JPS63128019A - Electrolytic polymer and organic semiconductor material - Google Patents

Electrolytic polymer and organic semiconductor material

Info

Publication number
JPS63128019A
JPS63128019A JP27415086A JP27415086A JPS63128019A JP S63128019 A JPS63128019 A JP S63128019A JP 27415086 A JP27415086 A JP 27415086A JP 27415086 A JP27415086 A JP 27415086A JP S63128019 A JPS63128019 A JP S63128019A
Authority
JP
Japan
Prior art keywords
polymer
electrolytic
organic semiconductor
semiconductor material
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27415086A
Other languages
Japanese (ja)
Other versions
JPH089659B2 (en
Inventor
Okitoshi Kimura
興利 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP27415086A priority Critical patent/JPH089659B2/en
Publication of JPS63128019A publication Critical patent/JPS63128019A/en
Publication of JPH089659B2 publication Critical patent/JPH089659B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To obtain an electrolytic polymer, exhibiting electric conductivity within a semiconductor region and providing an organic semiconductor material capable of stably existing in air, by electrolytically polymerizing 1,2- dithienylethene monomer. CONSTITUTION:1,2-Dithienylethene monomer expressed by the formula and a supporting electrolyte are dissolved in a solvent, e.g. methylene chloride, etc., to form a solution and electrodes are put therein. A voltage is applied to afford the aimed polymer on the electrode surfaces. Furthermore, impurities are doped in the electrolytic polymerization to provide the polymer having properties as a semiconductor by doping impurities in electrolytic polymerization and the aimed organic semiconductor material can be obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はエレクトロクロンツク材料、電磁シールド材料
および電極材料などに応用できる有機半導体となる電解
1合体に関する。さらに詳しくは、本発明は電気化学的
手法により電解質イオンのドープおよび脱ドープが可能
な新規な電解重合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an electrolytic monomer that becomes an organic semiconductor that can be applied to electrochronic materials, electromagnetic shielding materials, electrode materials, and the like. More specifically, the present invention relates to a novel electrolytic polymer that can be doped and dedoped with electrolyte ions by electrochemical techniques.

〔従来技術〕[Prior art]

近年、電子材料の研究が盛んに行なわれており、その中
でも共役系高分子材料を用いた機訃性高分子材料が多様
な可能性があるものとして注目されている。
In recent years, research on electronic materials has been actively conducted, and among these, mechanical polymer materials using conjugated polymer materials are attracting attention as they have a wide variety of possibilities.

共役系重合体は、通常不純物をドープすると錯体が形成
されて、絶縁性または半導体から金−なみの電気伝導度
を持つようになることが知られており、その伝導機構は
未だ解明されていないが、機能性材料として期待され鴇
々の材料について研究されている。
It is known that when conjugated polymers are doped with impurities, a complex is formed and the polymer changes from insulating or semiconducting properties to having electrical conductivity comparable to that of gold, but the conduction mechanism is still unknown. However, many materials are being researched as they are expected to be functional materials.

従来研究が行なわれてきた有機半導体にはチオフェン系
、ビロール系、アセチレン系(%開Wd56−1364
69号公報、Journal Of Polymer8
cienas、Polymer Chemical E
dition第12巻11〜20負)などがあるが、ポ
リアセチレンは酸素の影響を受けや丁く、空気中で不安
定であり、ポリチオフェンはドーパントである不純物か
空気中ではぬけや丁いという欠膚な有している。
Organic semiconductors that have been studied in the past include thiophene-based, virol-based, and acetylene-based (% open Wd56-1364).
No. 69, Journal Of Polymer8
cienas, Polymer Chemical E
dition Vol. 12, 11-20 (Negative)), but polyacetylene is not affected by oxygen and is unstable in air, and polythiophene is a dopant impurity or has problems such as shedding and stagnation in air. It has.

〔目 的〕〔the purpose〕

本発明は上記現状にかんがみてなされたものであって、
その目的は半導体領域の電気伝導度を示しかつ空気中で
安定に存在することができる有機半導体材料を提供する
ととKある。
The present invention has been made in view of the above-mentioned current situation, and
The purpose is to provide an organic semiconductor material that exhibits electrical conductivity in a semiconductor region and can exist stably in air.

〔偽 成〕[false]

上記目的は式 で示される単量体から電解重合法によって製造された電
解重合体くより達成される。
The above object is achieved by an electrolytic polymer produced from a monomer represented by the formula by an electrolytic polymerization method.

本発明の重合体は電解重合中に不純物がドーピングされ
ることにより半導体としての性質を有するものとなる。
The polymer of the present invention has semiconductor properties by being doped with impurities during electrolytic polymerization.

この不純物としては電解重合中に取り込まnる隘イオン
をあけることができ、その代表例としてテトラフルオロ
硼酸イオン、過塩素酸イオン、ヘキサフルオロ燐酸イオ
ン、ヘキサフルオロ上1g酸イオン、硫酸イオン、硫酸
水素イオン、トリフルオロ酢酸イオン、p−トルエンス
ルホン酸イオンなどがある。電解重合により上記陰イオ
ンがドーピングされた重合体は逆電圧の印加によル前記
陰イオンが1合体より分離し絶縁性化合物となる。この
重合体はヨウ素、三フッ化備素、五フッ化ヒ素、五フッ
化アンチモンのような電子受容体と接触させることKよ
〕再び半導体としての性質v持たせることもできる。
These impurities can create bottleneck ions that are taken in during electrolytic polymerization, and representative examples include tetrafluoroborate ions, perchlorate ions, hexafluorophosphate ions, hexafluorohydrophosphate ions, sulfate ions, and hydrogen sulfate ions. ion, trifluoroacetate ion, p-toluenesulfonate ion, etc. When a reverse voltage is applied to a polymer doped with the above-mentioned anions by electrolytic polymerization, the anions are separated from one another and become an insulating compound. This polymer can be made to have semiconducting properties again by contacting it with an electron acceptor such as iodine, trifluoride, arsenic pentafluoride, or antimony pentafluoride.

本発明の重合体は、例えば式 で示される1、2−ジチェニルエテン単量体と支持電解
質とを溶媒中に溶解して溶液を生成させ次にこの溶液中
に一対の電極を入れ電圧を印加して電極面に重合体を析
出させるいわゆる電解重合法によって製造することがで
きる。
The polymer of the present invention can be produced by, for example, dissolving the 1,2-dithenylethene monomer represented by the formula and a supporting electrolyte in a solvent to form a solution, then inserting a pair of electrodes into this solution and applying a voltage. It can be manufactured by a so-called electrolytic polymerization method in which a polymer is deposited on the electrode surface.

電解1合法に用いられる支持電解質としては過塩xa酸
テトラメチルアンモニウム、過塩素酸テトラエチルアン
モニウム、過塩素酸テトラブチルアンモニウム、過塩素
酸リチウム、テトラフルオロ硼酸テトラメチルアンモニ
ウム、テトラフルオロ勧酸テトラエチルアンモニウム、
テトラフルオロe鈑テトラブチルアンモニウム、テトラ
フルオCI硼酸リチウム、ヘキサフルオロヒ素酸テトラ
メチルアンモニウム、ヘキサフルオロヒ素酸テトラエチ
ルアンモニウム、ヘキサフルオロ燐酸テトラメチルアン
モニウム、ヘキサフルオロヒ素酸ナトリウム、ヘキサフ
ルオロ燐酸テトラメチルアンモニウム、ヘキサ7.11
/ オ。
Supporting electrolytes used in electrolysis method 1 include tetramethylammonium persalt xaate, tetraethylammonium perchlorate, tetrabutylammonium perchlorate, lithium perchlorate, tetramethylammonium tetrafluoroborate, tetraethylammonium tetrafluoroborate,
Tetrafluoro e-plated tetrabutylammonium, tetrafluoroCI lithium borate, tetramethylammonium hexafluoroarsenate, tetraethylammonium hexafluoroarsenate, tetramethylammonium hexafluorophosphate, sodium hexafluoroarsenate, tetramethylammonium hexafluorophosphate, hexa7 .11
/ O.

燐酸テトラブチルアンモニウム、ヘキ? 7 /L、オ
ロ?A酸ナトリウム、硫酸、硫酸水素テトラメチ/l/
7ンモニウム、硫酸水素テトラブチルアンモニウム、ト
リフルオロ酢酸ナトリウム、p−トルエンスルホン酸テ
トラメチルアンモニウム、p−トルエンスルホン酸テト
ラブチルアンモニウムなどがあけられる。本発明に使用
される溶媒としては極性溶媒を使用するのが好1しく、
アセトニトリル、ベンゾニトリル、ニトロベンゼン、炭
酸プロピレン、塩化メチレン、テトラヒドロフラン、ジ
メチルホルムアミド、ジメチルスルホキシドなどが用い
られ特に好ましくはアセトニトリル、塩化メチレンが用
いられる。
Tetrabutylammonium phosphate, hex? 7 /L, Oro? Sodium A acid, sulfuric acid, tetramethyhydrogen sulfate/l/
Examples include 7 ammonium hydrogen sulfate, tetrabutylammonium hydrogen sulfate, sodium trifluoroacetate, tetramethylammonium p-toluenesulfonate, and tetrabutylammonium p-toluenesulfonate. As the solvent used in the present invention, it is preferable to use a polar solvent,
Acetonitrile, benzonitrile, nitrobenzene, propylene carbonate, methylene chloride, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide and the like are used, with acetonitrile and methylene chloride being particularly preferred.

また、電解重合法に用いられる電極の材料としては醸化
インジクム、酸化第二スズ尋の金、に&化物をガラス表
面に蒸着したガラ°ス電極(ネサガラス)1金、白金尋
の貴金輌やグラツシーカ−ボン勢の炭素電極などを使用
することができるが、ネサガラスを使用することが好ま
しい。
In addition, the electrode materials used in the electrolytic polymerization method include fermented indicum, stannic oxide gold, glass electrodes with nitrogen and compounds deposited on the glass surface (Nesa Glass) 1 gold, and platinum gold metal. Although carbon electrodes such as Gratshi carbon or the like can be used, it is preferable to use Nesa glass.

電解法としては、定電流電解法、定電位電解法、定電圧
電解法のいずれの方法を用いても反応は進行するが重合
体として1,2−ジ(2,3’−チェニル)エテノを用
いる場合の電解重合については定電位電解法が好ましく
、参照電極であろSOKに対してQ、8Vから2.Ov
の電位が好ましく、さらに好ましくはtOVから’L5
Vの電位を印加することが好ましい。
As for the electrolytic method, the reaction proceeds no matter which method is used, such as constant current electrolysis, constant potential electrolysis, or constant voltage electrolysis, but 1,2-di(2,3'-chenyl)etheno is For electrolytic polymerization when used, constant potential electrolysis is preferred, and the reference electrode has a Q of 8 V to 2.0 V with respect to SOK. Ov
is preferable, and more preferably from tOV to 'L5
Preferably, a potential of V is applied.

単量体として1,2−ジ(2,2’−チェニル)二テン
を用いる場合の重合は、いずれの電解法を用いても進行
するが膜として成長せず電極上に粉末状に成長していく
6重合体の色は黒紫色で逆電流を流すことにより、ドー
パントである陰イオンが脱離して赤色重合体となる。こ
れに対して例えは1.2−ジ(2,3’−チェニル)エ
テノの重合体は青緑色の膜として得られ、次に逆電流を
流すことによ勺、ドーパントが膜より脱離して黄色の重
合体へと変化する。
When using 1,2-di(2,2'-chenyl)nitene as a monomer, polymerization proceeds no matter which electrolytic method is used, but it does not grow as a film but as a powder on the electrode. The color of the hexapolymer is blackish-purple, and when a reverse current is applied, the anion that is the dopant is desorbed, resulting in a red polymer. In contrast, for example, a polymer of 1,2-di(2,3'-chenyl)etheno is obtained as a blue-green film, and then by applying a reverse current, the dopant is desorbed from the film. It turns into a yellow polymer.

本発明の方法で製造される各重合体の構造については一
概に決定することはできないが、いずれの重合体も半導
体領域の電気伝導度を示し、有機溶媒に不溶であり化学
的安定性に丁ぐれている。例えば、単量体として1,2
−ジ(2,2’−チェニル)エテノを用いる場合チオフ
ェン骨格についてα位が2カ所おいておりこの位置から
重合が進み、線状−次元重合体となると考えられ、1,
2−ジ(2,5’−チェニル〕エテンについては同様な
α位が3カ所1,2−ジ(5,5’−チェニル)二テン
については4カ所のα位が存在し、これらの化合物のα
位が5力所以上反応するとてれはその重合体は3次元構
造になると考えられる。現在、導電性高分子の電気伝導
機構で提案されているポーラロン等の結合交換による移
動と考えると1.2−ジ(2,2’−チェニ/I/)エ
テノの重合体、丁なわち1次元構造物が好ましく、1.
2−ジ(2,5’−チェニル)エテノ、1.2−ジ(3
,5’−チェニル)エテノの重合体はポリマー鎖の自由
匿がより減少するのでこの膚では好ましくない、したが
って電極材料、電磁シールド材料として要求される1つ
の特性である高導電率を得るには1.2−ジ(2,2’
−チェニル)エテノの重合体構造が好ましい、また、こ
れらの重合体は不純物がドープされた状態と脱ドープさ
れた状態とで色変化をおこすことから、エレクトロクロ
ミック材料としての利用も可能でチオフェン骨格の結合
位の異なる単量体を使用し、重合することにより異なっ
た色変化を起こす材料を製造することかできる。
Although the structure of each polymer produced by the method of the present invention cannot be determined unambiguously, all of the polymers exhibit electrical conductivity in the semiconductor region, are insoluble in organic solvents, and have a chemical stability that is close to that of the other polymers. It's out of place. For example, 1,2 as a monomer
- When using di(2,2'-chenyl)etheno, there are two α-positions on the thiophene skeleton, and it is thought that polymerization proceeds from these positions to form a linear-dimensional polymer.
There are three similar α-positions for 2-di(2,5'-chenyl)ethene and four similar α-positions for 1,2-di(5,5'-chenyl)nitene, and these compounds α of
If five or more positions react, the polymer is considered to have a three-dimensional structure. Considering the transfer by bond exchange of polarons, which is currently proposed in the electrical conduction mechanism of conductive polymers, a polymer of 1,2-di(2,2'-cheni/I/)etheno, ie, 1 Dimensional structures are preferred; 1.
2-di(2,5'-chenyl)etheno, 1,2-di(3
, 5'-chenyl) etheno polymers are undesirable in this field because the free storage of polymer chains is further reduced. Therefore, in order to obtain high conductivity, which is one of the properties required for electrode materials and electromagnetic shielding materials. 1.2-di(2,2'
-thhenyl)etheno polymer structure is preferred; and since these polymers change color between doped and undoped states, they can also be used as electrochromic materials, and have a thiophene skeleton. It is possible to use monomers with different bonding positions to produce materials that exhibit different color changes upon polymerization.

〔効 果〕〔effect〕

本発明によれば、電解重合体が、膜状に成長する場合膜
厚を通電量で制御できるので二次的な成形加工を必要と
しない。また、電解重合中に不純物が取り込まれるので
半導体領域の導電性を発現させろための′N要な工程で
ある不純物のドーピングも実質的に一段階で行えるとい
う利点がある。
According to the present invention, when the electrolytic polymer is grown in the form of a film, the film thickness can be controlled by the amount of current applied, so there is no need for secondary molding. Further, since impurities are taken in during electrolytic polymerization, there is an advantage that impurity doping, which is a necessary step for developing conductivity in the semiconductor region, can be carried out substantially in one step.

次に実施例をあげて本発明をさらに具体的に説明するが
本発明はこれらのみに限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these examples.

実施例 1 工TOガラスと陽極(2cm2 )K 、 ニッケルを
陰極に1(NIL離して配置した電解槽に、1.2−ジ
(2,2’−チェニル)エテノ144即(50mmol
/Z )過塩素酸テトラブチルアンモニウム5201g
(0,1moVt)塩化メチレン15sdを加え、溶解
させた後、アルゴンを20分間吹きこんで267vの定
電圧で5分間1合させると、過塩素酸イオンがドーピン
グされた黒紫色の1合体が微粉末状に陽極上に生成する
0次に電流の向きを逆にすると、過塩素酸イオンが1合
体より分離し、赤色重合体となった。洗浄乾燥後のJ!
Liiはα3qであった。
Example 1 1,2-di(2,2'-chenyl)etheno 144 (50 mmol) was placed in an electrolytic cell with TO glass and an anode (2 cm2) K and nickel as a cathode separated by 1 (NIL).
/Z) Tetrabutylammonium perchlorate 5201g
(0.1 moVt) After adding 15 sd of methylene chloride and dissolving it, blowing argon for 20 minutes and stirring for 5 minutes at a constant voltage of 267 V, a black-purple amalgam doped with perchlorate ions was formed. When the direction of the zero-order current generated in powder form on the anode was reversed, perchlorate ions were separated from the monomer, forming a red polymer. J after washing and drying!
Lii was α3q.

実施例 2 実施例1において、塩化メチレンの代わりにアセトニト
リルを用いたほかは同様な操作を行なった。5.5Vの
定電圧で30分間1合を進行させると、陽極上に黒色粉
末1合体が付着してくる。これをアセトニトリルで洗浄
後、乾燥させ、200 kgf/32でペレット状に成
形し、電気伝尋度′%−測定したところ42X10−2
Bα−1であった。
Example 2 The same operation as in Example 1 was performed except that acetonitrile was used instead of methylene chloride. When the mixture is allowed to proceed for 30 minutes at a constant voltage of 5.5 V, a black powder mixture is deposited on the anode. After washing this with acetonitrile, it was dried and formed into a pellet at 200 kgf/32, and the electrical conductivity '% was measured to be 42X10-2.
It was Bα-1.

実施例 3 ITOガラスを電極(2012)、ニッケルを陰極、参
照電極として80B’Iff倫えた電解槽に、1.2−
ジ(2,3’−チェニル)エテン40M9C10nov
’t>ヘキサフルオロヒ紫酸ナトリウム360119(
85mmol/Z) 、アセトニトリル20wItを加
え、溶解させた後、アルゴンを20分間次きこんだ。1
゜V vaBOBの定電位で250m0Qt気iiv流
丁と、陽極上にヘキサフルオ四ヒ素酸イオンがドーピン
グされた青緑色の薄膜重合体が得られた。次Ktiの向
きを逆にすると、ヘキサフルオ党ヒ素イオンか重合体よ
プ分離し黄色重合体へと変化した。
Example 3 A 1.2-
Di(2,3'-chenyl)ethene 40M9C10nov
't>Sodium hexafluorohypurate 360119 (
After adding and dissolving 85 mmol/Z) and 20 wIt of acetonitrile, argon was then bubbled in for 20 minutes. 1
A blue-green thin film polymer doped with hexafluorotetraarsenate ions on the anode was obtained with a constant potential of 250 m0Qt gas at a constant potential of .degree.V vaBOB. Next, when the direction of Kti was reversed, the hexafluoride arsenic ion separated from the polymer and changed to a yellow polymer.

実施例 4 工TOガラスを陽極(2cILす、ニッケルな陰極に1
3離して配置した電解掻に、1,2−ジ(2,5’−チ
エニル)エテン50119 (10mmol、/Z) 
、過塩素酸テトラブチルアンそニウム590QCα1 
mo ’l/l)、アセトニトリル15−を加え、溶解
させた後アルゴンを20分間吹きζんで、&Ovの定電
圧で7時間重合を進行させると、過塩素イオンがドーピ
ングされた黒色重合体が陽極上に付着しtaから剥離さ
せろと膜状物として得られた。
Example 4 TO glass was used as an anode (2 cIL), nickel was used as a cathode (1 cIL).
1,2-di(2,5'-thienyl)ethene 50119 (10 mmol, /Z) was added to the electrolytic plates placed 3 apart.
, tetrabutylamsonium perchlorate 590QCα1
mol'l/l), acetonitrile 15- was added and dissolved, then argon was blown for 20 minutes, and polymerization was allowed to proceed for 7 hours at a constant voltage of When peeled off from the ta, a film-like substance was obtained.

このフィルム状物は空気中で安定であり、電気伝導度は
t 7 X 10−48 値−11に示L タ。
This film-like material is stable in air and has an electrical conductivity of -11 at t7 x 10-48.

特許出願人 株式会社 リ  コ  −外2名Patent applicant: Rico Co., Ltd. - 2 others

Claims (1)

【特許請求の範囲】 1)式 ▲数式、化学式、表等があります▼ で示される単量体から電解重合法により製造されたこと
を特徴とする電解重合体。 2)式 ▲数式、化学式、表等があります▼ で示される単量体から電解重合法により製造された電解
重合体からなる有機半導体材料。
[Claims] 1) An electrolytic polymer produced from a monomer represented by the formula ▲ Numerical formula, chemical formula, table, etc.▼ by an electrolytic polymerization method. 2) An organic semiconductor material consisting of an electrolytic polymer produced from the monomer shown by the formula ▲ Numerical formula, chemical formula, table, etc.▼ by electrolytic polymerization method.
JP27415086A 1986-11-19 1986-11-19 Polymer and organic semiconductor material composed of the polymer Expired - Lifetime JPH089659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27415086A JPH089659B2 (en) 1986-11-19 1986-11-19 Polymer and organic semiconductor material composed of the polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27415086A JPH089659B2 (en) 1986-11-19 1986-11-19 Polymer and organic semiconductor material composed of the polymer

Publications (2)

Publication Number Publication Date
JPS63128019A true JPS63128019A (en) 1988-05-31
JPH089659B2 JPH089659B2 (en) 1996-01-31

Family

ID=17537720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27415086A Expired - Lifetime JPH089659B2 (en) 1986-11-19 1986-11-19 Polymer and organic semiconductor material composed of the polymer

Country Status (1)

Country Link
JP (1) JPH089659B2 (en)

Also Published As

Publication number Publication date
JPH089659B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
Warren et al. A study of conducting polymer morphology: the effect of dopant anions upon order
US4795242A (en) Conducting substituted polyisothianaphthenes
US4640748A (en) Polyisothianaphtene, a new conducting polymer
JPH0730169B2 (en) Conductive polymer
US4886572A (en) Composite electrode comprising a bonded body of aluminum and electroconductive polymer and electric cell using such a composite electrode
Yoshino et al. Electrical and optical properties of electrochemically prepared polyselenophene film
US4505841A (en) Fused 6,6,6-membered heterocyclic electroactive polymers
US5159031A (en) Sulfonated polyaniline salt compositions and uses thereof
US4769115A (en) Process for preparing electrically conductive polymer
US4663001A (en) Electroconductive polymers derived from heterocycles polycyclic monomers and process for their manufacture
US4502980A (en) Dithiene electroactive polymers
JPS63215722A (en) Production of electroconductive polyaniline compound
JPS63122727A (en) Novel polymer and production thereof
EP0164974B1 (en) Polymer having isothianaphthene structure and electrochromic display
JPS63128019A (en) Electrolytic polymer and organic semiconductor material
JPH05266926A (en) Charging/discharging of battery
JPH0362451A (en) Electrode of polyaniline polymer and preparation of polyaniline polymer
JPH0138411B2 (en)
JPS61266435A (en) Production of thin film of electrically conductive organic polymer
JPH02218716A (en) Organic semiconductor and production thereof
JPS63196622A (en) Production of polymer having isothianaphthene structure
JPH0555533B2 (en)
JPS63125513A (en) Electrically active polymer and its production
Choi et al. Chemical and physical properties of electrochemically prepared polyaniline p-toluenesulfonates
JPH01131231A (en) Production of highly conductive thiophene polymer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term