JPS631251Y2 - - Google Patents

Info

Publication number
JPS631251Y2
JPS631251Y2 JP5504480U JP5504480U JPS631251Y2 JP S631251 Y2 JPS631251 Y2 JP S631251Y2 JP 5504480 U JP5504480 U JP 5504480U JP 5504480 U JP5504480 U JP 5504480U JP S631251 Y2 JPS631251 Y2 JP S631251Y2
Authority
JP
Japan
Prior art keywords
coil
magnetic flux
trimming
superconducting
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5504480U
Other languages
Japanese (ja)
Other versions
JPS56155378U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5504480U priority Critical patent/JPS631251Y2/ja
Publication of JPS56155378U publication Critical patent/JPS56155378U/ja
Application granted granted Critical
Publication of JPS631251Y2 publication Critical patent/JPS631251Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【考案の詳細な説明】 本考案は磁束検出器に関し、更に詳しくは、ジ
ヨゼフソン接合を含む超伝導リングが外部の磁束
変化に対して磁束量子を動作単位とした応答を示
すことを応用した高感度の磁束検出器に関するも
のである。
[Detailed description of the invention] The present invention relates to a magnetic flux detector, and more specifically, the present invention relates to a magnetic flux detector. The present invention relates to a magnetic flux detector.

第1図は従来の磁束検出器の原理説明図、第2
図は第1図の等価回路図であり、図中、1はピツ
クアツプコイル、2は超伝導線、3a,3b,3
cはトリミングコイル、4はインプツトコイル、
5はスクイドである。尚、ピツクアツプコイル
1、超伝導線2、トリミングコイル3a,3b,
3c,インプツトコイル4、およびスクイド5
は、液体ヘリウムが満たされているデユワーの中
へ入れられ超伝導状態を保つている。第1図にお
いて、ピツクアツプコイル1に外部からきた磁束
Φxが入ろうとすると、ピツクアツプコイル1に
は遮蔽電流iが流れ、超電導線2およびトリミン
グコイル3a,3b,3cを介してピツクアツプ
コイル1と磁束トランスを構成しているインプツ
トコイル4に前記遮蔽電流iが流れて磁束Φsを
生じ、該磁束Φsがスクイド5に信号として伝達
される。また、ピツクアツプコイル1は遠方から
の磁気ノイズを打ち消し、近距離からの磁気信号
を高感度に検出できるように差動接続されている
が、第1図に示すような2つの部分コイルを有す
る1次勾配形の磁束コイルに限定されるものでは
なく、外部の磁気ノイズを打ち消すことのできる
構成の範囲内で種々の変形は可能であり、例えば
4つの部分コイルを有する2次勾配形の磁束コイ
ルであつてもよい。ところで、ピツクアツプコイ
ル1は、製作上の寸法精度やコイル近傍の磁場に
よつて外来磁気ノイズを打消す能力が影響される
が、上記寸法の誤差や磁場のゆがみを零にするこ
とは著しく困難であるため、第1図に示すような
トリミングコイル3a,3b,3cを用いて上記
寸法誤差や磁場のゆがみを補償する方法がとられ
ている。
Figure 1 is a diagram explaining the principle of a conventional magnetic flux detector, Figure 2
The figure is an equivalent circuit diagram of Figure 1, in which 1 is a pickup coil, 2 is a superconducting wire, 3a, 3b, 3
c is a trimming coil, 4 is an input coil,
5 is Squid. In addition, pick-up coil 1, superconducting wire 2, trimming coils 3a, 3b,
3c, input coil 4, and squid 5
is placed in a dewar filled with liquid helium to maintain its superconducting state. In FIG. 1, when a magnetic flux Φx coming from the outside tries to enter the pick-up coil 1, a shielding current i flows through the pick-up coil 1, and the pick-up coil 1 and the magnetic flux transformer pass through the superconducting wire 2 and trimming coils 3a, 3b, and 3c. The shielding current i flows through the input coil 4 constituting the input coil 4 to generate a magnetic flux Φs, which is transmitted to the SQUID 5 as a signal. The pick-up coil 1 is differentially connected to cancel magnetic noise from a distance and detect magnetic signals from a short distance with high sensitivity. It is not limited to a secondary gradient type magnetic flux coil, and various modifications are possible within the range of the configuration that can cancel external magnetic noise. For example, a secondary gradient type magnetic flux coil having four partial coils is possible. It may be. By the way, the ability of the pick-up coil 1 to cancel out external magnetic noise is affected by the dimensional accuracy during manufacturing and the magnetic field near the coil, but it is extremely difficult to eliminate the above-mentioned dimensional errors and distortion of the magnetic field. Therefore, a method of compensating for the above-mentioned dimensional errors and distortion of the magnetic field has been adopted using trimming coils 3a, 3b, and 3c as shown in FIG.

然し乍ら、トリミングコイル3a,3b,3c
の使用によつて上記寸法誤差や磁場のゆがみが補
償できても、トリミングコイル3a,3b,3c
の製作上の寸法誤差によつて上記磁気ノイズの打
ち消し能力が新たな悪影響を受けるという不都合
があつた。また、トリミングコイル3a,3b,
3cは製作時にバランスを失つていることが多
く、磁束検出器の製作時に多くの時間をかけてト
リミングコイル3a,3b,3cを調節しなけれ
ばならないという不都合もあつた。すなわち、経
時変化する外来磁気ノイズを考慮しながら、トリ
ミングコイル3a,3b,3cを夫々横軸方向
(x方向)、縦軸方向(y方向)、および垂直軸方
向(z方向)について、バランス点をみつけるべ
く多くの時間を費やして試行錯誤的に調整する必
要があつた。
However, the trimming coils 3a, 3b, 3c
Even if the above-mentioned dimensional error and magnetic field distortion can be compensated for by using the trimming coils 3a, 3b, 3c,
There has been an inconvenience in that the ability to cancel the magnetic noise is adversely affected by dimensional errors in manufacturing. In addition, trimming coils 3a, 3b,
The trimming coils 3c often lose their balance during manufacture, and there is also the inconvenience that it is necessary to spend a lot of time adjusting the trimming coils 3a, 3b, and 3c when manufacturing the magnetic flux detector. That is, while considering the external magnetic noise that changes over time, the trimming coils 3a, 3b, and 3c are adjusted to balance points in the horizontal axis direction (x direction), vertical axis direction (y direction), and vertical axis direction (z direction), respectively. It was necessary to spend a lot of time and make adjustments through trial and error in order to find the correct value.

本考案は、かかる欠点に鑑みてなされたもので
あり、その目的は、経時変化する外来磁気ノイズ
の存在下でも機器本体について正確かつ迅速なる
調節が可能な磁束検出器を提供するにある。
The present invention has been devised in view of these drawbacks, and its purpose is to provide a magnetic flux detector that allows accurate and rapid adjustment of the main body of the device even in the presence of external magnetic noise that changes over time.

本考案の特徴は、磁束検出器において外部から
の磁束を検出するピツクアツプコイルと該ピツク
アツプコイルの検出信号の誤差を補償するトリミ
ングコイルとの間に遠隔操作可能な超伝導スイツ
チを設け、ピツクアツプコイルとトリミングコイ
ルを直列に若しくは各々独立に、ピツクアツプコ
イルと磁束トランスを構成するインプツトコイル
へ超伝導線を介して接続するにある。
A feature of the present invention is that a remotely controllable superconducting switch is provided between the pick-up coil that detects external magnetic flux in the magnetic flux detector and the trimming coil that compensates for errors in the detection signal of the pick-up coil. The trimming coils are connected in series or each independently to a pickup coil and an input coil constituting a magnetic flux transformer via superconducting wires.

以下、本考案について図を用いて詳細に説明す
る。第3図は、本考案の一実施例を示す等価回路
で表わされた原理説明図であり、図中、6は超伝
導スイツチ、A,B,C,Dは超伝導スイツチの
端子である。また、第3図において、第2図と同
一記号は同一意味をもたせて使用し、ここでの説
明は省略する。尚、超伝導スイツチ6は市販され
ている一般のスイツチに超伝導金属(例えばNb,
Ta,Pd等)がメツキされたものが使用される
が、超伝導状態での回路接続が遠隔操作で行なえ
る構成の範囲内で種々の変形は可能であり、例え
ば超伝導線が接続され比較的軟質の超伝導金属
(例えばホワイトメタル等)からなるアダプタに
Nbからなるプラグを挿脱させることによりスイ
ツチの機能をもたせたものや、温度依存性のある
抵抗値を有する超伝導線にコイル状のヒータを巻
回させ該ヒータのオンオフによつて超伝導線に熱
的変化に基づく抵抗値変化を与えてスイツチの機
能をもたせたもの等であつてもよい。また、ここ
で超伝導スイツチとは、超伝導状態で回路の接続
を行なうことができ、スイツチオンのとき電気抵
抗が零となりスイツチオフのときに電気抵抗が有
限の値を示すものをいい、更に、本考案において
は、前記デユワーの外部からリード線等を介して
遠隔操作可能な構成となつている。
Hereinafter, the present invention will be explained in detail using figures. FIG. 3 is an explanatory diagram of the principle represented by an equivalent circuit showing one embodiment of the present invention. In the figure, 6 is a superconducting switch, and A, B, C, and D are terminals of the superconducting switch. . Further, in FIG. 3, the same symbols as in FIG. 2 are used with the same meanings, and the explanations here will be omitted. The superconducting switch 6 is a commercially available general switch made of superconducting metal (for example, Nb,
The wire plated with Ta, Pd, etc.) is used, but various modifications are possible as long as the circuit connection in the superconducting state can be done remotely. For example, when superconducting wires are connected and compared to an adapter made of soft superconducting metal (e.g. white metal)
A superconducting wire that has a switch function by inserting and removing a plug made of Nb, or a superconducting wire that has a coil-shaped heater wound around a superconducting wire with a temperature-dependent resistance value and turns the heater on and off. It is also possible to provide a switch function by applying a change in resistance value based on a thermal change. In addition, a superconducting switch here refers to a switch that can connect a circuit in a superconducting state, and has zero electrical resistance when switched on and a finite value when switched off. In the invention, the dewar is configured to be remotely controllable from outside via a lead wire or the like.

上記構成からなる本考案の実施例において、初
め、超伝導スイツチ6における端子Aが端子Dと
接続されると、ピツクアツプコイル1が短絡さ
れ、トリミングコイル3a,3b,3cからの信
号だけが超伝導線、インプツトコイル4を介して
スクイド5へ伝達される。この状態で、トリミン
グコイル3a,3b,3cの磁場に比して十分大
きく、トリミングコイルに一様な磁場を与える調
整用信号(例えば手巻の簡単なコイルで生じさせ
られた人工磁場等の信号)を用いて、前記x方
向、y方向、およびz方向について各々単独にサ
イン波の磁気信号が供給され、トリミングコイル
からのサイン波出力が最小となるようにそれぞれ
のトリミングコイルが順次調整される。
In the embodiment of the present invention having the above configuration, when the terminal A of the superconducting switch 6 is first connected to the terminal D, the pick-up coil 1 is short-circuited and only the signals from the trimming coils 3a, 3b, and 3c are superconducting. The signal is transmitted to the SQUID 5 via the input coil 4. In this state, an adjustment signal that is sufficiently large compared to the magnetic fields of the trimming coils 3a, 3b, and 3c and provides a uniform magnetic field to the trimming coils (for example, a signal such as an artificial magnetic field generated by a simple hand-wound coil) ), a sine wave magnetic signal is supplied independently in each of the x direction, y direction, and z direction, and each trimming coil is sequentially adjusted so that the sine wave output from the trimming coil is minimized. .

次に、超伝導スイツチ6における端子Cが端子
Dに接続されると、トリミングコイル3a,3
b,3cが短絡され、ピツクアツプコイル1から
の信号だけが超伝導線2、インプツトコイル4を
介してスクイド5へ伝達される。この状態で、ピ
ツクアツプコイル1の製作上の寸法誤差およびコ
イル近傍の磁場のゆがみでチエツクされ、必要な
処置が施される(例えばコイル近傍の磁場をゆが
めているものが除去可能ならば取り除く等)。
Next, when the terminal C in the superconducting switch 6 is connected to the terminal D, the trimming coils 3a, 3
b and 3c are short-circuited, and only the signal from the pickup coil 1 is transmitted to the SQUID 5 via the superconducting wire 2 and the input coil 4. In this state, the pick-up coil 1 is checked for dimensional errors in manufacturing and distortion of the magnetic field near the coil, and necessary measures are taken (for example, if it is possible to remove anything that is distorting the magnetic field near the coil, remove it, etc.) .

その後、超伝導スイツチ6における端子Bが端
子Dと接続される。この状態で、ピツクアツプコ
イル1が超伝導線2およびトリミングコイル3
a,3b,3cを介してインプツトコイル4と接
続され、ピツクアツプコイル1およびトリミング
コイル3a,3b,3cの単独調整では調整でき
なかつた量がチエツクされる。該未調整量は微少
であることが多いために、その後、トリミングコ
イル3a,3b,3cの再調節によつて短時間で
容易に最終的な調整がなされる。
Thereafter, terminal B of superconducting switch 6 is connected to terminal D. In this state, the pick-up coil 1 is connected to the superconducting wire 2 and the trimming coil 3.
It is connected to the input coil 4 via a, 3b, and 3c, and the amount that cannot be adjusted by adjusting the pickup coil 1 and the trimming coils 3a, 3b, and 3c alone is checked. Since the unadjusted amount is often very small, the final adjustment can then be easily made in a short time by readjusting the trimming coils 3a, 3b, and 3c.

以上、詳しく説明したような本考案の実施例に
よれば、前記従来例においてピツクアツプコイル
1への外来磁気ノイズの影響を消去するため長時
間かけて行なつていた磁束検出器の調節が不要と
なり、手巻の簡単なコイル等から生ずる人工磁場
等の信号を利用してトリミングコイル3a,3
b,3cの調節が単独でも容易にでき、結果的に
磁束検出器の調節が容易に短時間でできるという
利点がある。また、本考案の実施例によれば、前
記従来例と異なりピツクアツプコイル1とトリミ
ングコイル3a,3b,3cを各々単独に調整で
きるため、調整範囲の決定が容易となり各調整工
程でのスピードがアツプできるという利点もあ
る。更に、磁束検出器の調節が容易となつて調整
時間が短縮化することにより、ピツクアツプコイ
ル1等が収納されているデユワー中の液体ヘリウ
ムの消費量を減少できるという利点もある。
According to the embodiment of the present invention as described in detail above, it is no longer necessary to adjust the magnetic flux detector, which took a long time to eliminate the influence of external magnetic noise on the pickup coil 1 in the conventional example. , trimming coils 3a, 3 using signals such as an artificial magnetic field generated from a simple hand-wound coil, etc.
There is an advantage that the adjustment of b and 3c can be easily performed even individually, and as a result, the magnetic flux detector can be adjusted easily and in a short time. Further, according to the embodiment of the present invention, unlike the conventional example, the pick-up coil 1 and the trimming coils 3a, 3b, and 3c can each be adjusted independently, making it easier to determine the adjustment range and increasing the speed of each adjustment process. There is also the advantage of being able to do so. Furthermore, since the magnetic flux detector can be easily adjusted and the adjustment time is shortened, there is also the advantage that the amount of liquid helium consumed in the dewar in which the pickup coil 1 and the like are housed can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁束検出器の原理説明図、第2
図は第1図の等価回路図、第3図は本考案の一実
施例を示す等価回路図である。 1……ピツクアツプコイル、2……超伝導線、
3a,3b,3c……トリミングコイル、4……
インプツトコイル、5……スクイド、6……超伝
導スイツチ。
Figure 1 is a diagram explaining the principle of a conventional magnetic flux detector, Figure 2
This figure is an equivalent circuit diagram of FIG. 1, and FIG. 3 is an equivalent circuit diagram showing an embodiment of the present invention. 1...Pick-up coil, 2...Superconducting wire,
3a, 3b, 3c...trimming coil, 4...
Input coil, 5...SQUID, 6...Superconducting switch.

Claims (1)

【実用新案登録請求の範囲】 1 ジヨゼフソン接合を含む超伝導体が外部の磁
束変化に対して磁束量子を動作単位とした応答
を示すことを利用して磁束を検出する磁束検出
器において、外部からの磁束を検出するピツク
アツプコイルと、該ピツクアツプコイルと超伝
導線を介して磁束トランスを構成するインプツ
トコイルと、該インプツトコイルと前記ピツク
アツプコイルの間で超伝導線を介して前記ピツ
クアツプコイルおよびインプツトコイルと直列
接続され前記ピツクアツプコイルの検出信号の
誤差を補償するトリミングコイルと、遠隔操作
可能であり前記ピツクアツプコイルおよびトリ
ミングコイルのいずれか一方もしくは双方を前
記インプツトコイルに接続する超伝導スイツチ
とを具備することを特徴とする磁束検出器。 2 前記超伝導スイツチは、前記ピツクアツプコ
イルとトリミングコイルが直列接続して前記イ
ンプツトコイルに接続されている状態と前記ピ
ツクアツプコイルおよびトリミングコイルのい
ずれか一方が単独に前記インプツトコイルに接
続されている状態とが交互に切り換えられるよ
うに構成されている実用新案登録請求範囲第(1)
項記載の磁束検出器。
[Claims for Utility Model Registration] 1. In a magnetic flux detector that detects magnetic flux by utilizing the fact that a superconductor including a Josefson junction shows a response to external magnetic flux changes using magnetic flux quanta as a unit of operation, a pickup coil for detecting the magnetic flux of the pickup coil; an input coil that constitutes a magnetic flux transformer via the pickup coil and a superconducting wire; and an input coil for detecting the magnetic flux of the pickup coil and a trimming coil connected in series with the input coil to compensate for errors in the detection signal of the pickup coil; and a superconducting switch that is remotely controllable and connects either or both of the pickup coil and the trimming coil to the input coil. A magnetic flux detector comprising: 2. The superconducting switch has two states: the pick-up coil and the trimming coil are connected in series and connected to the input coil, and the pick-up coil and the trimming coil are individually connected to the input coil. Utility model registration claim No. (1) that is configured to alternately switch between
Magnetic flux detector described in section.
JP5504480U 1980-04-22 1980-04-22 Expired JPS631251Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5504480U JPS631251Y2 (en) 1980-04-22 1980-04-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5504480U JPS631251Y2 (en) 1980-04-22 1980-04-22

Publications (2)

Publication Number Publication Date
JPS56155378U JPS56155378U (en) 1981-11-19
JPS631251Y2 true JPS631251Y2 (en) 1988-01-13

Family

ID=29649738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5504480U Expired JPS631251Y2 (en) 1980-04-22 1980-04-22

Country Status (1)

Country Link
JP (1) JPS631251Y2 (en)

Also Published As

Publication number Publication date
JPS56155378U (en) 1981-11-19

Similar Documents

Publication Publication Date Title
US4794338A (en) Balanced self-shielded gradient coils
US5438257A (en) Reduced magnetic flux current sensor
US5489847A (en) RF probe for MRI
US5227728A (en) Gradient driver control in magnetic resonance imaging
US5459395A (en) Reduced flux current sensor
JPS6038670A (en) Superconducting gradiometer-coil system
JPH02281170A (en) Method and equipment for correcting multichannel squid equipment
JPH02257076A (en) System for controlling digital squid
US3260932A (en) Magnet-field measuring device with a galvanomagnetic resistance probe
NL8500844A (en) MR DEVICE WITH TWO ORTHOGONAL RF COIL PAIR.
JP3148290B2 (en) Nuclear magnetic resonance imaging system
Ripka et al. Sensitivity and noise of wire-core transverse fluxgate
JP2000228323A (en) Rogowskii coil
JPS631251Y2 (en)
JP2002202328A (en) Magnetic field type current sensor
JPH10232259A (en) Current leakage sensor
JPH07270507A (en) Terrestrial magnetism azimuth sensor
US3699558A (en) Angular position sensors
JPH08220141A (en) Split dc zero-phase current transformer
US6650107B2 (en) Calibrating SQUID channels
EP0490880B1 (en) Negative feedback power supply apparatus
CN112526212A (en) Conductivity measuring device and method capable of compensating environmental changes
RU220169U1 (en) Inductive sensor with temperature compensation
JPH0640107B2 (en) Current measuring transmitter
RU1791766C (en) Primary measurement converter of eddy-current gear of nondestructive control