JPS63126553A - Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines - Google Patents

Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines

Info

Publication number
JPS63126553A
JPS63126553A JP61271965A JP27196586A JPS63126553A JP S63126553 A JPS63126553 A JP S63126553A JP 61271965 A JP61271965 A JP 61271965A JP 27196586 A JP27196586 A JP 27196586A JP S63126553 A JPS63126553 A JP S63126553A
Authority
JP
Japan
Prior art keywords
catalyst
formula
cyclic amines
reaction
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61271965A
Other languages
Japanese (ja)
Other versions
JPH0576345B2 (en
Inventor
Hideaki Tsuneki
英昭 常木
Yoshiharu Shimazaki
由治 嶋崎
Kimio Ariyoshi
公男 有吉
Rikuo Uejima
植嶋 陸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP61271965A priority Critical patent/JPS63126553A/en
Priority to CA000526170A priority patent/CA1276615C/en
Priority to DE8686310074T priority patent/DE3677950D1/en
Priority to AU66888/86A priority patent/AU590653B2/en
Priority to EP86310074A priority patent/EP0230776B1/en
Priority to CN86108970A priority patent/CN1013646B/en
Priority to KR1019860011392A priority patent/KR910004074B1/en
Priority to US07/126,351 priority patent/US4841061A/en
Publication of JPS63126553A publication Critical patent/JPS63126553A/en
Publication of JPH0576345B2 publication Critical patent/JPH0576345B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce desired cyclic amines selectively at a high yield for a long period of time by effecting the vapor phase intramolecular dehydration reaction of alkanol amines by using a catalyst consisting of group Ib-VIII transition metals and specific bond of P, O. CONSTITUTION:The titled catalyst is constituted of the catalyst compsn. expressed by the formula XaPbOc (X denotes 1 or more kinds of elements selected from the group Ib-VIII transition metal elements of periodic table, a, b, c denote atomic ratios of the respective elements, b=0.01-6 when a=1, c is the numerical value determined by the bonding condition of a, b and various constituting elements). The alkanol amines expressed by formula I (R, R' are selected from H, methyl group and ethyl groups, n is an integer in a 2-5 range) are converted to the cyclic amines expressed by formula II (R, R' are the same as in formula I). As a result, the desired cyclic amines are highly are highly selectively produced at a high yield stably for a long period of time.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は一般式(I)で表わされるアルカノールアミン
類を、一般式(Iりで表わされる環式アミン類へ転化す
る際に用いる新規な気相分子内脱水反応用触媒に関する
Detailed Description of the Invention [Industrial Application Field] The present invention provides a novel method for converting alkanolamines represented by the general formula (I) into cyclic amines represented by the general formula (I). This invention relates to a catalyst for gas phase intramolecular dehydration reaction.

(式中、R,R′は各々水素、メチル基およびエチル基
からなる群から選ばれ、nは2〜5の@囲の整数をとる
。) 前記(IF)で表わされる環式アミン類は一般に、反応
性に富み、種々の官能基をもつ化合物と反応することか
ら、アミノ基を有する各種誘導体を製造することができ
る。また、環保持反応も可能であることから、開環反応
性を有する誘導体を製造することもできる。更には、開
環重合反応によってポリアミン系ポリマーを製造するこ
ともでき、非常に利用度の高い化合物である。そして環
式アミン類の誘導体は、繊維加工剤、帯電防止剤、医薬
、農薬原料等として、各種産業に広く利用される非常に
有用な化合物である。本発明は、この様な有用化合物で
ある環式アミン類を、生産性において非常に有利な気相
での、アルカノールアミン類の分子内脱水反応により製
造する際に用いる高性能な触媒を提供するものである。
(In the formula, R and R' are each selected from the group consisting of hydrogen, methyl group, and ethyl group, and n is an integer of 2 to 5 in the @ bracket.) The cyclic amines represented by (IF) above are Generally, since it is highly reactive and reacts with compounds having various functional groups, various derivatives having amino groups can be produced. Furthermore, since a ring-retaining reaction is also possible, derivatives having ring-opening reactivity can also be produced. Furthermore, polyamine-based polymers can also be produced by ring-opening polymerization reaction, making it a highly useful compound. Derivatives of cyclic amines are extremely useful compounds that are widely used in various industries as textile processing agents, antistatic agents, pharmaceuticals, agricultural chemicals, and the like. The present invention provides a high-performance catalyst for use in producing cyclic amines, which are such useful compounds, by intramolecular dehydration reaction of alkanolamines in the gas phase, which is extremely advantageous in terms of productivity. It is something.

[従来の技術] アルカノールアミン類を脱水反応により、環式アミン類
に転化する方法としては、ハロゲン化アミンを濃アルカ
リにより分子内閉環する方法(Q abriel法)、
アルカノールアミン硫酸エステルを熱濃アルカリにより
閉環する方法(W enker法)が公知であるが、こ
れらの方法は、アルカリを大量に濃厚溶液として用いる
ため生産性が低く、また原材料費に占めるアルカリの原
単位が大きいこと、更には利用度の低い無機塩が大量に
副生ずる等、工業的には多くの問題を有するものである
[Prior Art] Methods for converting alkanolamines into cyclic amines by dehydration include a method of intramolecular ring-closing of a halogenated amine with a concentrated alkali (Q abriel method);
A method of ring-closing an alkanolamine sulfate ester with a heated concentrated alkali (Wenker method) is known, but these methods use a large amount of alkali in the form of a concentrated solution, resulting in low productivity, and the cost of alkali is low in raw material costs. There are many problems from an industrial perspective, such as the large unit size and the production of large amounts of inorganic salts with low utilization.

近年、上記の様な液相法に対し、アルカノールアミンと
して、モノエタノールアミンを用い、これを触媒の存在
下、気相で脱水反応せしめ、対応する環式アミンすなわ
ちエチレンイミンを連続的に製造する試みが幾つか報告
されている。それらの例として、例えば、特公昭50−
10593号には、酸化タングステン系触媒を用いる方
法が、記載されており、また、米国特許第4.301.
036号朗細書には、酸化タングステンとケイ素より成
る触媒を用いる方法が、さらに米国特許第4.289.
656号、同第4.337.175号、同第4.477
、591号各明IImには、ニオブあるいはタンタル系
触媒を用いる方法が開示されている。
In recent years, in contrast to the liquid phase method described above, monoethanolamine has been used as the alkanolamine and dehydrated in the gas phase in the presence of a catalyst to continuously produce the corresponding cyclic amine, ie, ethyleneimine. Several attempts have been reported. As an example of these, for example,
No. 10593 describes a method using a tungsten oxide catalyst, and US Pat. No. 4.301.
No. 036 describes a method using a catalyst made of tungsten oxide and silicon, and is further described in US Pat. No. 4,289.
No. 656, No. 4.337.175, No. 4.477
, No. 591 IIm discloses a method using a niobium or tantalum catalyst.

[発明が解決しようとする問題点] しかしながら、前記の触媒を用いた何れの方法もモノエ
タノールアミンの転化率が低く、また比較的転化率が高
い場合でも、脱アンモニア反応および2量化反応等の副
反応による生成物の割合が^いため、エチレンイミンの
選択性は低いものとなっている。更には、本発明者らの
検討によれば触媒の寿命に関していえば、いずれの場合
も短期間での活性低下が著しく、工業的な観点からは、
全く満足できるものではない。
[Problems to be Solved by the Invention] However, in any of the methods using the above-mentioned catalysts, the conversion rate of monoethanolamine is low, and even when the conversion rate is relatively high, deammonification reactions, dimerization reactions, etc. The selectivity for ethyleneimine is low because the proportion of products resulting from side reactions is low. Furthermore, according to the studies conducted by the present inventors, when it comes to the life of the catalyst, in any case, the activity decreases significantly in a short period of time, and from an industrial point of view,
It's not completely satisfying.

本発明は、アルカノールアミン類の気相分子内脱水反応
を行うにあたり、目的環式アミン類を高選択的かつ高収
率をもって、しかも長期にわたり安定的に製造するもの
である。
The present invention is intended to produce target cyclic amines with high selectivity and yield, and moreover, stably over a long period of time when performing a gas phase intramolecular dehydration reaction of alkanolamines.

[問題点を解決するための手段] 本発明者らはアルカノールアミン類の気相分子内脱水反
応用触媒について鋭意研究した結果、一般式XaP、O
c (式中、Xは周期律表におけるIb族ないし■族遷
移金属元素の中から選ばれる1種またはそれ以上の元素
、Pはリン、0は酸素を表わす。添字a、 b、 cは
それぞれの元素の原子比を示し、a−1のとき、b −
0,01〜6(好:1くは0.05〜3)の絶囲の値を
とり、Cはa、bおよび各種構成元素の結合状態により
定まる数値である。)で表わされる酸化物触媒を用いる
ことにより、アルカノールアミン類の気相分子内脱水反
応が極めて好都合に進行し、目的環式アミン類を高選択
的にかつ高収率をもって、しかも長期にわたり安定的に
製造しうろことを見出し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive research on catalysts for gas-phase intramolecular dehydration reactions of alkanolamines, the present inventors found that the general formula: XaP, O
c (wherein, X is one or more elements selected from group Ib to group II transition metal elements in the periodic table, P represents phosphorus, and 0 represents oxygen. Subscripts a, b, and c are respectively indicates the atomic ratio of the elements, and when a-1, b-
It takes a value in the extreme range of 0.01 to 6 (preferably: 1 or 0.05 to 3), and C is a numerical value determined by the bonding state of a, b and various constituent elements. ) By using the oxide catalyst represented by (), the gas phase intramolecular dehydration reaction of alkanolamines proceeds extremely favorably, and the target cyclic amines can be produced highly selectively and in high yields, and also stably for a long period of time. The inventors have discovered a scale that can be manufactured in the following manner, and have completed the present invention.

Xは周期律表におけるIb族ないし■族遷移金属元素の
中から選ばれる1種またはそれ以上の元素であるが、こ
のような元素の例としては、Cu。
X is one or more elements selected from group Ib to group II transition metal elements in the periodic table, and examples of such elements include Cu.

Zn 、Cd 、Sc 、Y、Ti 、Zr 、Nb 
、Ta 。
Zn, Cd, Sc, Y, Ti, Zr, Nb
, Ta.

Mo、W、Mn、Fe、Niなどの元素が挙げられる。Examples include elements such as Mo, W, Mn, Fe, and Ni.

反応原料となるアルカノールアミン類としては一般式(
I)で表わされるアルカノールアミン類が好適であり、
これらのアミン類は本発明に従い、一般式(n)で表わ
される環式アミン類に高転化率、^選択率をもって、か
つ長期にわたり安定的に転化される。該アルカノールア
ミン類の例としては(a)モノエタノールアミン、(b
)イソプロパツールアミン、(c) 3−アミノ −1
−プロパツール、(d)5−アミノ −1−ペンタノー
ル、(e)2−アミノ −1−ブタノール等が挙げられ
るが、これらに限定されるものではない。これらのアミ
ン類に対応して得られる環式アミン類は、それぞれ(a
−)エチレンイミン、(b”)2−メチル−エチレンイ
ミン、(C−)アゼチジン、(d−)ピペリジン、(e
′)2−エチル−エチレンイミンである。
The alkanolamines used as reaction raw materials have the general formula (
Alkanolamines represented by I) are preferred;
According to the present invention, these amines are stably converted into cyclic amines represented by general formula (n) with high conversion and selectivity over a long period of time. Examples of the alkanolamines include (a) monoethanolamine, (b)
) isopropanolamine, (c) 3-amino-1
-propanol, (d) 5-amino-1-pentanol, (e) 2-amino-1-butanol, and the like, but are not limited to these. The cyclic amines obtained corresponding to these amines are each (a
-) ethyleneimine, (b”) 2-methyl-ethyleneimine, (C-) azetidine, (d-) piperidine, (e
') 2-ethyl-ethyleneimine.

本発明による触媒の調製法は特に限定されるものではな
く、通常おこなわれる調製法がとられる。
The method for preparing the catalyst according to the present invention is not particularly limited, and a commonly used preparation method can be used.

X成分の原料としては、各々の酸化物、水酸化物、ハロ
ゲン化物、塩類(炭酸塩、硫MMA1硝酸塩等)および
金属などが、またリン源としては、オルトリン酸、ビロ
リン酸、メタリン酸、亜リン酸およびポリリン酸等の各
種リン酸、五酸化リンおよび前記リン酸の塩類〈リン酸
アンモニウム、リン酸カリウム、リン酸ナトリウム等)
などが用いられる。なお、X成分源およびリン源として
、X成分のリン酸塩類を用いてもよい。
Raw materials for the X component include various oxides, hydroxides, halides, salts (carbonate, sulfur MMA1 nitrate, etc.), metals, etc., and phosphorus sources include orthophosphoric acid, birophosphoric acid, metaphosphoric acid, and phosphorous acid. Various phosphoric acids such as phosphoric acid and polyphosphoric acid, phosphorus pentoxide, and salts of the above phosphoric acids (ammonium phosphate, potassium phosphate, sodium phosphate, etc.)
etc. are used. Note that phosphates of the X component may be used as the X component source and the phosphorus source.

本発明による触媒の調製方法の例としては、■X成分お
よびリンの各種触媒原料を水中に溶解もしくは懸濁せし
め、撹拌下、加熱、濃縮し、乾燥後成型し、更に焼成を
経て触媒とする方法、■X成分の原料を水中に溶解し、
各種リン酸あるいは各種リン酸塩を加え、必要に応じて
pHを調節してX成分のリン酸塩とした後、濾過、水洗
を行ない、乾燥後成型し、更に焼成を経て触媒とする方
法、■あるいはX成分およびリンの各成分元素の酸化物
または水酸化物に各種リン酸あるいは各種リン酸塩を加
えて混合し、適当な成型助剤(例えば水、アルコール等
)を添加後成型、乾燥し、更に焼成を経て触媒とする方
法、等が挙げられる。
An example of the method for preparing a catalyst according to the present invention is as follows: (1) Dissolving or suspending various catalyst raw materials of component X and phosphorus in water, heating and concentrating with stirring, drying and shaping, and further calcination to form a catalyst. Method: ■Dissolve the raw material of component X in water,
A method of adding various phosphoric acids or various phosphates, adjusting the pH as necessary to obtain a phosphate of component ■Alternatively, various phosphoric acids or various phosphates are added and mixed to the oxides or hydroxides of each component element of X component and phosphorus, and after adding an appropriate molding aid (e.g. water, alcohol, etc.), molding and drying. The method includes a method in which the catalyst is further calcined to form a catalyst.

また、本発明による触媒は、公知の不活性な担体し例え
ば、セライト(商品名)、シリカゲル、炭化ケイ素、ア
ルミナなどが好ましいが、これらに限定されるものでは
ない]に担持して用いることもできる。
Further, the catalyst according to the present invention may be supported on a known inert carrier such as Celite (trade name), silica gel, silicon carbide, alumina, etc., but is not limited thereto. can.

なお、本発明の触媒の焼成温度については、用いる原料
の種類にもよるが、300℃〜1500℃の広い範囲を
とれ、好ましくは400℃〜1200℃の範囲である。
The firing temperature of the catalyst of the present invention may vary widely from 300°C to 1500°C, preferably from 400°C to 1200°C, although it depends on the type of raw materials used.

本発明の実施にあたり反応器は固定床流通型、流動床型
のいずれも使用できる。原料アルカノールアミン類は必
要に応じ窒素、ヘリウム、アルゴンなどの不活性ガスで
濃度1〜80容最%、好ましくは2〜50容聞%に希釈
して用いる。また、W aによっては、副反応を抑える
目的で、アンモニアあるいは水等をアルカノールアミン
類と共に供給することもできる。反応圧は通常常圧で行
なうが必要に応じて加圧または減圧下に行なうこともで
きる。反応温度は原料の種類により異なり250〜60
0℃の範囲である。原料ガスの空間速度は原料の種類お
よび原料ガス濃度により異なるが、10〇〜40,0O
Ohr  (STP)  、好ましくは500〜20.
000hr””(STP)の範囲が適当である。
In carrying out the present invention, either a fixed bed flow type reactor or a fluidized bed type reactor can be used. The raw material alkanolamines are used after being diluted with an inert gas such as nitrogen, helium, or argon to a concentration of 1 to 80% by volume, preferably 2 to 50% by volume, if necessary. Furthermore, depending on Wa, ammonia, water, or the like may be supplied together with alkanolamines for the purpose of suppressing side reactions. The reaction is usually carried out at normal pressure, but it can also be carried out under increased or reduced pressure if necessary. The reaction temperature varies depending on the type of raw material and ranges from 250 to 60℃.
It is in the range of 0°C. The space velocity of the raw material gas varies depending on the type of raw material and the concentration of the raw material gas, but is between 100 and 40.0 O.
Ohr (STP), preferably 500-20.
A range of 000hr"" (STP) is appropriate.

[作用および発明の効果] 本発明の触媒をアルカノールアミン類の気相分子内脱水
反応に用いた場合、従来公知の触媒に比べ、非常に高い
活性を示し、また目的環式アミンへの選択率も著しく高
いものであった。
[Operations and Effects of the Invention] When the catalyst of the present invention is used in the gas phase intramolecular dehydration reaction of alkanolamines, it exhibits extremely high activity compared to conventionally known catalysts, and has a high selectivity to the target cyclic amine. was also significantly high.

しかも、この反応を長時間連続して行なった場合でも、
触媒の活性劣化現象は認められず、活性、収率ともきわ
めて安定しており、工業化する上で最重要とされる短期
的劣化現象の克服という問題を十分に解決しうるちので
あった。
Moreover, even if this reaction is carried out continuously for a long time,
No deterioration in the activity of the catalyst was observed, and both activity and yield were extremely stable, and the problem of overcoming short-term deterioration, which is most important for industrialization, could be fully solved.

なお、触媒性能を、公知のモノエタノールアミンからの
エチレンイミン合成用触媒(例えば特公昭50−105
93号公報、および米国特許第4.337.175号に
示されたWO3−3i 02およびNb2O’5−Ba
Oなる組成物触媒)と比較したところ、本発明による触
媒の性能は、活性、選択性共に、それらの触媒性能を著
しく上層るものであった。
The catalytic performance was evaluated using a known catalyst for ethyleneimine synthesis from monoethanolamine (for example, Japanese Patent Publication No. 50-105
WO3-3i 02 and Nb2O'5-Ba shown in Japanese Patent No. 93 and U.S. Pat.
When compared with the composition catalyst 0), the performance of the catalyst according to the present invention was significantly superior to those catalysts in terms of both activity and selectivity.

本発明による触媒が、アルカノールアミン類から環式ア
ミン類への気相脱水反応に優れた性能を示すことの原因
について詳細は明らかではないが、触媒表面上には酸性
点および塩基性点が存在し、その協奏的な働きによるも
のと考えられる。X成分はリン酸による酸性点の酸強度
をυ3111シ、更に塩基性点をも生じさせ、本反応に
適した触媒の表面状態を形成するものと考えられる。そ
して、反応が酸塩基協同作用により効果的に進むと同時
に、生成物の脱離も円滑になり、触媒上への強吸着物質
の被毒による失活が抑えられるため、従来の触媒に認め
られるような転化率向上に伴う選択率の低下現象を解決
し、高転化率かつ高選択率でしかも長期にわたり極めて
安定的に目的環式アミンを製造し得るものと考えられる
Although the details of the reason why the catalyst of the present invention exhibits excellent performance in the gas-phase dehydration reaction from alkanolamines to cyclic amines are not clear, there are acidic points and basic points on the catalyst surface. This is thought to be due to their concerted action. It is believed that the X component increases the acid strength of the acidic site by υ3111 due to phosphoric acid and also generates basic sites, forming a surface condition of the catalyst suitable for this reaction. The reaction progresses effectively through acid-base cooperation, and at the same time, the desorption of products is smooth, and deactivation due to poisoning of strongly adsorbed substances on the catalyst is suppressed, which is the same as in conventional catalysts. It is believed that this method solves the phenomenon of decrease in selectivity due to improvement in conversion rate, and can produce the target cyclic amine with high conversion rate and high selectivity, and extremely stably over a long period of time.

[実施例] 以下、実施例において本発明を具体的に述べるが、実施
例中の転化率、選択率および単流収率については、次の
定義に従うものとする。
[Examples] Hereinafter, the present invention will be specifically described in Examples, and the conversion rate, selectivity, and single flow yield in the Examples shall comply with the following definitions.

転化率(モル%)− 消費されたアルカノールアミン のモル数 選択率(モル%)− のモル数 単流収率(モル%)− のモル数 実施例1゜ 酸化亜鉛48.8gを水100ad!に懸濁させ、85
重由%オルトリン酸34. hを加え、十分に撹拌しな
がら、加熱濃縮し、温浴上で蒸発乾固した。これを空気
中120℃で1晩乾燥した後、9〜5メツシユに破砕し
、600℃で2時間焼成して触媒とした。
Conversion rate (mol %) - Number of moles of alkanolamine consumed Selectivity (mol %) - Number of moles Single stream yield (mol %) - Number of moles Example 1 48.8 g of zinc oxide was mixed with 100 ad of water! Suspended in 85
Weight% orthophosphoric acid 34. The mixture was heated and concentrated with sufficient stirring, and evaporated to dryness on a hot bath. After drying this in air at 120°C overnight, it was crushed into 9 to 5 meshes and calcined at 600°C for 2 hours to obtain a catalyst.

この触媒20Il11を内径16履のステンレス製反応
管に充填した後、420℃の溶融塩浴に浸漬し、該管内
に容量比でモノエタノールアミン:窒素−5:95の原
料ガスを空間速度1500hr” (STP)で通し、
反応を行なった。反応は連続して行ない、反応開始後2
時間および50時間での生成物をガスクロマトグラフに
より定憬分析した結果を表−1に示しlこ 。
After filling a stainless steel reaction tube with an inner diameter of 16 mm with this catalyst, it was immersed in a 420°C molten salt bath, and a raw material gas with a volume ratio of monoethanolamine:nitrogen of 5:95 was charged into the tube at a space velocity of 1500 hr. (STP) and
The reaction was carried out. The reaction is carried out continuously, and after the start of the reaction 2
Table 1 shows the results of constant analysis of the product at 50 hours and 50 hours by gas chromatography.

実施例2゜ 触媒原料として、酸化亜鉛の代りに酸化イツトリウム3
3.9(Jを用いた他は、実施例1と同様にして触媒を
調製した。この触媒を用いて、モノエタノールアミンお
よびイソプロパツールアミンについて実施例1と同様の
方法で反応を行なった。反応条件および結果を表−1に
示した。
Example 2゜Yttrium oxide 3 was used instead of zinc oxide as a catalyst raw material.
A catalyst was prepared in the same manner as in Example 1 except that 3.9 (J was used. Using this catalyst, a reaction was carried out in the same manner as in Example 1 for monoethanolamine and isopropanolamine. The reaction conditions and results are shown in Table-1.

実施例3゜ 触媒原料として、酸化亜鉛の代りに五酸化ニオブ399
gを用いた他は、実施例1と同様にして触媒を調製した
。この触媒を用いて、モノエタノールアミンおよび 3
−アミノ −1−プロパツールについて実施例1と同様
に反応を行なった。反応条件および結果を表−1に示し
た。
Example 3 Niobium pentoxide 399 instead of zinc oxide as a catalyst raw material
A catalyst was prepared in the same manner as in Example 1, except that g was used. Using this catalyst, monoethanolamine and 3
-Amino-1-propatool was reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-1.

実施例4゜ 硝酸ジルコニル40.1gを水300dに溶解し、そこ
へリン酸三アンモニウム44.7Qを水300dに溶解
させた溶液を撹拌しながら加えた。得られた沈澱を濾過
、水洗し、空気中120℃で1晩乾燥した後、9〜5メ
ツシユに破砕し、1200℃で2時間焼成して触媒とし
た。この触媒を用いて、モノエタノールアミンおよび 
2−アミノ −1−ブタノールについて実施例1と同様
に反応を行なった。反応条件および結果を表−1に示し
た。
Example 4 40.1 g of zirconyl nitrate was dissolved in 300 d of water, and a solution of 44.7 Q of triammonium phosphate dissolved in 300 d of water was added thereto with stirring. The obtained precipitate was filtered, washed with water, dried in air at 120°C overnight, crushed into 9 to 5 meshes, and calcined at 1200°C for 2 hours to obtain a catalyst. Using this catalyst, monoethanolamine and
A reaction was carried out in the same manner as in Example 1 using 2-amino-1-butanol. The reaction conditions and results are shown in Table-1.

実施例5゜ 水酸化マンガン26.7g、酸化第一鉄21.hおよび
ビロリン酸アンモニウム36.91;lを粉体のまま混
合した後、少催の水でよく混練し、直径3mm、長さ3
m111のベレット状に成型して空気中120℃で1晩
乾燥した後、窒素気流中800℃で4時間焼成して触媒
とした。この触媒を用いて、モノエタノールアミンおよ
び 5−アミノ −1−ペンタノールについて実施例1
と同様に反応を行なった。反応条件および結果を表−1
に示した。
Example 5 Manganese hydroxide 26.7g, ferrous oxide 21. h and ammonium birophosphate (36.91; l) were mixed in powder form, then kneaded well with a little water to form a powder with a diameter of 3 mm and a length of 3 mm.
The pellet was molded into a pellet of m111, dried in air at 120°C overnight, and then calcined in a nitrogen stream at 800°C for 4 hours to obtain a catalyst. Example 1 for monoethanolamine and 5-amino-1-pentanol using this catalyst.
The reaction was carried out in the same manner. Table 1 shows reaction conditions and results.
It was shown to.

実施例6゜ 触媒原料として、酸化亜鉛の代りに酸化チタン75.9
Q 、亜酸化銅3.6gを用いた他は、実施例1と同様
にして触媒をrA製した。この触媒を用いて、モノエタ
ノールアミンについて実施例1と同様に反応を行なった
。反応条件および結果を表−1に示した。
Example 6゜ Titanium oxide 75.9 instead of zinc oxide as catalyst raw material
Q. A catalyst was prepared in the same manner as in Example 1 except that 3.6 g of cuprous oxide was used. Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-1.

実施例7゜ リンタングステンi!1(29水和物)  102.1
1Jを水100IIr1に溶解した溶液に、酸化カドミ
ウム15.49を加え、湯浴上で蒸発乾固した。これを
空気中120℃で1晩乾燥した後、9〜5メツシユに破
砕し、600℃で2時間焼成して触媒とした。この触媒
を用いて、モノエタノールアミンについて実施例1と同
様に反応を行なった。反応条件および結果を表−1に示
した。
Example 7゜Phosphortungsten i! 1 (29 hydrate) 102.1
15.49 cadmium oxide was added to a solution of 1 J dissolved in 100 IIr1 water, and the mixture was evaporated to dryness on a hot water bath. After drying this in air at 120°C overnight, it was crushed into 9 to 5 meshes and calcined at 600°C for 2 hours to obtain a catalyst. Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-1.

比較例1゜ 30重重員オルトリン酸水溶、液1oogに601の炭
化ケイ素担体を加え、湯浴上で蒸発担持した。これを空
気中120℃で1晩乾燥した後、450℃で2時間焼成
して触媒とした。
Comparative Example 1 A 601 silicon carbide carrier was added to 10g of an aqueous solution of 30% orthophosphoric acid and evaporated to support it on a hot water bath. This was dried in air at 120°C overnight and then calcined at 450°C for 2 hours to obtain a catalyst.

この触媒を用いて、モノエタノールアミンおよび 2−
アミノ −1−ブタノールについて実施例1と同様に反
応を行なった。反応条f[および結果を表−2に示した
Using this catalyst, monoethanolamine and 2-
A reaction was carried out in the same manner as in Example 1 using amino-1-butanol. Reaction condition f [and the results are shown in Table 2].

比較例2゜ メタタングステン酸アンモニウム水溶液(W03基準で
50重蟲%) 65.2i;lに直径51の炭化ケイ素
40(Jを浸し、温浴上で蒸発乾固した。これを空気中
150℃で1時間乾燥した後、715℃で4時間焼成し
て触媒前駆物を得た。これを酸化ケイ素10%コロイド
液501に浸し、温浴上で蒸発乾固した。更に、空気中
150℃で1時間乾燥した後、715℃で4時間焼成し
て酸化タングステン25.4重層%、酸化ケイ素3.3
重量%を含む担持触媒(原子比でWto Si o、s
 04.1 >を得た。この触媒を用いて、モノエタノ
ールアミンについて実施例1と同様に反応を行なった。
Comparative Example 2 A silicon carbide 40 (J) with a diameter of 51 was immersed in 65.2 l of ammonium metatungstate aqueous solution (50% by weight based on W03 standard) and evaporated to dryness on a hot bath. After drying for 1 hour, it was calcined at 715°C for 4 hours to obtain a catalyst precursor.This was immersed in 10% silicon oxide colloidal solution 501 and evaporated to dryness on a hot bath.Furthermore, it was heated at 150°C in air for 1 hour. After drying, it was baked at 715°C for 4 hours to form tungsten oxide 25.4%, silicon oxide 3.3%.
Supported catalyst containing % by weight (in atomic ratio W to Si o, s
04.1> was obtained. Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1.

反応条件および結果を表−2に示した。The reaction conditions and results are shown in Table-2.

なお、この触媒は米国特許第4,301,036号明細
書記載の実施例4に従って調製したものである。
Note that this catalyst was prepared according to Example 4 described in US Pat. No. 4,301,036.

比較例3゜ 五酸化ニオブ5.Ogを水501に60℃で加熱しつつ
完全に溶解させた侵、アンモニウム水を加え、溶液のp
Hを7.0とした。生成した沈澱を濾過、水洗した後、
10重徴%のシュウ酸水溶液aoni +に溶解し、更
に水酸化バリウム(8水和物)  0.217を加えた
。この溶液中に、炭化ケイ素60ccを浸し、80℃で
蒸発乾固させた後、空気中500℃で311J聞焼成し
て五酸化ニオブ3.1重量%、酸化バリウム0、5ff
l ffi%を含む担持触媒(原子比で Ntz、。
Comparative example 3゜niobium pentoxide 5. Completely dissolve Og in water 501 while heating it at 60℃, add ammonium water, and reduce the pH of the solution.
H was set to 7.0. After filtering the generated precipitate and washing with water,
It was dissolved in a 10% oxalic acid aqueous solution aoni+, and 0.217 g of barium hydroxide (octahydrate) was added thereto. 60 cc of silicon carbide was immersed in this solution, evaporated to dryness at 80°C, and then calcined in air at 500°C for 311 J to obtain 3.1% by weight of niobium pentoxide and 0.5ff of barium oxide.
Supported catalyst containing l ffi% (Ntz, in atomic ratio.

3a、 o、102.6 )を得た。この触媒を用いて
、モノエタノールアミンについて実施例1と同様に反応
を行なった。反応条件および結果を表−2に示した。
3a, o, 102.6) was obtained. Using this catalyst, monoethanolamine was reacted in the same manner as in Example 1. The reaction conditions and results are shown in Table-2.

なお、この触媒は米国特許第4,477.591号明細
−配賦の実施例3に従って1i製したものである。
The catalyst was prepared in accordance with Example 3 of U.S. Pat. No. 4,477,591-Distribution.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式X_aP_bO_c(式中、Xは周期律表
における I b族ないしVIII族遷移金属元素の中から選
ばれる1種またはそれ以上の元素、Pはリン、Oは酸素
を表わす。添字a、b、cはそれぞれの元素の原子比を
示し、a=1のとき、b=0.01〜6の範囲の値をと
り、cはa、bおよび各種構成元素の結合状態により定
まる数値である。)で表わされる触媒組成物であること
を特徴とする、 一般式▲数式、化学式、表等があります▼( I ) (式中のR、R′は各々水素、メチル基およびエチル基
の中から選ばれ、nは2〜5の範囲の整数値をとる。)
で表わされるアルカノールアミン類を 一般式▲数式、化学式、表等があります▼(II) (式中のR、R′およびnは前記( I )式と同様であ
る。)で表わされる環式アミン類へ転化せしめる気相分
子内脱水反応用触媒。
(1) General formula , b, and c indicate the atomic ratio of each element, and when a=1, b=0.01 to 6, and c is a numerical value determined by the bonding state of a, b, and various constituent elements. There are general formulas ▲mathematical formulas, chemical formulas, tables, etc.▼(I) (in the formula, R and R' are hydrogen, methyl group, and ethyl group, respectively). selected from among them, and n takes an integer value in the range of 2 to 5.)
Alkanolamines represented by the general formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (II) (In the formula, R, R' and n are the same as in the above formula (I).) Cyclic amines Catalyst for gas phase intramolecular dehydration reaction that converts into
JP61271965A 1985-12-27 1986-11-17 Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines Granted JPS63126553A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61271965A JPS63126553A (en) 1986-11-17 1986-11-17 Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
CA000526170A CA1276615C (en) 1985-12-27 1986-12-23 Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
DE8686310074T DE3677950D1 (en) 1985-12-27 1986-12-23 METHOD FOR PRODUCING CYCLIC AMINES.
AU66888/86A AU590653B2 (en) 1985-12-27 1986-12-23 Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
EP86310074A EP0230776B1 (en) 1985-12-27 1986-12-23 Process for producing cyclic amines
CN86108970A CN1013646B (en) 1985-12-27 1986-12-27 Method for vapor-phase intermolecular dehydration of alkanolamines
KR1019860011392A KR910004074B1 (en) 1985-12-27 1986-12-27 Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
US07/126,351 US4841061A (en) 1985-12-27 1987-11-30 Process for producing cyclic amines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271965A JPS63126553A (en) 1986-11-17 1986-11-17 Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines

Publications (2)

Publication Number Publication Date
JPS63126553A true JPS63126553A (en) 1988-05-30
JPH0576345B2 JPH0576345B2 (en) 1993-10-22

Family

ID=17507277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271965A Granted JPS63126553A (en) 1985-12-27 1986-11-17 Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines

Country Status (1)

Country Link
JP (1) JPS63126553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223550A (en) * 1988-11-25 1990-09-05 Nippon Shokubai Kagaku Kogyo Co Ltd Production of aziridine compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152350A (en) * 1982-12-20 1984-08-31 エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド Condensation of organic compound
JPS61271967A (en) * 1985-05-27 1986-12-02 Yoshiharu Uchihashi Humidity regulator for laver drying chamber
JPS61271966A (en) * 1985-05-28 1986-12-02 Okamura Shokuhin Kogyo:Kk Production of lamellar molded food using granules of spawn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152350A (en) * 1982-12-20 1984-08-31 エア−・プロダクツ・アンド・ケミカルス・インコ−ポレ−テツド Condensation of organic compound
JPS61271967A (en) * 1985-05-27 1986-12-02 Yoshiharu Uchihashi Humidity regulator for laver drying chamber
JPS61271966A (en) * 1985-05-28 1986-12-02 Okamura Shokuhin Kogyo:Kk Production of lamellar molded food using granules of spawn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223550A (en) * 1988-11-25 1990-09-05 Nippon Shokubai Kagaku Kogyo Co Ltd Production of aziridine compound

Also Published As

Publication number Publication date
JPH0576345B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
KR910004073B1 (en) Catalyst for vapor-phase intramolecularar dehydration reaction of alkanolamines
EP0767164B1 (en) Method for producing a nitrile
KR910005188B1 (en) Catalyst for vapor-phase intramolecular dehydration reaction of alkanolamines
KR910004074B1 (en) Catalyst for vapor-phase intermolecular dehydration reaction of alkanolamines
WO2004091778A1 (en) Catalyst for dimethyl carbonate synthesis
JP2001524541A (en) Lactam production method
JPS63126553A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPS6323744A (en) Catalyst for vapor-phase intermolecular dehydrating reaction of alkanolamine
JPH0513699B2 (en)
JPS63126556A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPS63123442A (en) Catalyst for gaseous phase intramolecular dehydration reaction of alkanolamines
JPS63123441A (en) Catalyst for gaseous phase intramolecular dehydration reaction of alkanolamines
JPH0576344B2 (en)
JPH0513700B2 (en)
JPH0516905B2 (en)
JPS63303964A (en) Production of aziridine compound
JPS63126557A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPH0517392A (en) Production of acrylic acid
JPS63126558A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPS63126555A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JPS63126554A (en) Catalyst for vapor phase intramolecular dehydration reaction of alkanol amines
JP2712136B2 (en) Method for producing alkylene sulfide
JPH0275349A (en) Catalyst for gaseous intramolecular dehydrating reaction of alkanolamines
JP2011224551A (en) Catalyst for producing aziridine compound, and method for producing the aziridine compound using the catalyst
JPH01224354A (en) Production of acrylonitrile