JPS63124953A - Electrophoresis method - Google Patents

Electrophoresis method

Info

Publication number
JPS63124953A
JPS63124953A JP61269638A JP26963886A JPS63124953A JP S63124953 A JPS63124953 A JP S63124953A JP 61269638 A JP61269638 A JP 61269638A JP 26963886 A JP26963886 A JP 26963886A JP S63124953 A JPS63124953 A JP S63124953A
Authority
JP
Japan
Prior art keywords
gel
electric field
equation
migration
field strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61269638A
Other languages
Japanese (ja)
Inventor
Michio Ito
伊藤 迪夫
Jiro Tokita
鴇田 二郎
Motoko Yoshida
吉田 基子
Kenichi Watabe
健一 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61269638A priority Critical patent/JPS63124953A/en
Publication of JPS63124953A publication Critical patent/JPS63124953A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate component molecules having a specified mol.wt. difference on a gel at equally spaced distances without depending on the mol.wt. thereof by imparting the electric field intensity decreasing monotonously in accordance with a certain function to a migration direction. CONSTITUTION:The gel 1 for analyzing a nucleic acid sample is so molded that the front surface 3 thereof is curved and the rear surface 2 thereof is flat. The curved surface 3 is formed to kaT=k1Ta<2/3>, k1T=0.515, V0=17.5, a=100, L=50, lambda=0.2, in the equation I when the thickness of the section is designated as f(y). Said surface is so formed that the thickness f(y) of the section is a function of the distance y in the migration direction. The electric field intensity is A(B-Cy)<1->D exp{E(B-Cy)D} (where A-E are positive real constants) if a voltage is impressed across the gel. The component molecules having the specified mol.wt. difference are thereby separated on the gel at the equally spaced distance without depending on the mol.wt. thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蛋白質、核酸などの分離1分析法に係り、特に
、これらの物質の高分子量成分の分離に好適な電気泳動
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for separating and analyzing proteins, nucleic acids, etc., and particularly to an electrophoresis method suitable for separating high molecular weight components of these substances.

〔従来の技術〕[Conventional technology]

良く知られているように水溶液中に置かれた荷電分子の
泳動距離、y、は次式(2)に示すように、溶液に付与
された電界強度をEx、泳動時間をt、単位時間、単位
電界強度当りの泳動速度をuoとして。
As is well known, the migration distance, y, of a charged molecule placed in an aqueous solution is expressed by the following equation (2), where Ex is the electric field strength applied to the solution, t is the migration time, and unit time is The migration speed per unit electric field strength is uo.

y==uoEzt         −(2)で与えら
れる。ゲル状媒体中では、プロシーディンゲス オブ 
ナショナルアカデミ−オブ サイエンス(Proc N
at’l Acad、 Sci、 ) 65巻970〜
977頁(1970)に論ぜられているように、泳動距
離は(2)で与えられる値よりも減少し、 y = uoEt t e−”        ”(3
)で与えられる。ここにkは泳動している分子の大きさ
に正の相関を有するパラメータ、Tはゲルの濃度に比例
するパラメータであり、いずれも正の実数である。(3
)式によれば、分子は大きさによって泳動距離が異なる
ので分離することができる。尚、変性した核酸、及び、
蛋白質分子においては、uoは分子量に依存せずほぼ一
定値となることが知られている。
It is given by y==uoEzt-(2). In a gel-like medium, the procedure of
National Academy of Sciences (Proc N
at'l Acad, Sci, ) Volume 65, 970~
As discussed on page 977 (1970), the migration distance decreases from the value given by (2), y = uoEt t e−” ”(3
) is given by Here, k is a parameter that has a positive correlation with the size of the migrating molecules, and T is a parameter that is proportional to the gel concentration, both of which are positive real numbers. (3
) According to the equation, molecules can be separated because their migration distances differ depending on their size. In addition, denatured nucleic acids and
It is known that in protein molecules, uo does not depend on the molecular weight and remains a substantially constant value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記原理に基づ〈従来技術においては、電界強度E□は
ゲル中いたる所一定(ゲル長をL、ゲル両端の電圧差を
Eo とするとゲルの厚みが一定なのでE t = E
 o / L )であり、一定の分子量差を有する2種
の成分分子の泳動距離の差は成分の分子量が増大すると
急速に減少し分離不可能となるという問題点があった。
Based on the above principle, in the conventional technology, the electric field strength E□ is constant throughout the gel (if the gel length is L and the voltage difference between both ends of the gel is Eo, the thickness of the gel is constant, so E t = E
o/L), and there was a problem in that the difference in migration distance between two component molecules having a certain molecular weight difference rapidly decreases as the molecular weight of the components increases, making them impossible to separate.

本発明の目的はこの問題点を克服し、一定の分子量差を
有する成分分子をその分子量に依存せず等間隔の距離で
ゲル上に分離する方法を提供することにある。
An object of the present invention is to overcome this problem and provide a method for separating component molecules having a certain molecular weight difference at equal distances on a gel, independent of their molecular weights.

さらに本願の第2の発明の説明のための問題点を示す。Furthermore, problems for explaining the second invention of the present application will be shown.

上記原理に基づ〈従来技術においては、電界強度Exは
ゲル中至る所一定(ゲル長をL、ゲル両端の電圧差をE
oとするとゲルの厚みが一定なのでE i = E o
/ L )であり、一定の分子量差を有する2種の成分
分子の泳動距離の差、Δy、は成分の分子量が増大する
と急速に減少し、分離バンドが重なり合って分離不能に
なるという問題点があった。何故なら、分離成分はゲル
中で拡散して、広がりを持って帯状に存在するからであ
る。
Based on the above principle, in the conventional technology, the electric field strength Ex is constant throughout the gel (the gel length is L, and the voltage difference between both ends of the gel is E).
If o, the thickness of the gel is constant, so E i = E o
/L), and the difference in migration distance, Δy, between two component molecules with a certain molecular weight difference rapidly decreases as the molecular weight of the components increases, leading to the problem that the separation bands overlap and become impossible to separate. there were. This is because the separated components diffuse in the gel and exist in a spread band shape.

電気泳動法の分離能は分離バンドの巾をW、λをバンド
の分離を確認するために必要な最小の数(正の実数)と
して、 Δy=λW        ・・・(34)の時最大と
なる。λはバンドの検出に使われる装置の性能、バンド
の形状などに依存するパラメータである。ΔyがλWよ
り大きいときは、いわば、むだな過剰分離が生じている
ことになる。従来の泳動法では低分子量成分については
Δyが大きすぎ、高分子量成分の分離に使われるべきゲ
ル部位をむだに消費してしまっていると言える。本発明
の目的はこの問題点を克服し、分離成分の分子量に依存
せず常にゲル上で(34)式の関係が成立するような分
離方法を提供することにある。
The separation power of electrophoresis is maximum when Δy=λW (34), where W is the width of the separated band and λ is the minimum number (positive real number) necessary to confirm the separation of the bands. . λ is a parameter that depends on the performance of the device used to detect the band, the shape of the band, etc. When Δy is larger than λW, so to speak, unnecessary excessive separation occurs. In the conventional electrophoresis method, Δy is too large for low molecular weight components, and it can be said that gel sites that should be used for separating high molecular weight components are wasted. An object of the present invention is to overcome this problem and provide a separation method in which the relationship of formula (34) always holds true on a gel, regardless of the molecular weight of the separated components.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的はElを泳動方向に対して減少する様に設定す
ることによって達成される。これは式(3)より明らか
である。この場合、泳動速度、ち、以下、定量的に議論
を進めれば、 電界強度をゲルの位置によって変化させる方法として例
えば、ゲルの厚みを泳動方向に対して増大させる方法を
用いる。ゲルの位myにおける厚みをf (y) 、 
電位をEとして、第2図に示すよう底面2が平面、上面
3が曲面になるようなゲル1を考えると。
The above object is achieved by setting El to decrease in the direction of migration. This is clear from equation (3). In this case, as a method of changing the electrophoresis speed, or, if we will discuss it quantitatively below, the electric field strength depending on the position of the gel, for example, a method of increasing the thickness of the gel in the electrophoresis direction is used. The thickness of the gel at position my is f (y),
Let us consider a gel 1 whose bottom surface 2 is flat and whose top surface 3 is curved, as shown in FIG. 2, assuming the potential to be E.

ここに、γはゲルの比抵抗、Roは全抵抗である。Here, γ is the specific resistance of the gel, and Ro is the total resistance.

全抵抗は、ゲルの底平面上の奥行(厚みf (y)軸4
に直角な方向)を単位長さに取って定義した。
The total resistance is determined by the depth (thickness f (y) axis 4
(direction perpendicular to ) is defined as unit length.

この場合、ゲルの泳動方向の長さをLとすればである。In this case, let L be the length of the gel in the migration direction.

(4)式より、 となる。この微分方程式を解くと O ・・・(8) F (0)は1=0のときのF (y)の値である。From equation (4), becomes. Solving this differential equation O ...(8) F(0) is the value of F(y) when 1=0.

今、核酸や蛋白のように基本分子量(モノヌクレオチド
の分子量は約340.アミノ酸の分子量は約100)の
整数(一般にnとする)倍の分子量の高分子の分離を考
えると1本発明の目的はy=L−λ(n −a )  
    ・・・(9)の関係を満足するように重合度n
の成分の泳動距離yを決めることである。ここに、aは
ゲルの端点迄りだけ泳動した成分の重合度であり、λは
重合度が1異なる成分間の泳動距離の差である0分子の
大きさのパラメータにとnの関係を与えれば、(9)式
よりyの関数としてk (y)が求まる。
Now, considering the separation of macromolecules such as nucleic acids and proteins whose molecular weight is an integer (generally referred to as n) times the basic molecular weight (the molecular weight of mononucleotides is approximately 340, and the molecular weight of amino acids is approximately 100), one objective of the present invention is to is y=L−λ(n−a)
...The degree of polymerization n is set so as to satisfy the relationship (9).
The purpose is to determine the migration distance y of the component. Here, a is the degree of polymerization of the component that migrated only up to the end point of the gel, and λ is the difference in migration distance between components whose degree of polymerization differs by 1.0 Give the relationship between the molecular size parameter and n. For example, k (y) can be found as a function of y from equation (9).

よって、(8)式より、我々が求めるゲルの形、すなわ
ち、f (y)は dy        Ro   d、y・・・(10) となる。(10)式から直ちに Ro       dy となる。従って、電界強度E、は(5)式よりuot 
 dy ここでtは重合度aの成分がLだけ泳動するに要する時
間であり、これを特にtaと書けば、Voをゲルの体積
(ゲルの上平面上、y軸に直角方向の距離を単位長さに
とったときの体積)として、 となる、kaは重合度aの成分の分子サイズパラメータ
である。よって、(11)式よりdy ・・・(14) と書ける。又、(12)式より。
Therefore, from equation (8), the shape of the gel we are looking for, ie, f (y), is dy Rod, y (10). From equation (10), it immediately becomes Rody. Therefore, the electric field strength E, is uot from equation (5).
dy Here, t is the time required for a component with a degree of polymerization a to migrate by L, and if this is specifically written as ta, then Vo is the volume of the gel (the unit is the distance on the upper plane of the gel in the direction perpendicular to the y-axis). ka is the molecular size parameter of the component with the degree of polymerization a. Therefore, from equation (11), it can be written as dy...(14). Also, from equation (12).

・・・(15) と書ける。...(15) It can be written as

一定の分子量差を有する成分をゲル上に等間隔で並べる
ゲル形状は第2図のものばかりではない。
The gel shape shown in FIG. 2 is not the only one in which components having a certain molecular weight difference are arranged at equal intervals on the gel.

例えば、第2図の泳動軸のまわりにf (y)を回転し
てできる一種の円錐形のゲル(第3図5)を用いても良
い、この場合1位Myにおけるゲルの厚み(回転体とし
ての回転半径)をf (y)とすると(5)式は、πを
円周率として。
For example, a kind of conical gel (Fig. 3, 5) formed by rotating f (y) around the migration axis in Fig. 2 may be used. In this case, the thickness of the gel at the 1st position My (the rotating body (radius of gyration) as f (y), equation (5) is given by π as pi.

となる。becomes.

以下、第2図の曲面ゲルと同様に考えて、(14)式の
代りに ・・・(17) を得る。又、(15)式の代りに を得る。(15)式と(18)式はyを変数とした場合
同一の関数型になっていることに注目すべきである。ゲ
ルの形状は各種あるが、等間隔の泳動パターンを与える
電界強度の分布の型は同一である。
Hereinafter, considering the curved gel in FIG. 2, instead of equation (14), we obtain...(17). Also, instead of equation (15), we obtain. It should be noted that equations (15) and (18) have the same functional type when y is used as a variable. Although there are various shapes of gels, the type of electric field strength distribution that provides an evenly spaced migration pattern is the same.

さらに本願の第2の発明の問題点を解決するための手段
について述べる式(3)を見れば予想されるように、上
記目的はExが泳動方向に対して変化する様に設定する
ことによって達成される。
Furthermore, as expected from equation (3) which describes the means for solving the problem of the second invention of the present application, the above object can be achieved by setting Ex to change with respect to the electrophoresis direction. be done.

存し変化する。すなわち、以下、定量的に議論を進めば
、 電界強度をゲルの位置によって変化させる方法として例
えば、ゲルの厚みを泳動方向に対して変化させる方法を
用いる。ゲルの位置yにおける厚みをf(y)、電位を
Eとして、第4図に示すよう底面2が平面、上面3が曲
面になるようなゲル11を考えると、 ここに、γはゲルの比抵抗、Roは全抵抗である。
Exists and changes. That is, in the following quantitative discussion, as a method of changing the electric field strength depending on the position of the gel, for example, a method of changing the thickness of the gel with respect to the electrophoresis direction is used. Letting the thickness of the gel at position y be f(y) and the potential as E, consider a gel 11 whose bottom surface 2 is flat and whose top surface 3 is curved as shown in FIG. 4, where γ is the ratio of the gel. The resistance, Ro, is the total resistance.

全抵抗は、ゲルの底平面上の奥行(厚みf (y)軸4
に直角な方向)を単位長さに取って定義した。
The total resistance is determined by the depth (thickness f (y) axis 4
(direction perpendicular to ) is defined as unit length.

この場合、ゲルの泳動方向の全長をLとすればである。In this case, let L be the total length of the gel in the migration direction.

(35)、(36)式より、 dt   Rof(y) となる。この微分方程式を解くと ・・・(39) F(0)は1=0のときのF (y)の値である。From equations (35) and (36), dt Rof(y) becomes. Solving this differential equation ...(39) F(0) is the value of F(y) when 1=0.

今、核酸や蛋白のように基本分子!(モノヌクレオチド
の分子量は約340、アミノ酸の分子量は約Zoo)の
整数(一般にnとする)倍の分子量の高分子の混合物の
分離を考えると、本発明の目的は の関係を満足するように重合度nの成分の泳動距11f
lyを決めることである。ここに、aはゲルの端点迄り
だけ泳動した成分の重合度であり、Wiは重合度iの成
分の分離バンドの巾である。分子の大きさのパラメータ
にとnの関係、及び、Wnとnの関係を与えれば(4o
)式よりyの関数としてk (y)が求まる。よって(
39)式より、我我が求めるゲルの形、すなわち、f 
(y)はとなる、(11)式から直ちに ・・・(32) となる。従って、電界強度E1は(36)式よりとなる
Now basic molecules like nucleic acids and proteins! (The molecular weight of mononucleotides is approximately 340, and the molecular weight of amino acids is approximately Zoo. Migration distance 11f of component with degree of polymerization n
The key is to determine ly. Here, a is the degree of polymerization of the component that migrated only up to the end point of the gel, and Wi is the width of the separation band of the component with the degree of polymerization i. If we give the relationship between the molecular size parameter and n, and the relationship between Wn and n, we get (4o
), k (y) can be found as a function of y. Therefore (
39) From the formula, we can find the shape of the gel we are looking for, that is, f
(y) becomes, and from equation (11), it immediately becomes...(32). Therefore, the electric field strength E1 is given by equation (36).

ここで、tは重合度aの成分がLだけ泳動するに要する
時間であり、これを特にtaと書けば、V Ll をゲ
ルの体積(ゲルの不平面上、y軸に直角方向の距離を単
位長さにとったときの体積)として、 (39)式より
、 γuoE。
Here, t is the time required for a component with a degree of polymerization a to migrate by L, and if this is specifically written as ta, then V Ll is the volume of the gel (the distance in the direction perpendicular to the y-axis on the flat surface of the gel). From formula (39), γuoE.

kaは重合度aの成分の分子サイズパラメータである。ka is a molecular size parameter of a component with a degree of polymerization a.

よって、(42)式より ・・・(45) となる。又、(13)式より。Therefore, from equation (42), ...(45) becomes. Also, from equation (13).

・・・ (46) と書ける。... (46) It can be written as

一定の分子量差を有する成分をゲル上に(40)式に従
い並べるためのゲルの形状は第4図のものばかりではな
い。例えば、第4図の泳動軸のまわりにf (y)を回
転してできる一種の円錐形のゲル(第5図5)を用いて
も良い。この場合1回転半径がf (y)であるから、
(36)式はπを円周率として、 となる。以下、第4図の曲面ゲルと同様に考えて、(4
5)式の代りに、 ・・・(48) を得る。又、 (46)式の代りに。
The shape of a gel for arranging components having a certain molecular weight difference on a gel according to equation (40) is not limited to that shown in FIG. 4. For example, a kind of conical gel (FIG. 5) formed by rotating f (y) around the migration axis in FIG. 4 may be used. In this case, since the radius of one rotation is f (y),
Equation (36) becomes as follows, where π is the constant of pi. Below, considering the same way as the curved gel in Figure 4, (4
5) Instead of Eq., we obtain (48). Also, instead of equation (46).

・・・ (49) を得る。(46)式と(49)式はyに関して同一の関
数型になっていることに注目すべきである。
... (49) is obtained. It should be noted that equations (46) and (49) have the same functional form with respect to y.

〔作用〕 上記(15)又は(18)式に示したような電界強度を
ゲルに与えることにより、一定の分子量差を有する成分
は一定の泳動距離の差でゲル中に分離することができる
。すなわち1本発明によれば、2式分間の泳動距離の差
は分子量の差に比例する。これにより、高分子量の成分
についても低分子量の成分についてと同じ、分子量差で
分離することができる。
[Operation] By applying an electric field strength as shown in the above equation (15) or (18) to the gel, components having a certain difference in molecular weight can be separated in the gel with a certain difference in migration distance. That is, according to the present invention, the difference in migration distance between the two formulas is proportional to the difference in molecular weight. As a result, high molecular weight components can be separated based on the same molecular weight differences as low molecular weight components.

さらに第2の発明について述べる。上記(16)又は(
19)式に示したような電界強度をゲルに与えることに
より、一定の分子量差を有する成分は分離バンドを接し
て、いわば、ぎっしりとすき間なくゲル上に並ぶことに
なる。すなわち、本発明によれば、最大多数の成分を分
離することができる。
Furthermore, the second invention will be described. (16) above or (
By applying an electric field strength as shown in the formula (19) to the gel, components having a certain molecular weight difference are arranged tightly on the gel, so to speak, with the separation bands in contact with each other. That is, according to the present invention, a maximum number of components can be separated.

〔実施例〕〔Example〕

以下、実施例により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

用いる被分離試料はデオキシリボ核酸の重合度が1ずつ
異なった多数成分の混合物(良く知られたM13法に基
づく塩基配列決定用の試料)であり、各成分はラジオア
イソトープ8Zpによって標識されている。まず、予備
実験として塩基配列既知の上記核酸試料を従来の電気泳
動法により分析した。
The sample to be separated used is a mixture of multiple components (sample for base sequencing based on the well-known M13 method) with deoxyribonucleic acid polymerization degrees differing by 1, and each component is labeled with radioisotope 8Zp. First, as a preliminary experiment, the above nucleic acid sample whose base sequence was known was analyzed by conventional electrophoresis.

すなわち、ポリアクリルアミド濃度8%で泳動方向の距
離50cm、厚み一定(0,35m+a)のゲル(ゲル
は7Mの尿素と90mMのトリス−ホウ酸バッファPH
8,3及び1mMのエチレンディアミン四酢酸を含む)
を用いて、上記試料を、1.2kVの電圧をゲルの両端
に掛けて泳動した。泳動後ゲルの上にX−線フイルムを
乗せ常法によりampのベータ線を用いてオートラジオ
グラムを作成した。オートラジオグラム上に現われた各
核酸成分の泳動距離yと重合度nとの関係を解析した所
1重合度nのkti−に、とすると、knT=kzTn
”          −(19)が成立することが見
出された。ここで、Tはゲル単位溶積当りのゲルファイ
バーの長さであり。
That is, a gel with a polyacrylamide concentration of 8%, a distance of 50 cm in the migration direction, and a constant thickness (0.35 m+a) (the gel was made of 7 M urea and 90 mM Tris-borate buffer PH).
8, 3 and 1mM ethylenediaminetetraacetic acid)
The above sample was electrophoresed using a 1.2 kV voltage applied to both ends of the gel. After electrophoresis, an X-ray film was placed on top of the gel, and an autoradiogram was prepared using amp beta rays in a conventional manner. Analyzing the relationship between the migration distance y of each nucleic acid component appearing on the autoradiogram and the degree of polymerization n, we found that if 1 degree of polymerization n is kti-, then knT=kzTn
” - (19) was found to hold, where T is the length of gel fiber per unit gel volume.

kzT=0.0515となることがわかった。この結果
を式(9)尼共に式(14)に適用すると。
It was found that kzT=0.0515. Applying this result to both equation (9) and equation (14).

λ f(y)=Voe が得られる。又1式(15)は %式% となる、kaT=kzTa”である、尚、式(21)は
式(1)において と置いたものである。
We obtain λ f(y)=Voe. Further, the formula (15) becomes the formula %, kaT=kzTa'', where the formula (21) is placed in the formula (1).

さて1本実施例においては、第2図に示す曲面ゲル1を
用いて核酸試料を分析した。式(2o)において、kz
T=0.0515.Vo=17.5cc。
In this example, a nucleic acid sample was analyzed using the curved gel 1 shown in FIG. In formula (2o), kz
T=0.0515. Vo=17.5cc.

a=100.L=50cm、λ=0.2cmとしてf 
(y)の具体的関数型(第2図3)を定め、ステンレス
製の鋳型を用いてゲルを成型した。このゲルを用いて、
前に均一厚ゲルで行なったときと同一の泳動条件で、同
一試料につき核酸を分析した所、均一厚ゲルでは重合度
範囲100〜165位の成分の分離が認められたにすぎ
なかったが、曲面ゲルでは重合度範囲100〜350位
の成分の分離が認められた。本実施例によれば約3.8
倍の分子量範囲に渡って核酸の分析が可能となった。尚
、第1図に本実施例で用いた電界強度Ez(式(2))
の分布状[9を示した。Elはyと共に単調に減少する
。本実施例の如く、Eiが単調に減少することは高分子
量成分の分離能を上昇させるためには必要な条件である
。このためには式(1)においてD<1が必要条件とな
ることはE、のyに関する微分を演算することにより容
易に証明できる。D>1の場合には、任意のり。
a=100. Assuming L=50cm and λ=0.2cm, f
A specific functional form of (y) (Fig. 2, 3) was determined, and a gel was molded using a stainless steel mold. Using this gel,
When nucleic acids were analyzed for the same sample under the same electrophoresis conditions as previously performed using a uniform thickness gel, only components in the polymerization degree range of 100 to 165 were observed to be separated using the uniform thickness gel. In the curved gel, separation of components with a degree of polymerization ranging from 100 to 350 was observed. According to this embodiment, about 3.8
It is now possible to analyze nucleic acids over twice the molecular weight range. In addition, FIG. 1 shows the electric field strength Ez (formula (2)) used in this example.
The distribution pattern [9] was shown. El decreases monotonically with y. As in this example, monotonically decreasing Ei is a necessary condition for increasing the separation ability of high molecular weight components. For this purpose, the fact that D<1 is a necessary condition in equation (1) can be easily proven by calculating the differential of E with respect to y. If D>1, any glue.

y 実施例2 用いる被分離試料はデオキシリボ核酸の重合度が1ずつ
異なった多数成分の混合物(良く知られたM13法に基
づく塩基配列決定用の試料)であり、各成分はラジオア
イソトープ8Zpによって標識されている。まず、予備
実験として塩基配列既知の上記核酸試料を従来の電気泳
動法により分析した。すなわち、ポリアクリルアミド濃
度8%で泳動方向の距離50cm、厚み一定(0,35
mm)のゲル(ゲルは6.33Mの尿素と90mMのト
リス−ホウ酸バッファpH8,3及び1 m Mのエチ
レンディアミン四酢酸を含む)を用いて、上記試料を、
1.2kV の電圧をゲルの両端に掛けて50℃で泳動
した。泳動後ゲルの上にX−線フイルムを乗せ常法によ
りδzPのベータ線を用いてオートラジオグラムを作成
した。オートラジオグラム上に現われた各核酸成分の泳
動距離yと重合度nとの関係を解析した所重合度nのk
をに7とすると、 ! kI、T=ktTn8      − (50)が成立
することが見出され、kzT=0.0515となること
がわかった。又、分離済のゲルをベータ線検出帰で測定
した結果、分離バンドの形は正規分布で表わされ、標準
偏差の2倍として定義した分離バンドの巾は ・・・ (51) となることがわかった。ここに、Dnは重合度nの核酸
の一本鎖分子の拡散係数である。本実験においてはDI
= 7.00 X I 0−6cm”/ S  となっ
た。
y Example 2 The sample to be separated used is a mixture of multiple components with deoxyribonucleic acid polymerization degrees differing by 1 (sample for base sequencing based on the well-known M13 method), and each component is labeled with radioisotope 8Zp. has been done. First, as a preliminary experiment, the above nucleic acid sample whose base sequence was known was analyzed by conventional electrophoresis. That is, the polyacrylamide concentration is 8%, the distance in the migration direction is 50 cm, and the thickness is constant (0.35 cm).
The above samples were analyzed using a gel containing 6.33 M urea and 90 mM Tris-borate buffer pH 8.3 and 1 mM ethylenediaminetetraacetic acid.
A voltage of 1.2 kV was applied to both ends of the gel and the gel was run at 50°C. After electrophoresis, an X-ray film was placed on top of the gel, and an autoradiogram was created using beta rays of δzP in a conventional manner. By analyzing the relationship between the migration distance y of each nucleic acid component appearing on the autoradiogram and the degree of polymerization n, we found that k of the degree of polymerization n
If we set it to 7, then ! It was found that kI,T=ktTn8-(50) holds, and kzT=0.0515. Furthermore, as a result of measuring the separated gel using beta ray detection, the shape of the separated band is expressed by a normal distribution, and the width of the separated band defined as twice the standard deviation is... (51) I understand. Here, Dn is the diffusion coefficient of a single-stranded molecule of a nucleic acid with a degree of polymerization n. In this experiment, DI
= 7.00 X I 0-6cm"/S.

tは泳動時間である。t is the migration time.

式(50)と(51)の結果を式(40)と共に式(4
5)に適用すると ・・・(52) が得られる。ここで、h (n)のnに関する微分、h
’  (n)につき、h’(n)=−λWnとした。
The results of equations (50) and (51) are combined with equation (40) into equation (4).
Applying to 5)...(52) is obtained. Here, the differential of h (n) with respect to n, h
'(n), h'(n)=-λWn.

又、式(36)より RoVokIT が得られる。尚、式(23)は式(1)においてと置い
たものである。
Furthermore, RoVokIT can be obtained from equation (36). Note that equation (23) is placed in equation (1).

さて、本実施例においては、第4図に示す曲面ゲル1を
用いて核酸試料を分析した6式(52)及び式(40)
におイテ、kzT=0.0515゜Vo= 1 、88
cc、λ=2.L=25cm、DI =7、OOXlo
−Bcm”/S、ta=4hrs、a=30としてf 
(y)の具体的関数型(第4図3)を定め、ステンレス
製の鋳型を作ってゲルを作成した。
Now, in this example, six equations (52) and (40) were used to analyze a nucleic acid sample using the curved gel 1 shown in FIG.
Niite, kzT=0.0515°Vo=1,88
cc, λ=2. L=25cm, DI=7, OOXlo
-Bcm”/S, ta=4hrs, a=30, f
A specific functional form of (y) (Fig. 4, 3) was determined, a stainless steel mold was made, and a gel was created.

このゲルを用いて、前記に均一厚ゲルで行なったときと
同一の泳動条件で同一試料につき核酸を分析し、結果を
比較したところ、均一厚ゲル(ゲル長25c+a、4時
間泳動)では重合範囲30〜70位の成分のみが分離2
分析できたのに反し、厚み勾配ゲルでは重合度範囲30
〜200位の成分が分析できた1分析可能な重合度数で
比較すると、均一厚ゲルでは重合度数40に対し、厚み
勾配ゲルでは重合度数170であり4倍以上の核酸の塩
基数につき配列が決定できた。
Using this gel, we analyzed nucleic acids on the same sample under the same electrophoresis conditions as when using the uniform thickness gel above, and compared the results. Only components in positions 30 to 70 are separated 2
However, in the thickness gradient gel, the polymerization degree range was 30.
~200 components were analyzed 1 Comparing the degree of polymerization that can be analyzed, the degree of polymerization in the uniform thickness gel was 40, but the degree of polymerization in the thickness gradient gel was 170, and the sequence was determined for more than 4 times the number of nucleic acid bases. did it.

尚、式(42)の右辺をn(又はy)で微分すればわか
るようにf (y)はn= (2ktT)”の所で極大
を有する。 kxT =0.0515  に対してはn
=30である。nが30以下の成分を分析する場合は注
意を要する。
As can be seen by differentiating the right side of equation (42) with respect to n (or y), f (y) has a maximum at n = (2ktT). For kxT = 0.0515, n
=30. Care must be taken when analyzing components where n is 30 or less.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、核酸、蛋白質などの生体高分子を、従
来よりも高分子量の成分について高い分離能で分離2分
析できるので、生物学、医学、バイオテクノロジーなど
の広い範囲の研究、生産に有効である。特に、核酸の塩
基配列の決定の場合、分析試料は分子量差約340で多
数の成分が混合しているので1本発明により、1回の泳
動分離で決定できる塩基数(分離できる塩基数)を増大
させれば、配列決定の効果は増大する6又、配列決定に
当っては決定誤差が大きい問題となる。本発明によれば
塩基(ヌクレオチド)が泳動する間隔が等しいので泳動
位置が正確に予測でき、泳動パターンの読取り、解析の
確度が上昇する効果もある。
According to the present invention, biopolymers such as nucleic acids and proteins can be separated and analyzed with higher resolution for higher molecular weight components than conventional techniques, making it suitable for a wide range of research and production in biology, medicine, biotechnology, etc. It is valid. In particular, in the case of determining the base sequence of a nucleic acid, since the analysis sample is a mixture of many components with a molecular weight difference of about 340, the present invention allows us to calculate the number of bases that can be determined in one electrophoretic separation (the number of bases that can be separated). If it increases, the effect of sequencing will increase.6 Also, in sequencing, determination errors become a problem. According to the present invention, since the intervals at which the bases (nucleotides) migrate are equal, the migration positions can be accurately predicted, and the accuracy of reading and analyzing migration patterns is also increased.

つぎに本願発明の第2の発明について述べる。Next, the second invention of the present invention will be described.

本発明によれば、核酸、蛋白質などの生体高分子を従来
よりも高分子量の成分について高い分離能で分離9分析
できるので、生物、医学、バイオテクノロジーなどの広
い範囲の研究、生産に有効である。特に核酸の塩基配列
の決定の場合1分析試料は分子量差約340で多数の成
分が混合しているので1本発明により、1回の泳動分離
で決定できる塩基数(分離できる塩基数)を増大させれ
ば、配列決定の効率は増大する。
According to the present invention, biopolymers such as nucleic acids and proteins can be separated and analyzed with higher resolution9 for high-molecular-weight components than before, making it effective for a wide range of research and production in biology, medicine, biotechnology, etc. be. Particularly in the case of determining the base sequence of nucleic acids, an analysis sample is a mixture of many components with a molecular weight difference of about 340, so the present invention increases the number of bases that can be determined in one electrophoretic separation (the number of bases that can be separated). This increases the efficiency of sequencing.

又、本発明によれば、従来よりも小さいゲル(泳動距離
の短いゲル)を用いても従来と同等以上の高分子成分を
分離できるので装置全体を小型化できる。
Further, according to the present invention, even if a smaller gel (gel with a shorter migration distance) than before is used, it is possible to separate the same or higher amount of polymer components than before, so the entire apparatus can be miniaturized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電界強度の分布図、第2図
は上面が曲面、下面が平面であるゲルの断面図、第3図
は断面の上、下縁が曲線である円錐(回転体)状ゲルの
断面図、第4図は上面が曲面、下面が平面のゲルの断面
図、第5図は断面の上。 下が曲線である円錐(回転体)状ゲルの断面図である。 1・・・曲面ゲル、2・・・曲面ゲルの底面(泳動軸)
、3・・・曲面ゲルの上面、4・・・ゲル原軸、5・・
・円錐ゲル、6・・・円錐ゲルの中心線(泳動軸)、7
・・・円錐ゲルの側曲面、8・・・ゲル原軸、9・・・
泳動距離の関数としての電界強度。
Fig. 1 is a distribution diagram of electric field strength in an embodiment of the present invention, Fig. 2 is a cross-sectional view of a gel whose upper surface is curved and whose lower surface is flat, and Fig. 3 is a cross-sectional view of a conical gel whose upper and lower edges are curved. 4 is a sectional view of a gel with a curved top surface and a flat bottom surface; FIG. FIG. 2 is a cross-sectional view of a conical (rotating body) shaped gel with a curved line at the bottom. 1... Curved gel, 2... Bottom surface of curved gel (migration axis)
, 3...Top surface of curved gel, 4...Gel axis, 5...
・Conical gel, 6... Center line of conical gel (migration axis), 7
...Side curved surface of conical gel, 8...Gel axis, 9...
Electric field strength as a function of migration distance.

Claims (1)

【特許請求の範囲】 1、ゲル状の物質を分離用媒体とする電気泳動法におい
て、泳動方向に対して次式(1)で示されるような関数
型に従つて単調に減少する電界強度を付与することを特
徴とする電気泳動法。 電界強度=A(B−Cy)^1^−^De^E^(^B
^−^C^y^)^^D・・・(1) (ここに、yは泳動方向の距離、A、B、C、D、Eは
正の実定数を示す。) 2、ゲル状の物質を分離用媒体とし、一定の分子量の整
数、n、倍の分子量を有する成分の混合物を分離する電
気泳動法において、泳動距離、y、の関数として次式(
31)で示される電界強度をゲルに付与することを特徴
とする電気泳動法。 電界強度=An^Be^C^n^F・・・(31) (但し、y=L−λΣ^n_i_=_a_+_1Wi ここに、A、C、F、λは正の実数、Bは負の実数、L
はゲルの全長であると共に重合度aの成分の泳動距離、
Wnはゲル端より数えn−a番目の分離成分の分離バン
ドの巾を示す。)
[Claims] 1. In an electrophoresis method using a gel-like substance as a separation medium, an electric field strength that monotonically decreases in accordance with a function type as shown in the following equation (1) with respect to the migration direction. An electrophoresis method characterized by imparting. Electric field strength = A(B-Cy)^1^-^De^E^(^B
^-^C^y^)^^D... (1) (Here, y is the distance in the migration direction, and A, B, C, D, and E are positive real constants.) 2. Gel-like In an electrophoresis method that uses a substance as a separation medium to separate a mixture of components having molecular weights that are an integer number, n, times a certain molecular weight, the following equation (
31) An electrophoresis method characterized by applying an electric field strength shown in 31) to a gel. Electric field strength = An^Be^C^n^F...(31) (However, y=L−λΣ^n_i_=_a_+_1Wi Here, A, C, F, and λ are positive real numbers, and B is a negative real number. , L
is the total length of the gel and the migration distance of the component with the degree of polymerization a,
Wn indicates the width of the separated band of the na-th separated component counted from the gel edge. )
JP61269638A 1986-11-14 1986-11-14 Electrophoresis method Pending JPS63124953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269638A JPS63124953A (en) 1986-11-14 1986-11-14 Electrophoresis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269638A JPS63124953A (en) 1986-11-14 1986-11-14 Electrophoresis method

Publications (1)

Publication Number Publication Date
JPS63124953A true JPS63124953A (en) 1988-05-28

Family

ID=17475134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269638A Pending JPS63124953A (en) 1986-11-14 1986-11-14 Electrophoresis method

Country Status (1)

Country Link
JP (1) JPS63124953A (en)

Similar Documents

Publication Publication Date Title
O'Farrell High resolution two-dimensional electrophoresis of proteins.
Yoshino et al. Temperature sweep gel electrophoresis: a simple method to detect point mutations.
Westermeier Electrophoresis in practice: a guide to methods and applications of DNA and protein separations
Goldenberg et al. Gel electrophoresis in studies of protein conformation and folding
O'Farrell et al. High resolution two-dimensional electrophoresis of basic as well as acidic proteins
US6488832B2 (en) Array based electrophoretic system for the analysis of multiple biological samples
Paulus et al. Analysis of oligonucleotides by capillary gel electrophoresis
US7914656B2 (en) Matrixes, arrays, systems and methods
US7150813B2 (en) Isoelectric focusing (IEF) of proteins with sequential and oppositely directed traveling waves in gel electrophoresis
US20010023825A1 (en) Methods and apparatus for nonlinear mobility electrophoresis separation
US20080314751A1 (en) Electrophoretic Separation of Analytes by Molecular Mass
Haas et al. Horizontal polyacrylamide gel electrophoresis for the separation of DNA fragments
US5324412A (en) Electrophoresis plates with grooves
Clos et al. Separations of anionic and cationic synthetic polyelectrolytes by capillary gel electrophoresis
US20080272002A1 (en) System and Method for Proteomics
Landers Capillary electrophoresis: Pioneering new approaches for biomolecular analysis
Zhang et al. Separation of myoglobin molecular mass markers using non-gel sieving capillary electrophoresis
JPS63124953A (en) Electrophoresis method
Neuhoff Microelectrophoresis and auxilary micromethods
Maurer et al. Polyacrylamide gel electrophoresis in clinical chemistry: Problems of standardization and performance
Chrambach et al. Experimental validation of the predicted properties of a multiphasic buffer system applied to polyacrylamide gel electrophoresis
Végvári et al. Stable homogeneous gel for molecular-sieving of DNA fragments in capillary electrophoresis
Pinder et al. Gel electrophoretic analysis of poly (riboadenylic acid)
Garfin Electrophoretic methods
Mikšík Capillary gel and sieving electrophoresis