JPS63124876A - Electronic impact type ion thruster - Google Patents

Electronic impact type ion thruster

Info

Publication number
JPS63124876A
JPS63124876A JP61269548A JP26954886A JPS63124876A JP S63124876 A JPS63124876 A JP S63124876A JP 61269548 A JP61269548 A JP 61269548A JP 26954886 A JP26954886 A JP 26954886A JP S63124876 A JPS63124876 A JP S63124876A
Authority
JP
Japan
Prior art keywords
discharge vessel
thruster
impact type
ion thruster
type ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61269548A
Other languages
Japanese (ja)
Other versions
JP2523544B2 (en
Inventor
Hideki Yoshida
英樹 吉田
Toru Sugawara
亨 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61269548A priority Critical patent/JP2523544B2/en
Publication of JPS63124876A publication Critical patent/JPS63124876A/en
Application granted granted Critical
Publication of JP2523544B2 publication Critical patent/JP2523544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0031Thermal management, heating or cooling parts of the thruster

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To prevent demagnetization of a magnet, by applying a coating, which enhances a rate of heat radiation, to one part or the whole part outside a discharge vessel of an ion thruster. CONSTITUTION:Xe gas is introduced into a discharge vessel 9 passing through in a hollow cathode 1 from a gas introducing system, and an electron, accelerated by an anode 2, collides against the Xe gas, generating ionizing plasma. A surface treatment 11, for instance, blacking surface treatment, which enhances a rate of heat radiation, is applied to the outside of the discharge vessel 9. The discharge vessel 9 enables its temperature to be maintained by transmitting discharge power as heat by heat radiation from the discharge vessel 9 to a thruster case 10, and demagnetization of a magnet can be prevented.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、人工衛星の軌道制御を行なう電子面!!型
イオンスラスタに関する。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) This invention is an electronic device for controlling the orbit of an artificial satellite! ! Regarding type ion thrusters.

(従来の技術) 従来の電子衝撃型イオンスラスタの構成を第4図に示す
@ガス導入系からホローカソード1内を通って放電容器
8内に導入されたXeガスに、ホローカソード1から放
出後アノード2によって加速された電子が衝突して電離
プラズマを放i室内に生成し、Xeイオンが加速電極(
3枚)4によって運動エネルギを与えられ、中和器6か
ら放出される電子によって中和化された後放出されてイ
オンスラスタの推力となる。電離プラズマの放電容器8
壁面からの損失を小さくするために、磁石3でカスブ磁
場を構成して磁場閉じ込めを行っている。放tfi力を
高めて、プラズマ密度を上げ、推力を大きくして行くと
、放電容器8の温度が上昇する。イオンスラスタの冷却
方法は放電容器8から熱をスラスタ−ケース5に伝え、
輻射で宇宙空間に逃がすものが大部分であるから、壁面
温度は数百oCに達する。磁石3の温度は放電容器8の
温度と同じであるから、やはり数百OCになる。ところ
が、磁石3の数百0Cでの減磁特性は極めて悪く、寿命
10年程度を必要とするイオンスラスタにとっては大き
な問題である。
(Prior Art) The configuration of a conventional electron impact type ion thruster is shown in FIG. 4. Electrons accelerated by the anode 2 collide to generate ionized plasma in the irradiation chamber, and Xe ions are transferred to the accelerating electrode (
(3) The ion thruster is given kinetic energy by the ion thruster 4, neutralized by the electrons emitted from the neutralizer 6, and then emitted to become the thrust of the ion thruster. Ionized plasma discharge vessel 8
In order to reduce loss from the wall surface, the magnet 3 forms a cusp magnetic field to perform magnetic field confinement. When the radiation TFI force is increased, the plasma density is increased, and the thrust is increased, the temperature of the discharge vessel 8 increases. The cooling method of the ion thruster is to transfer heat from the discharge vessel 8 to the thruster case 5,
Since most of the radiation escapes into space, the wall temperature reaches several hundred oC. Since the temperature of the magnet 3 is the same as the temperature of the discharge vessel 8, it is also several hundred OC. However, the demagnetization characteristics of the magnet 3 at several hundred degrees centigrade are extremely poor, which is a major problem for ion thrusters that require a lifespan of about 10 years.

(発明が解決しようとする問題点) 本発明は、放電容器の温度が数百0Cに達して磁石が減
磁し、プラズマの閉じ込めが悪くなることに鑑みてなさ
れたもので、放電容器の温度を磁石の減磁しない200
’C以下に下げることを目的とする。
(Problems to be Solved by the Invention) The present invention was made in view of the fact that the temperature of the discharge vessel reaches several hundred degrees centigrade, the magnet demagnetizes, and the confinement of the plasma deteriorates. Do not demagnetize the magnet 200
The aim is to lower it to below C.

〔発明の構成〕 (問題点を解決するための手段) 本発明は、放電容器外側とスラスタ−ケース内側の一部
又は全部に熱の輻射率を高める表面処理、あるいはコー
ティングをほどこしたことを特徴とする電子衝撃型イオ
ンスラスタである。
[Structure of the Invention] (Means for Solving the Problems) The present invention is characterized in that a part or all of the outside of the discharge vessel and the inside of the thruster case are subjected to surface treatment or coating to increase the heat emissivity. This is an electron impact type ion thruster.

(作用) 本発明によれば、放電容器からスラスタ−ケースへの熱
輻射による熱の移動が可能になり、放電容器温度つまり
磁石温度を200’C以下に出来、磁石の減磁の問題は
なくなる。
(Function) According to the present invention, it becomes possible to transfer heat by thermal radiation from the discharge vessel to the thruster case, and the discharge vessel temperature, that is, the magnet temperature, can be kept below 200'C, and the problem of magnet demagnetization is eliminated. .

(実施例) 以下本発明の実施例を詳細に説明する。なお従来装置と
その構成が同一の部分については同一符号を附けてその
説明を省略する。第2図に示すように、放電容器8の外
側に熱の輻射率を高める表面処理11、例えば、黒化表
面処理(輻射率0.8)をほどこす。また、第3図に示
すように、スラスタ−ケース5の内側にも同じ表面処理
11をほどこす。上記表面処理をほどこした放電容器9
とスラスタ−ケース10で、イオンスラスタを第1図の
ように構成すると、放%電力は熱として一部が熱伝導で
、残りが熱輻射で放電容器9からスラスタ−ケース10
に伝えられる。スラスタ−ケース10に伝えられた熱は
一部が熱伝導で人工衛星本体に、残り大部分が熱輻射で
宇宙空間に放射される。放電容器9のサポート等は軽量
化のために肉厚の薄い、セラミックスやステンレス材で
出来ているため、熱伝導で放電容器9からスラスタ−ケ
ース10に移動する熱は制限される。このために熱伝導
のみに依存した従来の方式では放電容器9の温度が20
0°C以下にならなかった。しかし、本発明のように熱
の移動を熱伝導と熱輻射の2本立てにすると、重量の大
幅な増加なしに放電容器9の温度を2008C以下に出
来ることになる。放電容器9の温度が2000C以下で
あるから、放電容器9に固定されている磁石3の温度も
200’C以下になる。磁石3として、Sm−Co磁石
を使用しているが、200°C以下の減磁特性は良好で
ある0 その他の実施例として、上記熱の輻射率を高める表面処
理11を熱の輻射率を高める材料のコーティングに変え
てもよい。要は、放電容器9とスラスタ−ケース10の
間の熱輻射を大きくすることである。熱の輻射率を高め
る材料によるコーティング11の例としては、ガラス物
質(輻射率0.9)やテフロン(w1射率0.8)など
がある。
(Example) Examples of the present invention will be described in detail below. Note that the same reference numerals are given to the parts having the same configuration as those of the conventional device, and the explanation thereof will be omitted. As shown in FIG. 2, a surface treatment 11 for increasing the heat emissivity, for example, a blackening surface treatment (emissivity 0.8) is applied to the outside of the discharge vessel 8. Further, as shown in FIG. 3, the same surface treatment 11 is applied to the inside of the thruster case 5. Discharge vessel 9 subjected to the above surface treatment
When the ion thruster is configured as shown in FIG. 1 with a thruster case 10 and a thruster case 10, a portion of the emitted power is heat conduction, and the rest is thermal radiation from the discharge vessel 9 to the thruster case 10.
can be conveyed to. A portion of the heat transferred to the thruster case 10 is radiated to the satellite body by thermal conduction, and the remaining part is radiated into space by thermal radiation. Since the supports of the discharge vessel 9 are made of thin ceramic or stainless steel materials to reduce weight, heat transferred from the discharge vessel 9 to the thruster case 10 by thermal conduction is limited. For this reason, in the conventional system that relies only on heat conduction, the temperature of the discharge vessel 9 is 20
The temperature did not drop below 0°C. However, if heat transfer is carried out in two ways, heat conduction and heat radiation, as in the present invention, the temperature of the discharge vessel 9 can be lowered to 2008C or less without a significant increase in weight. Since the temperature of the discharge vessel 9 is below 2000C, the temperature of the magnet 3 fixed to the discharge vessel 9 is also below 200'C. As the magnet 3, an Sm-Co magnet is used, and its demagnetization characteristics at temperatures below 200°C are good.0 As another example, the above-mentioned surface treatment 11 that increases the heat emissivity may be applied to increase the heat emissivity. It may be replaced with a coating of enhancing material. The point is to increase thermal radiation between the discharge vessel 9 and the thruster case 10. Examples of the coating 11 made of a material that increases heat emissivity include glass material (emissivity 0.9) and Teflon (w1 emissivity 0.8).

導入ガスとしてXeを用いているが、Xeガスに限定す
るものではない。加速電極4として3枚のものを使用し
ているが、3枚に限定するものでもない。磁石4は放電
容器9の内側にあってもよい。
Although Xe is used as the introduced gas, it is not limited to Xe gas. Although three accelerating electrodes 4 are used, the number is not limited to three. The magnet 4 may be inside the discharge vessel 9.

アノード2は別に設けなくて放電容器9をアノード電位
にしてもよい。
The anode 2 may not be provided separately, and the discharge vessel 9 may be set at an anode potential.

本発明は、電子衝撃型イオンスラスタを用いて説明した
が、電子衝撃型の放電室を使用している装置であればよ
く、例えば半導体製造用の電子衝撃型のイオン源につい
ても全く同じように適用できる。
Although the present invention has been explained using an electron impact type ion thruster, any device that uses an electron impact type discharge chamber may be used. For example, an electron impact type ion source for semiconductor manufacturing may be used in the same manner. Applicable.

〔発明の効果〕〔Effect of the invention〕

大発明によれば、大幅な重量増加なしに、プラズマのカ
スプ磁場閉じ込めが可納になるため、効率の良い大型の
イオンスラスタが製作出来ることになる。
According to the great invention, the cusp magnetic field confinement of the plasma can be accommodated without a significant increase in weight, making it possible to manufacture a large and efficient ion thruster.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概要図、第2図は本発明
の放電、容器の断面図、第3図は本発明のスラスタ−・
ケースの断面図、第4図は従来の電子衝撃型イオンスラ
スタの概要図である。 1・・・ホローカソード、  2゛°°ア/−ド131
8.磁石、      4・・・加速は極、5パ°スラ
スタ−ケース、6・・・中和器、7・・・バッフル、 
    8・・・放電容器、9・・・外側の熱の輻射率
を高めた放フΣ容器、10・・・内側の熱の輻射率を高
めたスラスタ−ケース、11・・・熱の輻射率を高める
表面処理又はコーティング。 代理人 弁理士 則 近 憲 佑 同  上    竹  花  喜久男 ′乙 第1図 第2図 第3図
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a cross-sectional view of the discharge vessel of the present invention, and FIG. 3 is a thruster of the present invention.
The sectional view of the case, FIG. 4, is a schematic diagram of a conventional electron impact type ion thruster. 1...Hollow cathode, 2゛°°A/-de 131
8. Magnet, 4... Acceleration is pole, 5 path thruster case, 6... Neutralizer, 7... Baffle,
8... Discharge vessel, 9... Radiation Σ vessel with increased heat emissivity on the outside, 10... Thruster case with increased heat emissivity on the inside, 11... Heat emissivity surface treatment or coating that enhances Agent: Patent Attorney Noriyuki Ken Yudo Takehana Kikuo Figure 1 Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)ガス導入系と放電容器とホローカソードと加速電
極と中和器とスラスタ−ケースと電源等で構成されるイ
オンスラスタに於いて、放電容器外側の一部又は全部に
熱の輻射率を高める表面処理、あるいはコーティングを
ほどこしたことを特徴とする電子衝撃型イオンスラスタ
(1) In an ion thruster consisting of a gas introduction system, a discharge vessel, a hollow cathode, an accelerating electrode, a neutralizer, a thruster case, a power supply, etc., heat emissivity is applied to part or all of the outside of the discharge vessel. An electron impact type ion thruster characterized by a surface treatment or coating that enhances the quality of the product.
(2)スラスタ−ケース内側の一部又は全部に熱の輻射
率を高める表面処理、あるいはコーティングをほどこし
たことを特徴とする特許請求の範囲第1項記載の電子衝
撃型イオンスラスタ。
(2) The electron impact type ion thruster according to claim 1, wherein a part or all of the inside of the thruster case is subjected to surface treatment or coating to increase heat radiation rate.
(3)金属表面を黒化することにより、上記熱の輻射率
を高める表面処理を実現したことを特徴とする特許請求
の範囲第1項及び第2項記載の電子衝撃型イオンスラス
タ。
(3) The electron impact type ion thruster according to claims 1 and 2, characterized in that a surface treatment that increases the emissivity of the heat is achieved by blackening the metal surface.
(4)金属表面にガラス物質又はテフロンをコーティン
グすることにより、上記熱の輻射率を高めるコーティン
グを実現したことを特徴とする特許請求の範囲第1項及
び第2項記載の電子衝撃型イオンスラスタ。
(4) The electron impact type ion thruster according to claims 1 and 2, characterized in that the metal surface is coated with a glass substance or Teflon to realize a coating that increases the heat emissivity. .
JP61269548A 1986-11-14 1986-11-14 Electron impact type ion thruster Expired - Lifetime JP2523544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269548A JP2523544B2 (en) 1986-11-14 1986-11-14 Electron impact type ion thruster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269548A JP2523544B2 (en) 1986-11-14 1986-11-14 Electron impact type ion thruster

Publications (2)

Publication Number Publication Date
JPS63124876A true JPS63124876A (en) 1988-05-28
JP2523544B2 JP2523544B2 (en) 1996-08-14

Family

ID=17473911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269548A Expired - Lifetime JP2523544B2 (en) 1986-11-14 1986-11-14 Electron impact type ion thruster

Country Status (1)

Country Link
JP (1) JP2523544B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280687A (en) * 1988-05-06 1989-11-10 Natl Aerospace Lab Cups type ion engine
JP2007120424A (en) * 2005-10-28 2007-05-17 Mitsubishi Electric Corp Hall thruster and aerospace vehicle
CN103953518A (en) * 2014-05-13 2014-07-30 哈尔滨工业大学 Anode of multi-stage cusped magnetic field plasma thruster
CN104583589A (en) * 2012-06-21 2015-04-29 萨里大学 Ion accelerators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280687A (en) * 1988-05-06 1989-11-10 Natl Aerospace Lab Cups type ion engine
JP2007120424A (en) * 2005-10-28 2007-05-17 Mitsubishi Electric Corp Hall thruster and aerospace vehicle
CN104583589A (en) * 2012-06-21 2015-04-29 萨里大学 Ion accelerators
CN103953518A (en) * 2014-05-13 2014-07-30 哈尔滨工业大学 Anode of multi-stage cusped magnetic field plasma thruster

Also Published As

Publication number Publication date
JP2523544B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US4714860A (en) Ion beam generating apparatus
US20020014845A1 (en) Cylindrical geometry hall thruster
US4800281A (en) Compact penning-discharge plasma source
US5218179A (en) Plasma source arrangement for ion implantation
JPH058547B2 (en)
Ishikawa Negative‐ion sources for modification of materials
JP2509488B2 (en) Fast atom beam source
JPS63124876A (en) Electronic impact type ion thruster
JPH04277500A (en) Source of high speed atomic ray
US3327090A (en) Dichromatic electron beam device
JP3976425B2 (en) Ion engine
JPS6386865A (en) Thin film forming device
JPH09223594A (en) Beam source and micro-working method
JPS61208799A (en) Fast atomic beam source unit
JP2022029437A (en) Non-contact DC ion beam source with hollow cylindrical cathode and deformation collimator
JP3318566B2 (en) Ion engine
JPS62174576A (en) Electron impact type ion thruster
JPH043056B2 (en)
JPS63124877A (en) Electronic impact type on thruster
USH1868H (en) Method of and apparatus for controlling plasma potential and eliminating unipolar arcs in plasma chambers
Winter Production of multiply charged ions for experiments in atomic physics
JPH01201467A (en) Ion source
RU2024104C1 (en) Method of heat removal from surface
JPS62174577A (en) Electron impact type ion thruster
JPH042031A (en) Ion source device