JPS63126611A - Cooling device for hot rolled sheet steel - Google Patents

Cooling device for hot rolled sheet steel

Info

Publication number
JPS63126611A
JPS63126611A JP26990286A JP26990286A JPS63126611A JP S63126611 A JPS63126611 A JP S63126611A JP 26990286 A JP26990286 A JP 26990286A JP 26990286 A JP26990286 A JP 26990286A JP S63126611 A JPS63126611 A JP S63126611A
Authority
JP
Japan
Prior art keywords
cooling
water
control
way valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26990286A
Other languages
Japanese (ja)
Inventor
Akio Tosaka
章男 登坂
Masahiko Morita
正彦 森田
Koichi Hashiguchi
橋口 耕一
Shinobu Okano
岡野 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26990286A priority Critical patent/JPS63126611A/en
Publication of JPS63126611A publication Critical patent/JPS63126611A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To enlarge the range of a cooling capacity and to quicken control by providing plural feed water pipings, arranging a flow regulating valve and three-way valve on each feed water piping as well and controlling the flow regulating valve and three-way valve with their opening and closing via a cooling state detector. CONSTITUTION:The feed water pipings 12A, 12B feeding a cooling water of different temp. each other are provided on a cooling device 10, connection pipings 13A, 13B are arranged to the respective piping as well and the piping 13A, 13B are linked with a single nozzle header 14 by shunting them. In this case flow regulating valves 15A, 15B and threeway valves 16A, 16B are respectively arranged on the connection pipings 13A, 13B from the upper stream side in order and the valves 15A, 15B, 16A, 16B are respectively controlled quickly by the cooling state control device 18 connected to the temp. sensor 17 of a hot-run table. With this method the range of the cooling capacity from rapid cooling till slow cooling is enlarged and the control is quickened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱延鋼板の冷却装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a cooling device for hot rolled steel sheets.

[従来の技術] 熱延鋼板の熱延終了から巻取りまでのホットランテーブ
ル上での冷却装置としては、現在種々のものが実機化さ
れている。このような冷却装置に要求される特性として
は次のようなものがある。
[Prior Art] Various cooling devices are currently in use as cooling devices for hot-rolled steel sheets on hot run tables from the end of hot rolling to winding. The characteristics required of such a cooling device include the following.

■単一の冷却装置で急冷から緩冷までの幅広い冷却能が
得られること。
■A single cooling device can provide a wide range of cooling capabilities from rapid cooling to slow cooling.

■安定した冷却能が得られること。■Achieving stable cooling performance.

■止水弁等のオン/オフ操作により迅速かつ安定した冷
却水供給のオン/オフ(高速応答性)が可能であること
■It is possible to quickly and stably turn on/off the cooling water supply (high-speed response) by turning on/off the water stop valve, etc.

上記各特性は、いずれも鋼板の材質を大幅に制御できる
こと、材質の長手および幅方向の均一化を達成できるこ
と、および設備コストの低減が可能になることにより、
熱延鋼板を高能率で製造できる点において大きなメリッ
トがある。
All of the above characteristics are achieved by being able to significantly control the material of the steel plate, achieving uniformity of the material in the longitudinal and width directions, and reducing equipment costs.
It has a great advantage in that hot-rolled steel sheets can be manufactured with high efficiency.

[発明が解決しようとする問題点] しかしながら、従来の冷却装置において上記■〜■の各
特性を満たすものは存在しない。
[Problems to be Solved by the Invention] However, there is no conventional cooling device that satisfies each of the characteristics (1) to (4) above.

すなわち、「石川島播磨技法第21巻第4号第293頁
〜第288頁」、「三菱重工技法第20巻第3号第35
2頁〜第357頁」に記載されるように、冷却能が大き
いとされているスリットラミナーフローでは、スリット
の厚さに応じた水量が供給されない場合には水膜の破断
を生ずるから、冷却能を小さくしようとして水量を絞り
込もうとしても限界がある。すなわち暖冷には適さない
That is, "Ishikawajima Harima Techniques Vol. 21 No. 4 No. 293-288", "Mitsubishi Heavy Industries Techniques Vol. 20 No. 3 No. 35"
As described in "Pages 2 to 357," in the slit laminar flow, which is said to have a large cooling capacity, the water film breaks if the amount of water corresponding to the thickness of the slit is not supplied. Even if we try to reduce the amount of water to reduce the capacity, there is a limit. In other words, it is not suitable for heating or cooling.

また、パイプラミナーフローにおいてもスリットラミナ
ーフローにおいても、高速応答性を向上する制御方法と
して、ノズルから噴出落下する水を樋によりさえぎり冷
却領域外に流し去るような方法が提案されているが、こ
れは冷却水量をOまたは100%とする制御であり、細
かな冷却能制御は全く不可能である。
In addition, for both pipe laminar flow and slit laminar flow, a method has been proposed as a control method to improve high-speed response, in which water ejected from a nozzle is blocked by a gutter and drained out of the cooling area. This is a control in which the amount of cooling water is set to O or 100%, and fine control of the cooling capacity is completely impossible.

なお、水温が変わることで冷却能が変動することは製造
現場において定性的に知られていることであるが、これ
は冷却状態の誤差となる要因であっても、冷却状態を制
御できる要因ではなかった。すなわち、水温を積極的に
制御しようとしても、従来の方法では水温を迅速に変化
させることが困難であったことによる。
It is qualitatively known at manufacturing sites that the cooling capacity fluctuates due to changes in water temperature, but although this is a factor that causes errors in the cooling state, it is not a factor that can control the cooling state. There wasn't. That is, even if the water temperature is actively controlled, it is difficult to change the water temperature quickly using conventional methods.

本発明は、急冷から暖冷までの幅広い冷却能を安定的に
かつ迅速に制御可能とすることを目的とする。
An object of the present invention is to stably and quickly control a wide range of cooling capabilities from rapid cooling to warm cooling.

[問題点を解決するための手段] 本発明に係る熱延鋼板の冷却装置は、冷却水を供給する
2以上の給水配管を有し、各給水配管のそれぞれに連な
る連続配管を相互に合流させて単一の冷却ノズルヘッダ
に連絡し、各連絡配管の上流側に流量調節弁を設け、各
連絡配管の下流側に三方弁を設け、三方弁の第1ポート
は流量調節弁の側に接続し、三方弁の第2ボートは冷却
ノズルヘッダの側に接続し、三方弁の第3ボートは排水
系に接続するとともに、W4板冷却ゾーンの冷却状態を
検出する冷却状態検出装置を備え、冷却状態検出装置の
検出結果に基づいて前記流量調節弁および/または三方
弁を開閉制御する冷却状態制御装置を“備えてなるよう
にしたものである。
[Means for Solving the Problems] The hot-rolled steel plate cooling device according to the present invention has two or more water supply pipes that supply cooling water, and the continuous pipes connected to each of the water supply pipes are made to merge with each other. connect to a single cooling nozzle header, provide a flow control valve on the upstream side of each connection pipe, provide a three-way valve on the downstream side of each connection pipe, and connect the first port of the three-way valve to the flow control valve side. The second boat of the three-way valve is connected to the cooling nozzle header side, and the third boat of the three-way valve is connected to the drainage system and is equipped with a cooling state detection device that detects the cooling state of the W4 plate cooling zone. The cooling state control device is configured to include a cooling state control device that controls opening and closing of the flow control valve and/or the three-way valve based on the detection result of the state detection device.

[作用] 本発明によれば、冷却状態検出装置に基づく冷却状態制
御装置の制御動作により、流量調節弁の開閉状態と三方
弁の開閉状態が種々組合わされ、冷却ノズルヘッダが噴
出する水量、水温を迅速に1幅広い範囲で多様かつ安定
的に変化させることができる。これにより、急冷から暖
冷までの幅広い冷却衡を安定的にかつ迅速に制御するこ
とができる。
[Operation] According to the present invention, the control operation of the cooling state control device based on the cooling state detection device causes various combinations of the open/closed states of the flow rate adjustment valve and the open/closed states of the three-way valve, thereby controlling the amount of water spouted by the cooling nozzle header and the water temperature. can be rapidly and stably changed over a wide range. Thereby, a wide range of cooling balances from rapid cooling to warm cooling can be stably and quickly controlled.

[実施例] 第1図は本発明の一実施例に係る冷却装置を示す模式図
、第2図は第1図の冷却配管系を示す模式図、第3図は
冷却配管系の変形例を示す模式図、第4図はスリットラ
ミナーフローとパイプラミナーフローそれぞれの水量密
度と温度降下量(冷却能)との関係を示す線図、第5図
はスリットラミナーフローの水温と熱伝達率(冷却能)
との関係を示す線図、第6図はスリットラミナーフロー
において安定な水膜が得られる下限水量を示す線図、第
7図は本発明の実施による水量変化と温度降下量(冷却
能)の関係を示す線図、第8図は従来の冷却配管系を示
す模式図である。
[Example] Fig. 1 is a schematic diagram showing a cooling device according to an embodiment of the present invention, Fig. 2 is a schematic diagram showing the cooling piping system of Fig. 1, and Fig. 3 is a modification of the cooling piping system. Figure 4 is a diagram showing the relationship between water volume density and temperature drop (cooling capacity) for slit laminar flow and pipe laminar flow, and Figure 5 is a diagram showing the relationship between water temperature and heat transfer coefficient (cooling capacity) for slit laminar flow. Noh)
Figure 6 is a diagram showing the lower limit water amount at which a stable water film can be obtained in slit laminar flow, and Figure 7 is a diagram showing the change in water amount and temperature drop (cooling capacity) due to the implementation of the present invention. A diagram showing the relationship, FIG. 8 is a schematic diagram showing a conventional cooling piping system.

第1図、第2図において、10は冷却装置、11は鋼板
冷却ゾーンを搬送される鋼板、12A、12Bは給水配
管、13A、13Bは連絡配管、14は冷却ノズルヘッ
ダ、15A、15Bは流量調節弁、16A、16Bは三
方弁、17は温度センサ(冷却状態検出装置)、18は
冷却状態制御装置である。
In Figures 1 and 2, 10 is a cooling device, 11 is a steel plate transported through a steel plate cooling zone, 12A and 12B are water supply pipes, 13A and 13B are connection pipes, 14 is a cooling nozzle header, and 15A and 15B are flow rates. Control valves 16A and 16B are three-way valves, 17 is a temperature sensor (cooling state detection device), and 18 is a cooling state control device.

すなわち、冷却装置10は、相互に異なる水温の冷却水
を供給する2つの給水配管12A、12Bを有し、各給
水配管12A、12Bのそれぞれに連なる連絡配管13
A、13Bを相互に合流させて単一の冷却ノズルヘッダ
14に連絡し、各連絡配管13A、13Bの上流側に流
量調速弁15A、15Bを設け、各連絡配管13A、1
3Bの下流側に三方弁16A、16Bを設け、三方弁1
6A、16Bの第1ポートは流i調節弁15A、15B
の側に接続し、三方弁L6A、16Bの第2ボートは冷
却ノズルヘッダ14の側に接続し、三方弁16A、16
Bの第3ボートは排水系に接続している。また、冷却装
置10は、鋼板冷却ゾーンを搬送される鋼板11の冷却
状態を検出する温度センサ17を備え、温度センサ17
の検出結果に基づいて前記流量fil弁15A、15B
および/または三方弁16A、16Bを開閉制御する冷
却状態制御装置18を備えている。
That is, the cooling device 10 has two water supply pipes 12A and 12B that supply cooling water of mutually different water temperatures, and a connecting pipe 13 that is connected to each of the water supply pipes 12A and 12B.
A, 13B are merged with each other and connected to a single cooling nozzle header 14, and flow regulating valves 15A, 15B are provided on the upstream side of each connecting pipe 13A, 13B, and each connecting pipe 13A, 1
Three-way valves 16A and 16B are provided on the downstream side of 3B, and three-way valve 1
The first ports of 6A and 16B are flow control valves 15A and 15B.
The second boat of the three-way valve L6A, 16B is connected to the side of the cooling nozzle header 14, and the second boat of the three-way valve L6A, 16B is connected to the side of the cooling nozzle header 14,
The third boat of B is connected to the drainage system. The cooling device 10 also includes a temperature sensor 17 that detects the cooling state of the steel plate 11 conveyed through the steel plate cooling zone.
Based on the detection results of the flow rate fil valves 15A, 15B.
and/or a cooling state control device 18 that controls opening and closing of the three-way valves 16A and 16B.

なお、冷却装置10は、第2図の2系統の冷却配管系に
秋゛る第3図の3系統の冷却配管系を有するものであっ
てもよい、第3図の冷却配管系は、第2図の冷却配管系
に、給水配管12C1連絡配管13C1流量調節介15
C1三方弁16Cを付は加えられたものである。
Note that the cooling device 10 may have three cooling piping systems shown in FIG. 3 instead of the two cooling piping systems shown in FIG. 2. In the cooling piping system shown in Figure 2, water supply piping 12C1 connection piping 13C1 flow rate adjustment pipe 15
A C1 three-way valve 16C is added.

すなわち、冷却装置10は、各流量調節弁15A、15
B、15C1各三方弁16A、16B、16Cの開閉操
作により、ノズルヘッダ14に供給する水量と水温を独
立に可変可能とする。
That is, the cooling device 10 has each flow control valve 15A, 15
By opening and closing the three-way valves 16A, 16B, and 16C, the amount and temperature of water supplied to the nozzle header 14 can be independently varied.

例えば、特に応答性を重視する場合、第2図において配
管12Aで水量Q1.配管12Bで水量Q2となるよう
に流量調節弁15A、15Bをプリセットしておけば、
三方弁16A、16Bの開閉の組合わせにより、本縫で
0、Ql 、Q2、Ql +Q2の4水準の冷却能が選
択可能であり。
For example, if responsiveness is particularly important, in FIG. 2, the water amount Q1 in the pipe 12A. If the flow control valves 15A and 15B are preset so that the water amount is Q2 in the pipe 12B,
By combining the opening and closing of the three-way valves 16A and 16B, four levels of cooling performance, 0, Ql, Q2, and Ql + Q2, can be selected for lockstitching.

三方弁16A、16Bの応答性が速ければ冷却能も迅速
に変更できる。
If the response of the three-way valves 16A and 16B is fast, the cooling capacity can be changed quickly.

また、第3図において、配管12Aは水温T1.水量Q
l、配管12Bは水温T2.水量Q2.配管12Cは水
温T3.水量Q3となるようにプリセットしておけば、
同様に23通りの冷却能の制御が可能であり、プリセッ
トする水量、水温を変えることにより同一冷却装置で実
質的に極めて広い範囲の、はとんど連続的な冷却能の制
御が可能となる。
In addition, in FIG. 3, the pipe 12A has a water temperature of T1. Water amount Q
l, the pipe 12B has a water temperature of T2. Water amount Q2. The water temperature of the pipe 12C is T3. If you preset the water amount to Q3,
Similarly, it is possible to control the cooling capacity in 23 ways, and by changing the preset water volume and water temperature, it is possible to virtually continuously control the cooling capacity over an extremely wide range with the same cooling device. .

なお、本発明では高温水、低温水を独立した給水配管系
統で給水し、各給水配管の水量を個別の流i調節弁で可
変としているので、元の給水が安定していれば、従来は
外乱として考えられ、制御因子としては考えられていな
かった水温を制御因子とする制御が可能となる。
In addition, in the present invention, high-temperature water and low-temperature water are supplied through independent water supply piping systems, and the amount of water in each water supply piping is made variable using individual flow control valves, so as long as the original water supply is stable, conventional It becomes possible to perform control using water temperature as a control factor, which has been considered as a disturbance and not considered as a control factor.

また、当然なことであるが、上記のような給水配管系統
(12A、12B、12C・・・・・・)を多くすれば
するほど、冷却能の広範囲な制御が可能となるが、設備
の大型化、コストアップを生ずるので限界はある。
Also, as a matter of course, the more water supply piping systems (12A, 12B, 12C, etc.) as described above, the more extensive control of the cooling capacity becomes possible. There is a limit because it increases the size and cost.

また、水温と水量で冷却能を変更するので、ノズルの種
類について特に制限はない、スリットラミナーノズル、
パイプラミナーノズル等、どのようなノズルであっても
、広範囲な冷却能制御範囲を得ることができる。
In addition, since the cooling capacity is changed depending on the water temperature and water volume, there are no particular restrictions on the type of nozzle, such as slit laminar nozzles,
No matter what type of nozzle, such as a pipe laminar nozzle, a wide cooling capacity control range can be obtained.

また、ホットランテーブル上の各位置において各冷却装
置の給水系を分割することにより、さらに鋼板材質の細
かな制御が可能となることも明らかである。しかしなが
ら、100m以上におよぶホットランテーブル上の全て
の冷却装置についてこのような複雑な冷却機構を設ける
必要は必ずしもなく、熱延鋼板の制御冷却による材質制
御にとってキーポイントとなる冷却ゾーンに対して本発
明の冷却機構を適用すれば足りると考えられる。
It is also clear that by dividing the water supply system of each cooling device at each position on the hot run table, more fine control of the steel plate material becomes possible. However, it is not necessarily necessary to provide such a complicated cooling mechanism for all cooling devices on a hot run table that is longer than 100 m. It is considered that it is sufficient to apply the cooling mechanism of

なお、第8図に比較例として従来多くの熱延工場で用い
られている冷却配管系を示す。
As a comparative example, FIG. 8 shows a cooling piping system conventionally used in many hot rolling mills.

また、第4図に、冷却能(冷却開始から終了までの温度
降下量で評価)に及ぼすノズル単位幅当りの水量密度の
影響を示す、パイプラミナーノズル、スリットラミナー
ノズルのいずれを用いる場合にも水量密度を変化させる
ことで冷却能を変化させることができる。これは既存の
スプレー、ミスト冷却等についても同様である。だだし
、スリットラミナーフローの場合、後述するような不安
定現象のため単一のスリット厚のものでは下限がある。
In addition, Figure 4 shows the influence of the water volume density per nozzle unit width on the cooling capacity (evaluated by the amount of temperature drop from the start to the end of cooling), regardless of whether a pipe laminar nozzle or a slit laminar nozzle is used. The cooling capacity can be changed by changing the water density. This also applies to existing sprays, mist cooling, etc. However, in the case of slit laminar flow, there is a lower limit for a single slit thickness due to the unstable phenomenon described below.

また、第5図に、スリットラミナーノズルを用いて水温
を変化させた場合(水量密度は0.5m37分I一定)
の冷却能(熱伝達率)の変化を示す。水温の低下にとも
なって冷却能が大きく増加し、その傾向は鋼板表面温度
が低い場合はど顕著である。
Figure 5 also shows the case where the water temperature is changed using a slit laminar nozzle (the water density is constant at 0.5 m37 min I).
It shows the change in cooling capacity (heat transfer coefficient) of The cooling capacity increases greatly as the water temperature decreases, and this tendency is more pronounced when the steel plate surface temperature is low.

また、第6図に、スリットラミナーノズルを用いた場合
に安定な水膜が得られる下限水量を示す。これによれば
、スリット厚一定の通常のノズルにおいては、水膜の安
定性という面で下限の水量が制限される。また、同一の
スリット厚で極端に水量を大きくすると流速が極めて大
きくなり、主として木の飛散により、冷却能の低下を招
くことも確認した。したがって、スリット厚一定の通常
のノズルを用いる条件下において、水量の増減だけで冷
却能を制御することはかなり困難であり、冷却効率の面
でも不利ということになる。
Further, FIG. 6 shows the lower limit water amount at which a stable water film can be obtained when a slit laminar nozzle is used. According to this, in a normal nozzle with a constant slit thickness, the lower limit of the amount of water is limited in terms of the stability of the water film. It was also confirmed that if the amount of water is extremely increased with the same slit thickness, the flow velocity becomes extremely high, leading to a decrease in cooling performance mainly due to wood scattering. Therefore, under conditions where a normal nozzle with a constant slit thickness is used, it is quite difficult to control the cooling capacity only by increasing or decreasing the amount of water, which is also disadvantageous in terms of cooling efficiency.

次に、本発明において、異なる2つ以上の給水配管で給
水する場合に、配管相互間で設定されるべき水温差につ
いて説明する。上記水温差を種々の条件に設定して実験
的検討を加えた。冷却能制御範囲の評価は、4.5■厚
の熱延鋼板の冷却に際し、水温としては高温水A (T
I ) 、低温水B(T2)の条件で、総水量密度Q、
8+w3/分腸一定とし、800℃〜500℃までの冷
却速度(V)の最大値V+maxと最小値V sinの
比R(Vmax/Vsin )で行なった。したがって
、Rは大きいほど、冷却速度の制御範囲が広くなり有利
であることを示す、この結果、表1に示すように、少な
くとも20 ’O以上の水温差がないと広い冷却能制御
範囲が得られないことが認められた。また、高温水と低
温水の水温差は大きいほうが望ましい。
Next, in the present invention, when water is supplied through two or more different water supply pipes, a water temperature difference that should be set between the pipes will be explained. Experimental studies were conducted by setting the above water temperature difference under various conditions. The evaluation of the cooling capacity control range was performed using high-temperature water A (T
I), under the conditions of low temperature water B (T2), the total water density Q,
The cooling rate (V) was set at a constant value of 8+w3/min, and the ratio R (Vmax/Vsin) of the maximum value V+max and the minimum value Vsin of the cooling rate (V) from 800°C to 500°C was used. Therefore, the larger R is, the wider the cooling rate control range is, which is advantageous. As a result, as shown in Table 1, a wide cooling capacity control range can be obtained when there is no water temperature difference of at least 20'O. It was acknowledged that this could not be done. Further, it is desirable that the difference in water temperature between high temperature water and low temperature water be large.

次に、本発明における制御であるが、製造工程において
は、通常は冷却装置の入側と出側で鋼板温度を計測して
いる。しかしながら、従来の方式では、それらのデータ
をもとにしたダイナミックな冷却制御は、主として冷却
能の可変範囲が狭い、応答性が悪い等の理由で行なえな
かった。ところが、本発明によれば、水温と水量を同時
あるいは別個に変えることで極めて広い冷却制御範囲が
得られること、かつ冷却能を細かく調節できることから
、例えば加速圧延(圧延中に圧延速度を増減すること)
等にも対応可能となる0本発明においては、予め予想さ
れる温度変動に応じて、複数配管のそれぞれに適正な水
温、水量の水を供給し、急激な温度変動に対しては三方
バルブにより、緩やかな温度変動に対しては流量調節弁
で調節するのが妥当であるが、流量調節弁の応答速度が
充分速ければさらに制御が容易となることはもちろんで
ある。実機製造工程に即して言えば、コイルとコイルの
間で大幅に板厚が異なったり、目標温度が異なったりす
る場合は、主として流量調節弁開度を311.、また同
一コイル内の先端、後端部等の冷却パターン変動に対し
ては、三方弁の開閉で対応するという方策が適している
と考えられる。
Next, regarding control in the present invention, in the manufacturing process, the steel plate temperature is usually measured at the inlet and outlet sides of the cooling device. However, in the conventional system, dynamic cooling control based on such data cannot be performed mainly due to the narrow variable range of cooling capacity and poor response. However, according to the present invention, an extremely wide cooling control range can be obtained by changing the water temperature and water amount simultaneously or separately, and the cooling capacity can be finely adjusted. thing)
In the present invention, water is supplied at an appropriate temperature and amount to each of the plurality of pipes according to the expected temperature fluctuations, and a three-way valve is used to prevent sudden temperature fluctuations. For gentle temperature fluctuations, it is appropriate to use a flow control valve to control the temperature, but it goes without saying that control becomes easier if the response speed of the flow control valve is sufficiently fast. In line with the actual manufacturing process, if the plate thicknesses differ significantly between the coils or the target temperatures differ, the flow control valve opening degree is mainly set to 311. Furthermore, it is considered appropriate to respond to variations in the cooling pattern at the leading end, rear end, etc. within the same coil by opening and closing a three-way valve.

以下、本発明の具体的実施結果について説明する。Hereinafter, specific implementation results of the present invention will be explained.

実施例1 第1図および第2図に示したような冷却配管系で、給水
配管12AにQ、2m” 7分、給水配管12Bに0.
4m3/分の給水を施しておき、三方弁16A、16B
をステップ■〜■のそれぞれに切換操作し、ノズル出側
での水量を変化させる実験を行なった。すなわち、ステ
ップ■では両三方弁16A、16Bを全閉、ステップ■
では三方弁16Aを開、三方弁18Bを閉、ステップ■
では三方弁16Aを閉、三方弁16Bを開、ステップ■
では両=方弁16A、16Bを開とした。各ステップ■
〜■の所用時間は0.5S以下であり、極めて迅速に水
量が0 、0.2 、0.4 、0.f1m3/分のそ
れぞれに変化した。この条件下で冷却ゾーン通過による
鋼板温度降下量を冷却能として見ると、これらの4水準
で温度降下量は10℃〜150℃の範囲で変化した。
Example 1 In a cooling piping system as shown in FIGS. 1 and 2, the water supply pipe 12A is Q, 2m" 7 minutes, and the water supply pipe 12B is 0.
Provide water supply of 4 m3/min, and open three-way valves 16A and 16B.
An experiment was conducted in which the amount of water at the nozzle exit side was changed by switching between steps ① to ②. That is, in step ■, both three-way valves 16A and 16B are fully closed, and in step ■
Now, open the three-way valve 16A, close the three-way valve 18B, and step ■
Now, close the three-way valve 16A, open the three-way valve 16B, and step
In this case, both valves 16A and 16B were opened. Each step ■
The time required for ~■ is 0.5S or less, and the water amount changes extremely quickly to 0, 0.2, 0.4, 0. f1m3/min. Under these conditions, when the steel plate temperature drop due to passing through the cooling zone is viewed as cooling capacity, the temperature drop varied in the range of 10°C to 150°C for these four levels.

実施例2 第1図、第2図に示したような冷却配管系で、給水配管
12Aには20℃、給水配管12B゛には80℃の水温
の水を供給し、それぞれO〜0.8m3/分層の範囲で
水量を変化させて、冷却ゾーン前後での鋼板温度差から
温度降下量を求め、冷却能を評価した。ノズルとしては
スリット厚5mmのスリットラミナーノズルを用いた。
Example 2 In a cooling piping system as shown in Figs. 1 and 2, water at a temperature of 20°C is supplied to the water supply pipe 12A and water at a temperature of 80°C is supplied to the water supply pipe 12B', and the water temperature is O~0.8m3. The cooling capacity was evaluated by varying the amount of water within a range of 1/min layer and determining the amount of temperature drop from the steel plate temperature difference before and after the cooling zone. A slit laminar nozzle with a slit thickness of 5 mm was used as the nozzle.

その結果を第7図に示す、横軸には合計の水量をとり、
縦軸に温度降下量をとった。給水配管12A、12Bの
水量比を任意に変えることで、ハツチングの範囲で広範
囲に冷却能の変更が可能であり、特に1本条件下では木
膜切れのため下限水量が存在するので急冷だけでなく暖
冷も容易となることが認められる。
The results are shown in Figure 7, with the total amount of water taken on the horizontal axis.
The vertical axis represents the amount of temperature drop. By arbitrarily changing the water volume ratio of the water supply pipes 12A and 12B, it is possible to change the cooling capacity over a wide range within the hatching range.In particular, under the condition of one pipe, there is a lower limit water volume due to wood membrane breakage, so only rapid cooling is required. It is recognized that heating and cooling becomes easy without any problems.

ノズル側で水温を変えるには流量調節弁を操作しなけら
ばならないが、それでもたかだか数秒で変更可能である
。三方弁の開閉で水量を変える場合には、1〜2秒程度
の遅れ時間で変更可能である。したがって、実機冷却装
置として充分な応答性を有している。
Changing the water temperature at the nozzle requires operating a flow control valve, but it can still be changed in just a few seconds. When changing the amount of water by opening and closing a three-way valve, the change can be made with a delay time of about 1 to 2 seconds. Therefore, it has sufficient responsiveness as an actual cooling device.

実施例3 次いで、フィードバック制御、フィードフォワード制御
の実施例(シュミレーション結果)について示す、第1
図に示したように、圧延機に続くホットランテーブル上
に温度センサ17を設置し、冷却状態制御装置18は予
め設定した目標温度と実績温度のずれを逐次算出し、そ
の偏差により所定のバルブの開閉あるいは開度を制御す
るものであり、温度センサ17より前方へフィードバッ
ク、後方へフィードフォワードする制御となる。従来の
バルブ開閉で水量のみを操作する制御方式と、本発明の
ように水量と水温の両方を制御する方式について比較し
た。板厚4.5mmの熱延鋼板を実機圧延し、仕上圧延
機入側温度を1ooo℃、温度センサ位置での目標温度
を850℃とし、フィードバック制御、フィードフォワ
ード制御を行ないながら定常状態を経た後、順次圧延速
度を増加させ、その後減少させた。従来方式では、温度
制御精度が±50℃であるのに対し、本発明の方式では
温度制御精度が±5℃となり、より高精度の制御が可能
となることが明らかとなった。
Example 3 Next, the first example (simulation results) of feedback control and feedforward control will be described.
As shown in the figure, a temperature sensor 17 is installed on the hot run table following the rolling mill, and the cooling state control device 18 sequentially calculates the deviation between the preset target temperature and the actual temperature, and uses the deviation to adjust the temperature of the predetermined valve. It controls the opening/closing or the degree of opening, and is a control that feeds back forward from the temperature sensor 17 and feeds forward to the rear. A comparison was made between a conventional control method in which only the water amount is controlled by opening and closing a valve, and a method in which both the water amount and water temperature are controlled as in the present invention. A hot-rolled steel plate with a thickness of 4.5 mm was rolled on an actual machine, the temperature at the entrance of the finishing mill was set at 100°C, the target temperature at the temperature sensor position was set at 850°C, and a steady state was achieved while performing feedback control and feedforward control. , the rolling speed was sequentially increased and then decreased. In the conventional method, the temperature control accuracy is ±50° C., whereas in the method of the present invention, the temperature control accuracy is ±5° C., making it clear that higher precision control is possible.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、急冷かち暖冷までの幅
広い冷却能を安定的にかつ迅速に制御することが可能と
なる。
As described above, according to the present invention, it is possible to stably and quickly control a wide range of cooling capabilities from rapid cooling to warm cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る冷却装置を示す模式図
、第2図は第1図の冷却配管系を示す模式図、第3図は
冷却配管系の変形例を示す模式図、第4図はスリットラ
ミナーフローとバイブラミナーフローそれぞれの水量密
度と温度降下量(冷却能)との関係を示す線図、第5図
はスリットラミナーフローの水温と熱伝達率(冷却能)
との関係を示す線図、第6図はスリットラミナーフロー
において安定な水膜が得られる下限水量を示す線図、第
7図は本発明の実施による水量変化と温度降下量(冷却
能)の関係を示す線図、第8図は従来の冷却配管系を示
す模式図である。 io・・・冷却装置、■!・・・鋼板、12A、12B
、12C・・・給水配管、13A、13B、13C・・
・連絡配管、14・・・冷却ノズルヘッダ、15A、1
5B、15C・・・流量調節弁、18A、16B、16
C・・・三方弁、17・・・温度センサ(冷却状態検出
装置)、18・・・冷却状態量g4装置。 代理人 弁理士  塩 川 修 治 表  1 第1図 第2図 第3図 第4 図 水量’1m (TrL3./m+n−m)第 6 図 
 ′ スリット厚(mTn)
FIG. 1 is a schematic diagram showing a cooling device according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing the cooling piping system of FIG. 1, and FIG. 3 is a schematic diagram showing a modification of the cooling piping system. Figure 4 is a diagram showing the relationship between water volume density and temperature drop (cooling capacity) for slit laminar flow and vibrating laminar flow, and Figure 5 is a diagram showing the relationship between water temperature and heat transfer coefficient (cooling capacity) for slit laminar flow.
Figure 6 is a diagram showing the lower limit water amount at which a stable water film can be obtained in slit laminar flow, and Figure 7 is a diagram showing the change in water amount and temperature drop (cooling capacity) due to the implementation of the present invention. A diagram showing the relationship, FIG. 8 is a schematic diagram showing a conventional cooling piping system. io...cooling device, ■! ...Steel plate, 12A, 12B
, 12C... Water supply piping, 13A, 13B, 13C...
・Connection piping, 14...Cooling nozzle header, 15A, 1
5B, 15C...flow control valve, 18A, 16B, 16
C... Three-way valve, 17... Temperature sensor (cooling state detection device), 18... Cooling state quantity g4 device. Agent Patent Attorney Osamu Shiokawa 1 Figure 1 Figure 2 Figure 3 Figure 4 Water volume '1m (TrL3./m+n-m) Figure 6
' Slit thickness (mTn)

Claims (1)

【特許請求の範囲】[Claims] (1)冷却水を供給する2以上の給水配管を有し、各給
水配管のそれぞれに連なる連絡配管を相互に合流させて
単一の冷却ノズルヘッダに連絡し、各連絡配管の上流側
に流量調節弁を設け、各連絡配管の下流側に三方弁を設
け、三方弁の第1ポートは流量調節弁の側に接続し、三
方弁の第2ポートは冷却ノズルヘッダの側に接続し、三
方弁の第3ポートは排水系に接続するとともに、鋼板冷
却ゾーンの冷却状態を検出する冷却状態検出装置を備え
、冷却状態検出装置の検出結果に基づいて前記流量調節
弁および/または三方弁を開閉制御する冷却状態制御装
置を備えてなることを特徴とする熱延鋼板の冷却装置。
(1) It has two or more water supply pipes that supply cooling water, the connecting pipes connected to each water supply pipe are merged with each other and connected to a single cooling nozzle header, and the flow rate is on the upstream side of each connecting pipe. A control valve is provided, a three-way valve is provided on the downstream side of each connecting pipe, the first port of the three-way valve is connected to the flow rate control valve side, the second port of the three-way valve is connected to the cooling nozzle header side, and the three-way valve is connected to the flow rate control valve side. The third port of the valve is connected to the drainage system and is equipped with a cooling state detection device that detects the cooling state of the steel plate cooling zone, and opens and closes the flow control valve and/or the three-way valve based on the detection result of the cooling state detection device. 1. A cooling device for hot-rolled steel sheets, characterized by comprising a cooling state control device for controlling the cooling state.
JP26990286A 1986-11-14 1986-11-14 Cooling device for hot rolled sheet steel Pending JPS63126611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26990286A JPS63126611A (en) 1986-11-14 1986-11-14 Cooling device for hot rolled sheet steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26990286A JPS63126611A (en) 1986-11-14 1986-11-14 Cooling device for hot rolled sheet steel

Publications (1)

Publication Number Publication Date
JPS63126611A true JPS63126611A (en) 1988-05-30

Family

ID=17478806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26990286A Pending JPS63126611A (en) 1986-11-14 1986-11-14 Cooling device for hot rolled sheet steel

Country Status (1)

Country Link
JP (1) JPS63126611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170959A (en) * 2011-02-18 2012-09-10 Jfe Steel Corp Method of manufacturing hot-rolled steel plate
US11413670B2 (en) * 2016-09-23 2022-08-16 Nippon Steel Corporation Cooling device and cooling method of hot-rolled steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170959A (en) * 2011-02-18 2012-09-10 Jfe Steel Corp Method of manufacturing hot-rolled steel plate
US11413670B2 (en) * 2016-09-23 2022-08-16 Nippon Steel Corporation Cooling device and cooling method of hot-rolled steel sheet

Similar Documents

Publication Publication Date Title
RU2386505C1 (en) Method for cooldown of steel plate
JPS60251273A (en) Method for controlling extent of evaporation in vacuum depositing apparatus
JPH04167916A (en) Device for controlling pressure of feeding water for spraying
JPS63126611A (en) Cooling device for hot rolled sheet steel
KR19990087058A (en) A method of supplying gas to the chamber and a method of controlling the content of a given component in the chamber atmosphere
JPH09178248A (en) Air conditioning system
JPS62130222A (en) Method and apparatus for cooling hot steel sheet
JPS6043209B2 (en) steel plate cooling system
JPS603721A (en) Mixing device of hot water and cold water
DE2202095B1 (en) Circulation water heater
JPS603722A (en) Mixing device of hot water and cold water
CN101811144A (en) Laminar flow water cooling device and control method
CN111589879B (en) Control method for improving texture uniformity of thick-wall seamless steel tube online cooling process
CN111836687A (en) Cooling group of laminar flow cooling device
JP2586780B2 (en) Parallel type multiple water heater control method
JPH01118034A (en) Mixer for hot water and water
JPH08155527A (en) Cooler for hot rolled metallic strip
JPS62142017A (en) Controlling and cooling device for hot rolling steel plate
JPH0244108A (en) Control method for feed of water to boiler
JPH0561521B2 (en)
JPH04238510A (en) Combination hot/cold water faucet device
JPH078375B2 (en) Cooling equipment for hot rolled steel
JPS6091419A (en) Flow rate control method
JPS5850088Y2 (en) Fluid supply device using a pure fluid control element with no moving parts
KR101813158B1 (en) Apparatus for controlling fluid pressure