f)に示す
ように部分的に分割してもよい。またこの幅方向の接触
向4も任意の曲線状であってもよい。さらに、これら第
1図tar〜fflでは厚み方向に2分割した例のみを
挙げたが、勿論これに限定されるものではなく、3分割
以上であっても何ら差し支丸ない。
As shown in these drawings, all the blades 3 are manufactured by being divided into two pieces in the thickness direction, and these are brought together in contact and embedded in the disk as one blade 3. The blade 3 has a contact surface 4 and is partially colored. Here, (U) is an example of contact between planes, (b
When manufacturing l, curved surfaces are provided on both sides, and when combined, the contact surface 4
tc) shows an example in which the contact surface 4 is a broken line. Other examples include those in which the contact surface 4 is curved, and those in which the contact surface 4 is stepped in the longitudinal direction. Also,
Although the contact surface 4 may be partially provided in the longitudinal direction, it is preferable that the route 3a is in a joined state even in this case. On the other hand, the shape of the contact surface 4 in the width direction may be divided entirely as shown in (d) or partially as shown in (e) or (f). Further, the contact direction 4 in the width direction may also have an arbitrary curved shape. Further, in FIG. 1 tar to ffl, only an example in which the film is divided into two in the thickness direction is shown, but the invention is of course not limited to this, and there is no problem even if the film is divided into three or more.

このようなセラミックブレード構造においては、接触面
4において摩擦が発生し、これにより構造減衰が付与さ
れる。例えば、従来のセラミックブレードでは、対数減
衰率δを0、005とすると共振倍率Qは約630とな
るが、上述のように構造減衰が付与されれば、δ−0,
1となるのでQ−30となる。このように本発明のセラ
ミックブレード構造とすれば振動応力レベルが約1/2
0となり、耐振強度の大幅な改善が図れる。
In such a ceramic blade structure, friction occurs at the contact surface 4, which provides structural damping. For example, in a conventional ceramic blade, if the logarithmic damping rate δ is 0.005, the resonance magnification Q is about 630, but if structural damping is applied as described above, δ-0,
Since it becomes 1, it becomes Q-30. In this way, with the ceramic blade structure of the present invention, the vibration stress level can be reduced to about 1/2.
0, and the vibration resistance can be significantly improved.

〈発明の効果〉 以上実施例とともに具体的に説明したように、本発明に
かかるセラミックブレード構造とすれば、接触面で摩擦
が生じ、構造減衰が付与されるので、ブレードの対数減
衰率δがδ≧0.1となり、共振時化力が大幅に低減さ
れる。
<Effects of the Invention> As specifically explained above in conjunction with the examples, with the ceramic blade structure according to the present invention, friction occurs on the contact surface and structural damping is imparted, so that the logarithmic damping rate δ of the blade increases. δ≧0.1, and the resonance force is significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜fflは、本発明の実施例にかかるセラ
ミックブレード構造を示す説明図、第2図(a)。 (blは従来技術にかかるセラミックブレードを使用し
た流体機械を示す説明図、第3図は従来技術にかかるセ
ラミックブレードを使用した流体機械におけろ回転数と
振動数との関係を示すグラフである。 図  「a  中、 3はブレード、 3aはルート、 4は接触面である。
Fig. 1 (al to ffl are explanatory diagrams showing a ceramic blade structure according to an embodiment of the present invention, Fig. 2 (a); (bl is an explanatory diagram showing a fluid machine using a ceramic blade according to the prior art; Fig. 3 is a graph showing the relationship between rotational speed and vibration frequency in a fluid machine using ceramic blades according to the prior art. In Fig. 3, 3 is the blade, 3a is the root, and 4 is the contact surface. be.

Claims (1)

【特許請求の範囲】[Claims] セラミック製のブレードにおいて、その厚み方向に複数
枚に分割して製作されるとともにこれらの一部あるいは
全体が接触合体されてなることを特徴とするセラミック
ブレード構造。
A ceramic blade structure characterized in that the ceramic blade is manufactured by being divided into a plurality of pieces in the thickness direction, and some or all of these pieces are brought together in contact with each other.
JP15622686A 1986-07-04 1986-07-04 Ceramic blade construction Pending JPS6312802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15622686A JPS6312802A (en) 1986-07-04 1986-07-04 Ceramic blade construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15622686A JPS6312802A (en) 1986-07-04 1986-07-04 Ceramic blade construction

Publications (1)

Publication Number Publication Date
JPS6312802A true JPS6312802A (en) 1988-01-20

Family

ID=15623116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15622686A Pending JPS6312802A (en) 1986-07-04 1986-07-04 Ceramic blade construction

Country Status (1)

Country Link
JP (1) JPS6312802A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069673A1 (en) * 2013-11-08 2015-05-14 United Technologies Corporation Bonded multi-piece gas turbine engine component
JP2018066296A (en) * 2016-10-18 2018-04-26 貞義 竹綱 Heat-resistance electric blower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069673A1 (en) * 2013-11-08 2015-05-14 United Technologies Corporation Bonded multi-piece gas turbine engine component
US10458249B2 (en) 2013-11-08 2019-10-29 United Technologies Corporation Bonded multi-piece gas turbine engine component
JP2018066296A (en) * 2016-10-18 2018-04-26 貞義 竹綱 Heat-resistance electric blower

Similar Documents

Publication Publication Date Title
JP2877837B2 (en) Stator blade assembly for axial flow rotating machine and spring used therefor
US4167369A (en) Impeller blading of a centrifugal compressor
EP0072177A2 (en) Impeller for centrifugal compressor
JP2008539356A (en) Turbine wheel
JPS63227906A (en) Assembly method and device for steam turbine reducing relative motion
JPH02181098A (en) Axial flow compressor
JPH02115596A (en) Radial flow rotor
US2625365A (en) Shrouded impeller
JPS6312802A (en) Ceramic blade construction
WO2003104616A1 (en) Turbine bucket assembly and its assembling method
GB753229A (en) Improvements in or relating to rotor blades for axial flow turbines, compressors or pumps
DE60213233D1 (en) BLADE PAIR
JPS59211795A (en) Impeller for centrifugal hydraulic machine
JPH0324561B2 (en)
JPS6312803A (en) Ceramic blade construction
US3677662A (en) Multilayer ring damped turbomachine rotor assembly
JPS60237189A (en) Rotor structure of roots pump
JP3733574B2 (en) Sliding bearing of variable stator blade for gas turbine
JPS6316102A (en) Ceramic blade structure
US4305698A (en) Radial-flow turbine wheel
JPH06117201A (en) Assembly method for turbine moving blade
JPS63124806A (en) Radial flow turbo machine
RU2033525C1 (en) Welded drum-type rotor of turbomachine
JPH05149103A (en) Divided type radial turbine impeller
SU987196A1 (en) Axial fan impeller