JPS63124252A - Optical device for optical information recording medium - Google Patents

Optical device for optical information recording medium

Info

Publication number
JPS63124252A
JPS63124252A JP61269905A JP26990586A JPS63124252A JP S63124252 A JPS63124252 A JP S63124252A JP 61269905 A JP61269905 A JP 61269905A JP 26990586 A JP26990586 A JP 26990586A JP S63124252 A JPS63124252 A JP S63124252A
Authority
JP
Japan
Prior art keywords
recording medium
information recording
optical
refractive index
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61269905A
Other languages
Japanese (ja)
Inventor
Tetsuo Ikegaki
哲郎 生垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61269905A priority Critical patent/JPS63124252A/en
Priority to US07/119,471 priority patent/US4876133A/en
Publication of JPS63124252A publication Critical patent/JPS63124252A/en
Priority to US08/267,550 priority patent/USRE37719E1/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To reduce the noise level of a detection signal due to the influence of retardation of a transparent substrate by adjusting within + or -5 deg. the inflection surface of an information read light with a position parallel vertical or at 45 deg. to the main refractive index axis of an optical information recording medium as a center. CONSTITUTION:A relation between an angle between the deflection surface of the information read light P-P and the main refractive index axis of the optical information recording medium m-m, and the size of a noise component included in a read signal can be searched. With adjusting within + or -5 deg., the deflection surface of the information read light P-P with the position parallel, vertical or at 45 deg. to the main refractive index axis of the optical information recording medium m-m as the center, noise can be adjusted to below permissible level. Thus, the influence of retardation of the transparent substrate 4a is optically removed, and information can be read with a high S/N from the optical information recording medium using the transparent substrate 4a with high retardation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1例えば光磁気記fi媒体駆動装置のように、
直線偏光をffl報読み出し光とする光情報記録媒体用
光学装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a magneto-optical fi medium drive device, for example,
The present invention relates to an optical device for an optical information recording medium that uses linearly polarized light as ffl information reading light.

〔従来技術〕[Prior art]

近年、磁気記録媒体と同様に、情報の消去、再書き込み
を繰り返し行うことが可能な光情報記録媒体として、光
磁気記録媒体が注目されている。
In recent years, magneto-optical recording media have attracted attention as optical information recording media on which information can be repeatedly erased and rewritten, similar to magnetic recording media.

この光磁気記録媒体は、透明基板の片面に磁性膜を形成
したものであって、前記透明基板の前記磁性膜形成面と
対向する面より直線偏光を入射して前記磁性膜上に合焦
し1反転磁区が形成されている部分とそれが形成されて
いない部分のカー回転角の変化(偏光面の回転方向)を
検出することによって情報を読み出すようになっている
This magneto-optical recording medium has a magnetic film formed on one side of a transparent substrate, and linearly polarized light is incident on the surface of the transparent substrate opposite to the surface on which the magnetic film is formed and is focused on the magnetic film. Information is read by detecting a change in the Kerr rotation angle (rotation direction of the polarization plane) between a portion where a 1-inversion magnetic domain is formed and a portion where it is not formed.

前記透明基板が完全な光学的等方体であってしかも複屈
折を生じていない場合には、情報読み出し光である直線
偏光の偏光面をいかなる方向に向けたとしても、情報の
読み出しに特別な問題を生じない、しかし、前記透明基
板が光学的異方体であったり複屈折を生じている場合に
は、前記直線偏光の偏光面が特定の方向に設定されてい
る場合を除き、前記透明基板に入射された直線偏光が当
該透明基板を透過中に楕円偏光になり、リターデーショ
ン(位相遅九)の影響を受けてディテクタによって読み
出される検出信号のSN比が劣化する。
If the transparent substrate is completely optically isotropic and does not exhibit birefringence, no matter which direction the polarization plane of the linearly polarized light that is the information readout light is directed, there will be no special effect for reading out the information. However, if the transparent substrate is optically anisotropic or has birefringence, the transparent Linearly polarized light incident on the substrate becomes elliptically polarized light while passing through the transparent substrate, and the S/N ratio of the detection signal read out by the detector deteriorates due to the influence of retardation (phase delay 9).

かように、直線偏光を情報読み出し光とする光磁気記録
媒体においては、検出信号のSN比に与える透明基板の
りタープ−ジョンの影響が特に大きいため、リターデー
ションの影響を減少または除去することが光磁気記録媒
体を実用化する上で最も重要な技術的課題の1つになっ
ている。
As described above, in a magneto-optical recording medium that uses linearly polarized light as information readout light, the effect of the transparent substrate thickness on the S/N ratio of the detection signal is particularly large, so it is difficult to reduce or eliminate the effect of retardation. This is one of the most important technical issues in putting magneto-optical recording media into practical use.

従来は、透明基板を、例えばガラスなどのセラミックス
やエポキシ系樹脂などの熱硬化性樹脂等。
Conventionally, transparent substrates have been made of ceramics such as glass, thermosetting resins such as epoxy resins, etc.

リターデーションが極めて小さい物質を選択使用するこ
とによってリターデーションの影響を減少する方向で研
究がなされている。
Research is being conducted in the direction of reducing the effects of retardation by selectively using materials with extremely low retardation.

【従来技術の問題点〕[Problems with conventional technology]

然るに、ガラスなどのセラミックスには、■割れや欠け
を生じ易く製造時や使用時それに搬送時の取扱いが難し
い、■トラッキング信号に対応する案内トラックやアド
レス信号に対応するプリピット等の信号パターンを転写
する際、所112P法(photo  poly+*e
rization)を適用しなくてはならず、生産性が
悪いという問題がある。また、エポキシ系樹脂などの熱
硬化性樹脂には、注型法(所定形状の金型に流動状態に
ある樹脂を注入して加熱硬化する方法)によらなくては
成形することができないため、射出成形法を適用可能な
熱可塑性樹脂に比べて著しく生産性が悪いという問題が
ある。
However, ceramics such as glass are difficult to handle during manufacturing, use, and transportation because they are prone to cracking and chipping, and they cannot be used to transfer signal patterns such as guide tracks that correspond to tracking signals or pre-pits that correspond to address signals. When doing so, use the 112P method (photo poly+*e
Therefore, there is a problem that productivity is poor. In addition, thermosetting resins such as epoxy resins cannot be molded without using the casting method (a method in which resin in a fluid state is injected into a mold of a predetermined shape and cured by heating). There is a problem in that productivity is significantly lower than that of thermoplastic resins to which injection molding can be applied.

加えて、いかにリターデーションの小さい材料を用いた
としても、リターデーションが零の透明物質は事実上あ
りえないので、リターデーションの小さい透明基板材料
を選択使用しようとする従来の技術的思想には、その物
質のりタープ−ジョンの大きさに応じたSN比の劣化は
免れることができないという本質的欠点がある。
In addition, no matter how low retardation material is used, it is virtually impossible to create a transparent material with zero retardation. The essential drawback is that the signal-to-noise ratio inevitably deteriorates depending on the size of the material turbulence.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前述した従来技術の問題点を解消するために
なされたものであって、透明基板のりタープ−ジョンの
影響を光学的に除去し、高リターデーションの透明基板
を用いた光情報記録媒体からも高SN比で情報を読み出
すことのできる光情報記録媒体用光学装置を提供するこ
とを目的とする。
The present invention has been made in order to solve the problems of the prior art described above, and is capable of optically removing the influence of adhesive tarpsion on a transparent substrate and recording optical information using a transparent substrate with high retardation. It is an object of the present invention to provide an optical device for an optical information recording medium that can read information from the medium with a high signal-to-noise ratio.

かかる目的を達成するため、本発明の光情報記録媒体用
光学装置は、直線偏光を情報読み出し光とする光情報記
録媒体用光学装置において、情報読み出し光の偏光面を
、光情報記録媒体の主屈折率軸と平行、または垂直1着
しくは45度となる位置を中心として±5度以内に調整
したものである。
In order to achieve this object, the optical device for an optical information recording medium of the present invention is an optical device for an optical information recording medium that uses linearly polarized light as information readout light, in which the polarization plane of the information readout light is set to It is adjusted within ±5 degrees with respect to a position parallel to or perpendicular to the refractive index axis or 45 degrees.

〔作用〕[Effect]

本願発明者の研究によると、情報読み出し光の偏光面と
光情報記録媒体の主屈折率軸とのなす角度との間には密
接な関係があり、前記情報読み出し光の偏光面を、前記
光情報記録媒体の主屈折率軸と平行、または垂直、若し
くは45度になるように調整すると、透明基板のりター
プ−ジョンの大小にかかわらず、読み出し信号に含まれ
るノイズ成分を零にすることができる。
According to the research of the inventor of the present application, there is a close relationship between the polarization plane of the information readout light and the angle formed by the principal refractive index axis of the optical information recording medium, and the polarization plane of the information readout light is By adjusting it so that it is parallel to, perpendicular to, or 45 degrees to the principal refractive index axis of the information recording medium, the noise component contained in the readout signal can be reduced to zero regardless of the size of the transparent substrate tarpsion. .

また、情報読み出し光の偏光面と光情報記@媒体の主屈
折率軸とがなす角度と読み出し信号に含まれるノイズ成
分の大きさとの関係を求めることができるので、前記情
報読み出し光の偏光面を光情報記録媒体の主屈折率軸と
平行、または垂直。
In addition, since it is possible to determine the relationship between the angle between the polarization plane of the information readout light and the principal refractive index axis of the optical information recording medium and the magnitude of the noise component included in the readout signal, the polarization plane of the information readout light can be determined. parallel or perpendicular to the principal refractive index axis of the optical information recording medium.

若しくは45度となる位置を中心として±5度以内にm
uすることによってノイズの大きさを許容レベル以下に
調整することができる。
Or m within ±5 degrees around the 45 degree position.
By adjusting the noise level, the noise level can be adjusted to below an acceptable level.

〔実施例〕〔Example〕

第1p!!lに本発明の光情報記録媒体用光学装置の光
学回路図を示す、この図に示すように、本発明の光情報
記録媒体用光学装置の光学回路は、主として、レーザ1
と、ハーフプリズム2と、集光レンズ3と、光情報記録
媒体4とから成る入射光路5と、前記光情報記@媒体4
と、焦光レンズ3と、ハーフプリズム2と、偏光ビーム
スプリッタ6と。
1st page! ! 1 shows an optical circuit diagram of the optical device for optical information recording media of the present invention. As shown in this figure, the optical circuit of the optical device for optical information recording media of the present invention mainly consists of a laser 1
, an incident optical path 5 consisting of a half prism 2, a condensing lens 3, and an optical information recording medium 4, and the optical information recording medium 4.
, a focusing lens 3 , a half prism 2 , and a polarizing beam splitter 6 .

ディテクタ7.7aとから成る反射光路8とから構成さ
れている。
7.7a, and a reflection optical path 8 consisting of a detector 7.7a.

前記レーザ1としては、半導体レーザまたは直線偏光装
置が付設されたレーザが用いられ、前記入射光路5を介
して前記光情報記録媒体4に直線偏光を照射するように
なっている。
As the laser 1, a semiconductor laser or a laser equipped with a linear polarizer is used, and the optical information recording medium 4 is irradiated with linearly polarized light through the incident optical path 5.

一方、前記光情報記録媒体4は、透明基板4aの片面に
記録I1g(磁性膜)4bを形成して成り。
On the other hand, the optical information recording medium 4 is formed by forming a recording I1g (magnetic film) 4b on one side of a transparent substrate 4a.

前記透明基板4aが前記集光レンズ3と対向し、前記記
@M4bが前記集光レンズ3の背面側になるようにして
入射光路S上に配置される。前記透明基板4aとしては
、ガラスやエポキシ系樹脂などリターデーションが極め
て小さい物質のほか、例えばポリカーボネート系樹脂や
アクリル系樹脂層、それにメタクリレート系樹脂など、
リターデーションが大きい熱可塑性#I脂を射出成形し
たものを用いることもできる。
The transparent substrate 4a is arranged on the incident optical path S so as to face the condensing lens 3, and the @M4b is on the back side of the condensing lens 3. The transparent substrate 4a may be made of materials with extremely low retardation such as glass or epoxy resin, as well as polycarbonate resin, acrylic resin layer, methacrylate resin, etc.
It is also possible to use injection molded thermoplastic #I resin with large retardation.

前記集光レンズ3は、前記入射光路5から入射された直
線偏光を前記光情報記録媒体4の記録膜4b上に合焦す
るように配置される。
The condenser lens 3 is arranged so as to focus the linearly polarized light incident from the incident optical path 5 onto the recording film 4b of the optical information recording medium 4.

前記のように構成された入射光路5において、前記レー
ザ1から照射される直線偏光の偏光面は、前記透明基板
4aの主屈折率軸の方向を考慮してリターデーションに
起因する検出信号のノイズ成分が小さくなる方向に調整
される。即ち、好ましくは、前記直線偏光の偏光面を前
記透明基板4aの主屈折率軸に対して平行、または垂直
、若しくは45度となるように調整する。この場合には
In the incident optical path 5 configured as described above, the polarization plane of the linearly polarized light irradiated from the laser 1 is determined by considering the direction of the main refractive index axis of the transparent substrate 4a, and the noise of the detection signal due to retardation. The component is adjusted to become smaller. That is, preferably, the polarization plane of the linearly polarized light is adjusted to be parallel to, perpendicular to, or 45 degrees to the main refractive index axis of the transparent substrate 4a. In this case.

リターデーションに起因する検出信号のノイズ成分を零
にすることができる。尚、高級機においても実用上は前
記ノイズ成分の強度比が20dBa度まで許容されるの
で、この場合には前記直線偏光の偏光面を前記透明基板
4aの主屈折率軸と平行、または垂直、若しくは45度
となる位置を中心として±3度以内になるように調整す
ることもできる。さらに、中、低級機においては前記ノ
イズ成分の強度比が40dB 程度まで許容されるので
、この場合には同±5度以内になるように調整すること
もできる。
The noise component of the detection signal due to retardation can be reduced to zero. Incidentally, even in high-end machines, the intensity ratio of the noise component is practically allowed up to 20 dBa degrees, so in this case, the plane of polarization of the linearly polarized light is parallel to, perpendicular to, or perpendicular to the principal refractive index axis of the transparent substrate 4a. Alternatively, the angle can be adjusted within ±3 degrees around the 45 degree position. Furthermore, in medium and low-grade machines, the intensity ratio of the noise component is allowed up to about 40 dB, so in this case it can be adjusted to within ±5 degrees.

例えば、前記透明基板4aが円板状であって熱可塑性樹
脂を射出成形してなる場合には、通常採られる射出成形
の方式から見て、第2図に示すように、ディスクの半径
方向(x −x方向)、及びこれと直角の周方向(y−
y方向)、それに厚み方向(z −z方向)に主屈折率
軸が向いていることが知られている。この場合には、前
記直線偏光の偏光面を、前記x−x方向またはy−y方
向。
For example, when the transparent substrate 4a is disk-shaped and made of thermoplastic resin by injection molding, the radial direction of the disk ( x-x direction), and the circumferential direction perpendicular to this (y-
It is known that the main refractive index axes are oriented in the thickness direction (z-direction) and the thickness direction (z-z direction). In this case, the polarization plane of the linearly polarized light is set to the x-x direction or the y-y direction.

若しくはx −x方向に対して45度の角度を基準とし
て調整することができる。
Alternatively, adjustment can be made using an angle of 45 degrees with respect to the x-x direction as a reference.

尚、前記主屈折率軸に対する直線偏光の偏光面の角度は
、適用される透明基板4aの主屈折率軸を予じめ測定し
ておくことによって、任意の方向に主屈折率軸を有する
透明基板に適用することができる。
Note that the angle of the polarization plane of the linearly polarized light with respect to the principal refractive index axis can be determined by measuring the principal refractive index axis of the applied transparent substrate 4a in advance, so that the angle of the polarization plane of the linearly polarized light with respect to the principal refractive index axis can be determined by measuring the principal refractive index axis of the applied transparent substrate 4a in advance. Can be applied to substrates.

前記偏光ビームスプリッタ6は、アナライザをもって構
成されており、前記反射光路8に対して適宜の角度をも
って設定される。また、前記ディテクタ7.7aは、前
記偏光ビームスプリッタ6によって分割された2つの光
路上に配置される。
The polarizing beam splitter 6 includes an analyzer, and is set at an appropriate angle with respect to the reflected optical path 8. Further, the detector 7.7a is arranged on two optical paths divided by the polarizing beam splitter 6.

以下、前述した本発明の光情報記録媒体用光学装置が透
明基板4aのリターデーションの大小にかかわらずディ
テクタ7.7aによって検出される検出信号のノイズ成
分を小さくすることができる理由について説明する。
Hereinafter, the reason why the above-described optical device for an optical information recording medium of the present invention can reduce the noise component of the detection signal detected by the detector 7.7a regardless of the magnitude of the retardation of the transparent substrate 4a will be explained.

まず、第3図に示すように、直線偏光の偏光面p−pと
直角をなす面r −rと偏光ビームスプリッタの透過光
面s −sとのなす角度をα、前記直線偏光の偏光面p
−pと直角をなす面r −rと透明基板の主屈折率軸m
 −mとのなす角度をβとした場合、前記ディテクタ7
.7aに入射する光の強度工は、上記第(1)式で表わ
される。尚、式中のθくはカー回転角であり、δはリタ
ーデーションである。
First, as shown in FIG. 3, the angle between the plane r - r, which is perpendicular to the polarization plane pp of the linearly polarized light, and the transmitted light surface s - s of the polarizing beam splitter is α, the polarization plane of the linearly polarized light. p
−r and the principal refractive index axis m of the transparent substrate
-m is the angle β, the detector 7
.. The intensity of light incident on 7a is expressed by the above equation (1). In the formula, θ is the Kerr rotation angle, and δ is the retardation.

1 =(s1nLacos’ 0< +cos’ccs
i計θ<)+5in2β5in(2α+2β)gin’
δCO8’θに−(1/2) ・cos 55in2 
a gin20K・・・ (1)上記第(1)式の第1
項はカー回転角θにの符号によらないDC成分であり、
第2項はりタープ−ジョンによるノイズ成分であり、第
3項が0尺の変化を信号として取り出せる信号成分であ
る。従って、gin(2α+2β)二〇、またはsin
 2β=0となるように前記情報読み取り光の偏光面を
調整することによって第2項のノイズ成分を除去するこ
とができる。
1 = (s1nLacos'0<+cos'ccs
i total θ<)+5in2β5in(2α+2β)gin'
δCO8'θ-(1/2) ・cos 55in2
a gin20K... (1) The first of the above equation (1)
term is a DC component whose sign does not depend on the Kerr rotation angle θ,
The second term is a noise component due to beam tarpsion, and the third term is a signal component from which a zero scale change can be extracted as a signal. Therefore, gin(2α+2β)20, or sin
The noise component of the second term can be removed by adjusting the polarization plane of the information reading light so that 2β=0.

尚、上記第(1)式の第3項より明らかなように、信号
強度は、前記角度αを45度に調整することによって最
大にすることができる。
As is clear from the third term of equation (1) above, the signal strength can be maximized by adjusting the angle α to 45 degrees.

また、第1図に示した2つのディテクタ7.7aに入射
する光の強度l(α)、I(−α)の差をとると、上記
第(2)式のようになって、DC成分を除去することが
できる。
Furthermore, if we take the difference between the intensities l(α) and I(-α) of the light incident on the two detectors 7.7a shown in FIG. 1, we get the DC component as shown in equation (2) above. can be removed.

■(α)−I(−α) ==sin’δ5in2 a 5in4βcosJg−
cosδ1in2 a 5in20K・・・(2) 尚、前記第(1)式及び第(2)式は、レンズ3の中心
を透過し、透明基板4aに対して垂直に入射する成分の
光に対して成立するのであって、レンズ3の周辺部から
基板4に対して斜めに入射する光に対しては成り立たな
い、以下、との剥め入射光成分に対するリターデーショ
ンの影響について検討する。
■(α)-I(-α) ==sin'δ5in2 a 5in4βcosJg-
cos δ1in2 a 5in20K...(2) Note that the above equations (1) and (2) hold true for the component light that passes through the center of the lens 3 and is incident perpendicularly to the transparent substrate 4a. The effect of retardation on the peeled incident light component will be discussed below, which does not hold true for light obliquely incident on the substrate 4 from the periphery of the lens 3.

集光レンズ3の周辺部から透明基板4aに斜めに入射す
る斜め入射光成分に対するリターデーションは、第4図
及び第5図に示すように、透明基板4a内に当該透明基
板材料に特有な主屈折率の関数で与えられる屈折率楕円
体(法線楕円体)を仮想することによって求めることが
できる。即ち、透明基板4aの周方向の主屈折率をnx
、径方向の主屈折率をny、垂直方向の主屈折率をnz
とした場合、屈折率楕円体は第(3)式によって与えら
れる。
As shown in FIGS. 4 and 5, the retardation for the obliquely incident light component that obliquely enters the transparent substrate 4a from the periphery of the condensing lens 3 is determined by It can be determined by imagining a refractive index ellipsoid (normal ellipsoid) given by a function of refractive index. That is, the main refractive index in the circumferential direction of the transparent substrate 4a is nx
, the principal refractive index in the radial direction is ny, and the principal refractive index in the vertical direction is nz
In this case, the refractive index ellipsoid is given by equation (3).

この屈折率楕円体Eを第4図に示すように透明基板4a
内に仮想し、第5図に示すように主屈折率軸nzに対す
る角度がθ、また主屈折率軸nxに対する角度がψの方
向から強さがKの光を入射した場合、にに垂直で原点0
を通る平面で当該屈折率楕円体Eを切断したときの切断
面にできる楕円eの長軸と短軸の長さの差をもってリタ
ーデーションを表わすことができる。尚、前記入射光に
の偏光方向と切断面の楕円eの主軸との角度によってリ
ターデーションの値が変動するが、その大きさは前記θ
とψの関数0(O9φ)で求めることができる。
As shown in FIG.
As shown in FIG. Origin 0
Retardation can be expressed as the difference in length between the major axis and the minor axis of the ellipse e formed on the cut surface when the refractive index ellipsoid E is cut with a plane passing through. Note that the retardation value varies depending on the angle between the polarization direction of the incident light and the main axis of the ellipse e of the cut plane, and its magnitude is determined by the above-mentioned θ
It can be determined by the function 0 (O9φ) of and ψ.

ところで、集光レンズ3の周方向(第5図における入射
角度Oが一定)に着目した場合、前記集光レンズ3で集
光さ、tbる光には、あらゆる方向ψ(0≦ψ〈2π)
からの斜め入射成分を含み、しかも各斜め入射光の強度
はほぼ一定であると推定される。ディテクタ7.78に
よって検出される信号はこれらの総和で得られるため、
斜め入射光によるリターデーションの検出信号へのノイ
ズ成分としてのノ響は、集光レンズ3の周方向に関して
相殺される可能性があると期待さJLる。
By the way, when focusing on the circumferential direction of the condensing lens 3 (the incident angle O in FIG. )
It is estimated that the intensity of each obliquely incident light is approximately constant. Since the signal detected by detector 7.78 is obtained by the sum of these,
It is expected that the noise as a noise component to the detection signal of retardation due to obliquely incident light may be canceled out in the circumferential direction of the condenser lens 3.

以下、第6[!lによって前記の仮定の当否を検討する
。第6図において、3は集光レンズ、E及びE′は入射
偏光面、Eは入射光に対して垂直(紙面方向)に配置さ
hた透明基板に仮想される屈折率楕円体、x −xは透
明基板の主屈折率軸を示している。いま、第6図に示す
ように、入射偏光面Eが透明基板の主屈折率軸X −X
と平行になるようにして直線偏光が照射されたとする。
Below is the 6th [! The validity of the above assumption will be examined using l. In FIG. 6, 3 is a condenser lens, E and E' are incident polarization planes, E is an index ellipsoid imagined on a transparent substrate placed perpendicular to the incident light (in the direction of the paper), x - x indicates the principal refractive index axis of the transparent substrate. Now, as shown in FIG. 6, the incident polarization plane E is aligned with the main refractive index axis X -
Suppose that linearly polarized light is irradiated parallel to .

この場合、集光レンズ3上の点であって、主屈折率軸x
 −xに対して対称位置にある2点P、Qを通って透明
基板に斜め入射される光は、入射角度0が同じで入射角
度φの絶対値が同じであるから、これに垂直で屈折率楕
円体Eの原点を通る平面で当該屈折率楕円体Eを切断し
たとき、その切断面にできる楕円e1.ezは同形であ
り、リターデーションδは等しい。
In this case, the point on the condensing lens 3 and the principal refractive index axis x
The light that is obliquely incident on the transparent substrate through two points P and Q located symmetrically with respect to -x has the same incident angle 0 and the same absolute value of the incident angle φ, so it is refracted perpendicularly to this. When the index ellipsoid E is cut by a plane passing through the origin of the index ellipsoid E, an ellipse e1. ez are isomorphic and the retardations δ are equal.

ところで、集光レンズ3を光が透過する場合には、第7
図に示すように、入射偏光面がEからE′に変化するこ
とが知られている。第7図に示すように、入射前の直線
偏光の波面をΣ、入射前の直線偏光の偏光面をE、波面
Σ上における偏光面EとP波の方向Epとのなす角度を
φ、透過後の直線偏光の偏光面をΣ’、7!i過後の直
線偏光の偏光面をE′、波面Σ′上における偏光面E゛
とp波の方向EP”とのなす角度をφ′、入射面の垂線
と直線偏光の入射方向のなす角度を01.入射面の垂線
と屈折された直線偏光の進行方向のなす角度を02.出
口面の垂線と集光レンズ内を進行する直線偏光のなす角
度をθり、出口面の垂線と透過後の直線偏光のなす角度
を04とすると、入Hi光面の変@量は、第(・1)式
によって求めることができる。
By the way, when light passes through the condensing lens 3, the seventh
As shown in the figure, it is known that the plane of incident polarization changes from E to E'. As shown in Figure 7, the wavefront of the linearly polarized light before incidence is Σ, the polarization plane of the linearly polarized light before incidence is E, the angle between the polarization plane E on the wavefront Σ and the direction Ep of the P wave is φ, and the transmitted The polarization plane of the subsequent linearly polarized light is Σ', 7! The polarization plane of the linearly polarized light after passing i is E', the angle between the polarization plane E' and the p-wave direction EP' on the wavefront Σ' is φ', and the angle between the perpendicular to the incident plane and the direction of incidence of the linearly polarized light is 01. The angle between the perpendicular to the incident surface and the traveling direction of the refracted linearly polarized light is 02. The angle between the perpendicular to the exit surface and the linearly polarized light traveling inside the condensing lens is θ, and the angle between the perpendicular to the exit surface and the direction after transmission is Assuming that the angle formed by the linearly polarized light is 04, the variation of the incident Hi light surface can be determined by equation (.1).

F、anφ’−?:anφcos (θ1−θ2 )C
oS(O5−04)・・・(4) 点P、Qはレンズ上の同一周上にあるから、第7図にお
ける01が等しく、従って02.θ!。
F, anφ'-? :anφcos (θ1−θ2)C
oS(O5-04)...(4) Since points P and Q are on the same circumference on the lens, 01 in FIG. 7 is equal, so 02. θ! .

OJも等しくなる。よって、第(4)式における?、a
nφにかかる係数が等しくなる。また、角φは第6図で
は角Δで表され、絶対値が等しく逆符号をもつから、第
(4)式のφ′も絶対値が等しく逆符号(±β)となる
OJ will also be equal. Therefore, in equation (4)? ,a
The coefficients applied to nφ become equal. Furthermore, since the angle φ is represented by the angle Δ in FIG. 6 and has the same absolute value and opposite sign, φ' in equation (4) also has the same absolute value and opposite sign (±β).

角度β、−βがこのような関係にある場合、それぞれの
和をとると、第(2)式の第1項が零になる。前述した
ように、集光レンズ3で集光される光には、あらゆる方
向からの斜め入射成分を含み。
When the angles β and -β have such a relationship, the first term of equation (2) becomes zero when the respective sums are taken. As described above, the light focused by the focusing lens 3 includes obliquely incident components from all directions.

しかも各斜め入射光の強度はほぼ一定であると推定され
るから、前記点P、Qの関係は、集光レンズ3上の全て
の光透過部分について成り立つ、従って、集光レンズ3
上の全ての光透過部分について積分しても第(2)式の
第1項が零になり、斜め入射成分のりタープ−ジョンに
起因するノイズ成分が除去されることが判る。
Moreover, since the intensity of each obliquely incident light is estimated to be approximately constant, the relationship between the points P and Q holds true for all light transmitting parts on the condenser lens 3.
It can be seen that the first term of equation (2) becomes zero even when integrated for all the light transmitting parts above, and that the obliquely incident component and the noise component due to the turbulence are removed.

一方、第6図においてE′で示すように主屈折率軸と非
平行に入射した場合には、同図の81゜8゜に示すよう
に角度β、−βの絶対値が等しくならないので、第(2
)式の第1項の和を零にすることができない。
On the other hand, if the incidence is non-parallel to the principal refractive index axis as shown by E' in Figure 6, the absolute values of angles β and -β will not be equal as shown at 81°8° in the same figure. 2nd (2nd
) cannot make the sum of the first term zero.

前記第(1)弐〜第(4)式を用い、かつ情報読み出し
光の強度分布をガウシアンと仮定して、本発明の光学回
路のりタープ−ジョンによるノイズの大きさを差動検出
法の場合について演算したところ、第8図の結果を得た
Using Equations (1) 2 to (4) above and assuming that the intensity distribution of the information readout light is Gaussian, the magnitude of the noise due to the optical circuit arithmetic operation of the present invention is calculated in the case of the differential detection method. When the calculation was performed, the results shown in FIG. 8 were obtained.

このグラフにおいて、横軸は直線偏光である情報読み出
し光の偏光面と透明基板の主屈折率軸とのなす角度、縦
軸は検出信号レベルを示し、偏光ビームスプリッタのア
ナライザ角を45度に設定した場合を実線で、また、偏
光ビームスプリッタのアナライザ角を70度に設定した
場合を破線で表示しである。
In this graph, the horizontal axis shows the angle between the polarization plane of linearly polarized information readout light and the principal refractive index axis of the transparent substrate, and the vertical axis shows the detected signal level, and the analyzer angle of the polarizing beam splitter is set to 45 degrees. The case where the polarizing beam splitter is set to 70 degrees is shown as a solid line, and the case where the analyzer angle of the polarizing beam splitter is set to 70 degrees is shown as a broken line.

このグラフから明らかなように、アナライザ角のいかん
にかかわらず、情報読み出し光の偏光面と透明基板の主
屈折率軸とのなす角度を0度または45度または90度
に設定することによって。
As is clear from this graph, regardless of the analyzer angle, by setting the angle between the polarization plane of the information readout light and the principal refractive index axis of the transparent substrate to 0 degrees, 45 degrees, or 90 degrees.

検出信号のノイズ成分を零にすることができることが判
った。
It has been found that the noise component of the detection signal can be reduced to zero.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光情報記録媒体用光学装
置は、直線偏光を情報読み出し光とする光情報記録媒体
用光学装置において、前記情rfi読み出し光の偏光面
を、光情報記録媒体の主屈折率軸と平行、または垂直、
若しくは45度となる位置を中心として±3度以内に調
整したので、透明基板のりタープ−ジョンの大小にかか
わりなくリターデーションの影響に起因する検出信号の
ノイズレベルを低減することができる。従って、高リタ
ーデーションであるが安価にして生産性の高い射出成形
品の透明基板を光磁気配@媒体用の透明基板として適用
することができる。
As explained above, the optical device for an optical information recording medium of the present invention is an optical device for an optical information recording medium that uses linearly polarized light as information readout light, and the polarization plane of the information RFI readout light is set to the optical information recording medium. parallel or perpendicular to the principal refractive index axis,
Alternatively, since the adjustment is made within ±3 degrees around the 45 degree position, the noise level of the detection signal due to the influence of retardation can be reduced regardless of the size of the transparent substrate adhesive tarpsion. Therefore, an injection-molded transparent substrate with high retardation but low cost and high productivity can be used as a transparent substrate for a magneto-optical distribution medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光情報記0媒体用光学装置の光学
回路を示す回路図、第2図は射出成形される透明基板に
通常見ら九る主屈折4!軸の方向を示す透明基板の斜視
図であり、第3図は計算式の各パラメータを示す説明図
、第4図及び第5図は屈折率楕円体を説明する説明図、
第6図はレンズ上の入射点とりタープ−ジョンの関係を
示す説明図、第7図は集光に伴う偏光面の変化を説明す
る説明図、第8図は情報読み出し光の偏光面と透明基板
の主屈折率軸とのなす角度とりタープ−ジョンに起因す
るノイズの関係を示すグラフである。 1:レーザ、2ニハーフミラー、3:集光レンズ、4:
光情報記録媒体、4a:透明基板、4b:記録膜、5:
入射光路、6:偏光ビームスプリッタ、7,7A:デイ
テクタ、8:反射光路8第1図 !: レーデ          5:人を尤給2:ハ
ーフミラー         6:編先ビームスプリ1
.タ3:某范レンス’          7.70:
デ°イナクタ4:光41限記株す釆イ参    8:反
i!R九工か4a:透、明54反 4b二掟孝1咳 第2図 第4図 第6図 第7図 Σ         Σ′ 第8図
FIG. 1 is a circuit diagram showing an optical circuit of an optical device for optical information storage medium according to the present invention, and FIG. 2 is a circuit diagram showing the principal refraction 4! which is usually seen in a transparent substrate that is injection molded. FIG. 3 is an explanatory diagram showing each parameter of a calculation formula; FIGS. 4 and 5 are explanatory diagrams explaining a refractive index ellipsoid; FIG.
Figure 6 is an explanatory diagram showing the relationship between the incident point on the lens and the tarpaulin, Figure 7 is an explanatory diagram explaining the change in the polarization plane due to convergence, and Figure 8 is the polarization plane of the information readout light and the transparency. 7 is a graph showing the relationship between the angle formed between the substrate and the principal refractive index axis and the noise caused by the turbulence. 1: Laser, 2-half mirror, 3: Condensing lens, 4:
Optical information recording medium, 4a: transparent substrate, 4b: recording film, 5:
Incident optical path, 6: Polarizing beam splitter, 7, 7A: Detector, 8: Reflected optical path 8 Figure 1! : Rede 5: Induction of people 2: Half mirror 6: Knitting beam spree 1
.. Ta 3: Certain Fan Lens' 7.70:
Day Inactor 4: Hikari 41 Limited Edition 8: Anti-I! R 9th grade or 4a: Transparent, 54th anti-4b, 2 precepts, 1 cough, Figure 2, Figure 4, Figure 6, Figure 7, Σ Σ' Figure 8

Claims (1)

【特許請求の範囲】[Claims] 直線偏光を情報読み出し光とする光情報記録媒体用光学
装置において、前記情報読み出し光の偏光面を、光情報
記録媒体の主屈折率軸と平行、または垂直、若しくは4
5度となる位置を中心として±5度以内に調整したこと
を特徴とする光情報記録媒体用光学装置。
In an optical device for an optical information recording medium that uses linearly polarized light as information readout light, the polarization plane of the information readout light is parallel to, perpendicular to, or perpendicular to the principal refractive index axis of the optical information recording medium.
1. An optical device for an optical information recording medium, characterized in that the optical device is adjusted within ±5 degrees around a position of 5 degrees.
JP61269905A 1986-11-14 1986-11-14 Optical device for optical information recording medium Pending JPS63124252A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61269905A JPS63124252A (en) 1986-11-14 1986-11-14 Optical device for optical information recording medium
US07/119,471 US4876133A (en) 1986-11-14 1987-11-12 Optical data recording system and method of production of recording medium
US08/267,550 USRE37719E1 (en) 1986-11-14 1994-06-21 Optical data recording system and method of production of recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269905A JPS63124252A (en) 1986-11-14 1986-11-14 Optical device for optical information recording medium

Publications (1)

Publication Number Publication Date
JPS63124252A true JPS63124252A (en) 1988-05-27

Family

ID=17478851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269905A Pending JPS63124252A (en) 1986-11-14 1986-11-14 Optical device for optical information recording medium

Country Status (1)

Country Link
JP (1) JPS63124252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240153A (en) * 1988-07-29 1990-02-08 Ricoh Co Ltd Magneto-optical pickup device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960747A (en) * 1982-09-29 1984-04-06 Sharp Corp Magneto-optical reproducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960747A (en) * 1982-09-29 1984-04-06 Sharp Corp Magneto-optical reproducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240153A (en) * 1988-07-29 1990-02-08 Ricoh Co Ltd Magneto-optical pickup device

Similar Documents

Publication Publication Date Title
JP2531626B2 (en) Optical characteristic measuring device for optical recording medium substrate
US4801798A (en) Method and apparatus for measuring optical retardation in transparent materials
JPH0820358B2 (en) Device for measuring the refractive index of a substrate for an optical recording medium
US5432760A (en) Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method
JPS63124252A (en) Optical device for optical information recording medium
JP2003247934A (en) Birefringence measurement method and birefringence measurement device
JPH07318862A (en) Method for decreasing wave front aberration of optical recording medium as well as optical head and optical disk device
US5694384A (en) Method and system for measuring Kerr rotation of magneto-optical medium
USRE37719E1 (en) Optical data recording system and method of production of recording medium
JP2519213B2 (en) Method for manufacturing magneto-optical disc plate
JP2685092B2 (en) Optical information recording medium and manufacturing method thereof
JP2650839B2 (en) Optical information recording medium
US5028774A (en) Method and apparatus for detecting and measuring the refractive index of an optical disc substrate
US5589244A (en) Magneto-optical disc
US4788678A (en) Optical information recording media substrate
US4876133A (en) Optical data recording system and method of production of recording medium
JP2500146B2 (en) Method for manufacturing optical information recording medium
JPS62180242A (en) Measuring instrument for birefringence
JP2797618B2 (en) Recording signal reproducing apparatus for magneto-optical recording medium
JP2500146C (en)
Kono et al. Depth distribution of birefringence in magneto‐optical recording disk substrates
Kiyomoto et al. The System for Measurement of Birefringence by the Use of Photo Elastic Modulator and its Applications
KR940001236B1 (en) Information recording method and information reading device
JPH02304753A (en) Magneto-optical recording medium and magneto-optical information reproducing device
JP2878292B2 (en) Optical head