JPS6312408B2 - - Google Patents

Info

Publication number
JPS6312408B2
JPS6312408B2 JP19143781A JP19143781A JPS6312408B2 JP S6312408 B2 JPS6312408 B2 JP S6312408B2 JP 19143781 A JP19143781 A JP 19143781A JP 19143781 A JP19143781 A JP 19143781A JP S6312408 B2 JPS6312408 B2 JP S6312408B2
Authority
JP
Japan
Prior art keywords
signal
frequency
detection
interference
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19143781A
Other languages
Japanese (ja)
Other versions
JPS5892148A (en
Inventor
Shunichi Nezu
Hisashi Arita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19143781A priority Critical patent/JPS5892148A/en
Publication of JPS5892148A publication Critical patent/JPS5892148A/en
Publication of JPS6312408B2 publication Critical patent/JPS6312408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/16Automatic control
    • H03G5/24Automatic control in frequency-selective amplifiers

Landscapes

  • Noise Elimination (AREA)

Description

【発明の詳細な説明】 本発明はシンセサイザ受信機に関するものであ
り、その目的とするところは希望信号に対する選
択特性を変えるために中間周波増幅段などにおい
て信号通過帯域幅を自動的に切換えることができ
るシンセサイザ受信機を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a synthesizer receiver, and its purpose is to automatically switch the signal passband width in an intermediate frequency amplification stage or the like in order to change the selection characteristics for a desired signal. The objective is to provide a synthesizer receiver that can.

一般に、受信機による信号再生においては高周
波増幅段、中間周波増幅段などにおいて、できる
限りその信号通過帯域幅(以下、帯域幅という)
が広いほどその検波信号のハイフアイ性は向上す
る。しかし一方では希望局近傍の妨害信号の影響
を取除くには逆に帯域幅が狭いほど好ましい。近
年の受信機(特にFM受信機)においては、その
中間周波増幅段の帯域幅を切換可能として、近傍
妨害波の無いときは広帯域で、妨害波があるとき
は狭帯域で受信することにより対処する方向にあ
る。しかしこの帯域幅の切換は通常手動で行われ
るため、聴感上はつきりと隣接妨害波の存在が認
められる場合は容易に判断できるが、それ以外の
場合には帯域幅を選択する判断が難しく、しかも
その判断が適切であるかどうかも不確実である。
Generally, in signal reproduction by a receiver, the signal passing bandwidth (hereinafter referred to as bandwidth) is
The wider the detection signal, the higher the fidelity of the detected signal. However, on the other hand, in order to remove the influence of interfering signals near the desired station, the narrower the bandwidth, the better. In recent years, receivers (especially FM receivers) have been able to switch the bandwidth of their intermediate frequency amplification stage, so that when there is no nearby interference waves, it receives in a wide band, and when there is interference waves, it receives in a narrow band. It is in the direction of However, since this switching of the bandwidth is usually done manually, it is easy to judge when the presence of adjacent interference waves is clearly audible, but in other cases it is difficult to decide which bandwidth to select. , and it is uncertain whether that judgment is appropriate.

そこで本出願人は、「特願昭55−130945号(特
開昭57−55610号)」において、周波数シンセサイ
ザ方式の受信機の受信周波数制御が内蔵のマイク
ロプロセツサによつて容易に行えることを利用し
て、希望信号の信号レベルと、近傍周波数におけ
る信号レベルとを比較して最適な帯域幅を自動的
に選択できる受信機について述べた。しかしなが
らこの場合には、受信機内に比較的ダイナミツク
レンジの広い信号レベル検出手段を必要とし、ま
た希望信号と妨害信号のレベルの相対比較のため
の演算も必要とするため、回路構成が非常に複雑
高価となるものである。
Therefore, in "Japanese Patent Application No. 55-130945 (Japanese Unexamined Patent Publication No. 57-55610)," the applicant proposed that the reception frequency control of a frequency synthesizer type receiver can be easily performed using a built-in microprocessor. We have described a receiver that can automatically select the optimal bandwidth by comparing the signal level of a desired signal with the signal level at nearby frequencies. However, in this case, a signal level detection means with a relatively wide dynamic range is required in the receiver, and calculations for relative comparison of the levels of the desired signal and the interfering signal are also required, so the circuit configuration is very large. It is complicated and expensive.

そこで、本発明は、かかる問題点を解消して、
希望信号と妨害信号の信号レベルを個々に検出し
て比較することなく、希望信号の周波数に選局動
作が完了した直後に近傍の妨害信号による希望信
号への妨害程度を検出し、その状態に応じて最も
適した帯域幅に選択可能なシンセサイザ受信機を
提供せんとするものである。
Therefore, the present invention solves these problems and
Immediately after the tuning operation to the frequency of the desired signal is completed, the degree of interference with the desired signal by nearby interfering signals is detected and the state is corrected, without detecting and comparing the signal levels of the desired signal and interfering signal individually. The present invention aims to provide a synthesizer receiver that can select the most suitable bandwidth according to the user's needs.

第1図は本発明の原理を説明するための説明図
である。周波数0に位置する希望信号に対して近
傍に十分大きな妨害信号があると、中間周波増幅
段のフイルタなどによる選択度では妨害を除去し
きれないため再生信号に大きな歪を与えてしま
う。一方このときFM検波器の出力である検波信
号の直流成分は希望信号だけの場合はV0である
が、妨害信号のエネルギーによつてV1に移動す
る。また、この移動量は希望信号と妨害信号のレ
ベル比(以降、D/U比という)に依存する。従
つて希望信号周波数に同調した状態でのFM検波
信号の直流成分を検出すれば、妨害信号の程度を
検出できることになる。しかしこのままでは実用
上十分ではない。すなわち通常の受信機では検波
信号の直流成分に顕著な変化が現われるほどの妨
害信号レベルが無くても、再生信号に十分大きな
歪が出てくる。つまり第1図の原理そのままの検
出方法では聴感上の検知限よりも敏感に妨害を検
出して帯域を切換えるといつたことは困難であ
る。
FIG. 1 is an explanatory diagram for explaining the principle of the present invention. If there is a sufficiently large interference signal in the vicinity of the desired signal located at frequency 0 , the interference cannot be removed completely by the selectivity of the filter in the intermediate frequency amplification stage, resulting in large distortion in the reproduced signal. On the other hand, at this time, the DC component of the detected signal, which is the output of the FM detector, is V 0 when there is only the desired signal, but moves to V 1 due to the energy of the interference signal. Further, the amount of movement depends on the level ratio between the desired signal and the interference signal (hereinafter referred to as the D/U ratio). Therefore, by detecting the DC component of the FM detection signal in a state in which it is tuned to the desired signal frequency, the degree of the interference signal can be detected. However, this is not sufficient for practical use. That is, in a normal receiver, even if the level of the interfering signal is not high enough to cause a noticeable change in the DC component of the detected signal, a sufficiently large distortion will appear in the reproduced signal. In other words, it is difficult to detect disturbances more sensitively than the auditory detection limit and switch bands using the detection method based on the principle shown in FIG.

そこで本発明は第2図に示すように、より妨害
信号に接近して検出する手法を用いたものであ
る。まず受信機の受信周波数を希望信号周波数0
と、これに影響を与えうる妨害信号が存在すると
考えられる周波数′との間の周波数0+△に設
定する。もし妨害信号が無ければまたは無視でき
る程度の妨害なら検波直流分はV0から大きくは
なれたV2となる。しかし無視できない妨害が周
波数′に存在すれば、直流分はD/U比で定まる
V3まで移動する。この場合、直流分には希望信
号と妨害信号の影響がほぼ同等に現われるため、
極めて感度の高い妨害検出が実現できる。そこ
で、この直流分に所定のしきい値Vt1を設け、こ
の値を越えるか否かによつて帯域幅を切換えるべ
きかどうかを識別することができる。第2図では
妨害信号周波数が希望波より高い場合であるが、
逆の場合も受信周波数を0−△に設定し、同様
にしきい値Vt2を設けて検出を行えばよい。また
選択可能な帯域幅の数が3以上の場合にはそれに
見合つた数だけのしきい値を用意すればよい。
Therefore, the present invention uses a method of detecting the interference signal closer to the interference signal, as shown in FIG. First, set the receiving frequency of the receiver to desired signal frequency 0.
The frequency is set to 0 + △, which is between the frequency and the frequency ' where there is an interfering signal that can affect this. If there is no interference signal or if the interference is negligible, the detected DC component will be V2 , which is far from V0 . However, if non-negligible interference exists at frequency ', the DC component is determined by the D/U ratio.
Move up to V 3 . In this case, the influence of the desired signal and the interfering signal appear almost equally on the DC component, so
Extremely sensitive interference detection can be achieved. Therefore, a predetermined threshold value Vt 1 is set for this DC component, and it can be determined whether or not the bandwidth should be switched depending on whether or not this value is exceeded. In Figure 2, the interference signal frequency is higher than the desired signal.
In the opposite case, the reception frequency may be set to 0 - Δ, and the threshold value Vt 2 may be set in the same manner to perform detection. Further, when the number of selectable bandwidths is three or more, it is sufficient to prepare a corresponding number of thresholds.

このようにFM検波器の検波信号の直流成分を
検出することによつて妨害信号による妨害程度を
検出することができるのは、次の理由による。
The reason why the degree of interference caused by the interference signal can be detected by detecting the DC component of the detection signal of the FM detector is as follows.

まず、第1図、第2図中に中間周波増幅段の一
般的な通過特性を破線で示す。第1図の状態で受
信信号と妨害信号とが存在すると、斜線部分の成
分が中間周波増幅段を通過し波形合成された形で
FM検波器に供給されてFM検波される。このと
き、妨害信号の成分が周波数の高い側に存在する
ので、合成された信号は実質的に周波数が高い方
へ少し変化したのと同等になり、検波信号の直流
成分は0のときのV0からその影響によつて低い
方のV1へ少し変化する。
First, in FIGS. 1 and 2, the general pass characteristics of an intermediate frequency amplification stage are shown by broken lines. When a received signal and an interference signal exist in the state shown in Figure 1, the components in the shaded area pass through the intermediate frequency amplification stage and are combined in waveform form.
The signal is supplied to the FM detector and subjected to FM detection. At this time, since the interference signal component exists on the higher frequency side, the combined signal is essentially equivalent to a slight change in frequency toward the higher side, and the DC component of the detected signal is equal to the voltage at 0 . It changes slightly from 0 to the lower V 1 depending on the influence.

一方、受信周波数を△だけ変化させると第2
図のような状態になり、妨害信号の成分が中間周
波増幅段の通過帯域内により多く含まれるように
なる。ところが、中間周波増幅段はリミツタ回路
による振幅制限がなされているためその出力信号
のエネルギー総和は常に一定になることから、第
1図の場合でも第2図の場合でも斜線部分の面積
は一定になる。従つて、第1図の場合と同様の希
望信号および妨害信号が存在しても(2点鎖線で
示している)中間周波増幅段を通過した後は第2
図中の実線のようになる。この結果、それらの波
形合成された出力信号には妨害信号の成分による
影響が非常に強くあらわれることになり、検波信
号の直流成分は、0の希望信号のみが存在して所
定振幅に振幅制限されたものとしたときのV2
ら大きく低い方へ変化してV3まで変化するので
ある。
On the other hand, if the receiving frequency is changed by △, the second
As shown in the figure, more components of the interference signal are contained within the passband of the intermediate frequency amplification stage. However, since the amplitude of the intermediate frequency amplification stage is limited by a limiter circuit, the total energy of its output signal is always constant, so the area of the shaded area is constant in both Figures 1 and 2. Become. Therefore, even if there is a desired signal and an interference signal similar to the case in FIG.
It will look like the solid line in the figure. As a result, the output signal whose waveforms have been combined will be very strongly affected by the components of the interference signal, and the DC component of the detected signal will be amplitude limited to a predetermined amplitude because only the desired signal of 0 exists. It changes significantly from V 2 when it is set to V 3 to V 3 .

そして、以上の説明および図からも明らかなよ
うに、検波信号の直流成分がV2からV3へ変化す
る変化量は、希望信号に対する妨害信号の振幅の
比すなわちD/U比に応じて変化し、妨害信号が
大きいほど変化量も大きくなる。また、希望信号
と妨害信号との周波数差に応じても変化するが、
第2図において妨害信号が中間周波増幅段の通過
帯域内に入り込む割合は周波数差が小さいほど多
いのに対し、それによつて合成信号に及ぼす実質
的な周波数変化は周波数差が大きいほど大きくな
るので、直流成分の変化量は必ずしも一義的には
定まらない。なお、妨害信号の周波数が予めわか
つているときには、その周波数へ移動させれば変
化量が最大になるので、最も好都合である。
As is clear from the above explanation and the figure, the amount of change in the DC component of the detected signal from V 2 to V 3 changes according to the ratio of the amplitude of the interference signal to the desired signal, that is, the D/U ratio. However, the larger the interference signal, the larger the amount of change. It also changes depending on the frequency difference between the desired signal and the interfering signal.
In Figure 2, the smaller the frequency difference, the greater the rate at which the interfering signal enters the passband of the intermediate frequency amplification stage, whereas the substantial frequency change it exerts on the composite signal increases as the frequency difference increases. , the amount of change in the DC component is not necessarily uniquely determined. Note that when the frequency of the interfering signal is known in advance, it is most convenient if the frequency is moved to that frequency because the amount of change will be maximized.

次に、実験によつて求めたFM検波信号の直流
成分の変化例を第6図、第7図に示す。第6図
は、希望信号を83.0MHz、無変調、60dBμVとし、
妨害信号を83.2MHz、50%変調(400Hz)として、
妨害信号の大きさを変化させてD/U比を変化さ
せたときの特性であり、実線は受信周波数を
83.0MHzにしたときの特性(第1図の場合に対応
する)、破線は受信周波数を83.1MHz(すなわち
△=100KHz)に変化させたときの特性(第2
図の場合に相当する)である。図から理解される
ように、実線の場合には直流成分がV0から1V低
下した電圧をVtとするとD/U比が−26dB以上
の妨害信号でないと検出できないのに対し、破線
の場合には直流成分がV2から1V低下した電圧を
Vt1とするとD/U比が−1dB程度以上であれば
妨害信号を検出することができ、約25dBの改善
が達成されている。
Next, examples of changes in the DC component of the FM detection signal obtained through experiments are shown in FIGS. 6 and 7. In Figure 6, the desired signal is 83.0MHz, unmodulated, 60dBμV,
Assuming the interfering signal is 83.2MHz, 50% modulation (400Hz),
This is the characteristic when the D/U ratio is changed by changing the magnitude of the interference signal, and the solid line shows the receiving frequency.
The broken line shows the characteristics when the reception frequency is changed to 83.0MHz (corresponding to the case in Figure 1), and the characteristics when the receiving frequency is changed to 83.1MHz (i.e. △=100KHz) (corresponding to the case in Figure 1).
(corresponds to the case in the figure). As can be understood from the figure, in the case of the solid line, if Vt is the voltage at which the DC component drops by 1V from V0 , it cannot be detected unless the interference signal has a D/U ratio of -26 dB or more, whereas in the case of the broken line, is the voltage whose DC component is 1V lower than V2 .
If Vt is 1 , the interference signal can be detected if the D/U ratio is about -1 dB or more, and an improvement of about 25 dB has been achieved.

また、第7図は、希望信号を83.0MHz、無変
調、60dBμVとし、妨害信号を50%変調(400Hz)
とし、かつ受信周波数を83.1MHz(すなわち△
=100KHz)として、妨害信号の大きさを変化さ
せてD/U比を変化させたときの特性(第2図の
場合に相当する)であり、実線は妨害信号の周波
数を83.2MHzにしたときの特性、破線は妨害信号
の周波数を83.3MHzにしたときの特性である。図
から理解されるように、この例では妨害信号が希
望信号に近い方(実線)が小さい妨害信号(−
1dB以上)であつても検出されている。なお、実
験によれば、希望信号と妨害信号との周波数差が
200KHzのときには△=100KHzにした場合に最
も良好な検出ができた。
Also, in Figure 7, the desired signal is 83.0MHz, unmodulated, 60dBμV, and the interference signal is 50% modulated (400Hz).
and the reception frequency is 83.1MHz (i.e. △
= 100KHz), this is the characteristic when the D/U ratio is changed by changing the magnitude of the interference signal (corresponding to the case in Figure 2), and the solid line is when the frequency of the interference signal is set to 83.2MHz. The broken line is the characteristic when the frequency of the interfering signal is 83.3MHz. As can be understood from the figure, in this example, the side where the interference signal is closer to the desired signal (solid line) is the smaller interference signal (−
1 dB or more), it is still detected. According to experiments, the frequency difference between the desired signal and the interfering signal is
At 200KHz, the best detection was achieved when △=100KHz.

なお、上記実験例は妨害信号が変調されている
信号の場合であるが、無変調信号であつても同様
の傾向を示す。
Note that although the above experimental example is a case in which the interfering signal is a modulated signal, the same tendency is exhibited even in the case of an unmodulated signal.

第3図は本発明による一実施例のシンセサイザ
受信機の構成図である。1はフロントエンド部
で、受信周波数制御部2によつて受信周波数が設
定される。3は帯域幅選択可能な中間周波増幅
部、4はFM検波器である。ローパスフイルタ5
によつて前記FM検波器4からの検波信号の直流
分が抽出され、電圧比較器6に入力される。帯域
幅選択制御部7は比較器6の出力信号によつて最
適な帯域幅を選択する。ここで受信周波数制御部
2は近年では通常マイクロプロセツサによつて構
成されており、その機能の一部として(プログラ
ムの一部として)帯域幅選択制御部7の機能を含
ませることが可能である。この場合受信周波数制
御部2と帯域幅選択制御部7はマイクロプロセツ
サ8として一体化されることになる。
FIG. 3 is a block diagram of an embodiment of a synthesizer receiver according to the present invention. Reference numeral 1 denotes a front end section, in which a reception frequency is set by a reception frequency control section 2. 3 is an intermediate frequency amplification section with a selectable bandwidth, and 4 is an FM detector. low pass filter 5
The DC component of the detected signal from the FM detector 4 is extracted and input to the voltage comparator 6. Bandwidth selection control section 7 selects the optimum bandwidth based on the output signal of comparator 6. In recent years, the reception frequency control section 2 is usually constituted by a microprocessor, and it is possible to include the function of the bandwidth selection control section 7 as part of its functions (as part of a program). be. In this case, the reception frequency control section 2 and the bandwidth selection control section 7 are integrated as a microprocessor 8.

第4図は電圧比較器6の具体構成例であり、そ
れぞれVt1,Vt2(Vt1>Vt2)なるしきい値を持つ
2つの電圧コンパレータ回路9,10によつて構
成され、Q1とQ2の検出信号を出力する。第2図
との関係により、0+△における検出では入力
電圧はVt1と比較され、妨害が無ければ検出信号
Q1はロウレベル、あればハイレベルとなる。次
0−△における検出では入力電圧はVt2と比
較され、妨害が無ければ検出信号Q2はロウレベ
ル、あればハイレベルとなる。ただし受信機の特
性によつてVt1=Vt2と設定できる場合にはコン
パレータ回路は1個でよい。
FIG. 4 shows a specific configuration example of the voltage comparator 6, which is composed of two voltage comparator circuits 9 and 10 having threshold values of Vt 1 and Vt 2 (Vt 1 > Vt 2 ), respectively, and Q 1 and outputs the Q2 detection signal. In relation to Figure 2, for detection at 0 +△, the input voltage is compared with Vt 1 , and if there is no disturbance, the detection signal
Q 1 is a low level, if it is, it is a high level. Next, in the detection at 0 - Δ, the input voltage is compared with Vt 2 , and if there is no disturbance, the detection signal Q 2 becomes low level, and if there is, it becomes high level. However, if it is possible to set Vt 1 =Vt 2 depending on the characteristics of the receiver, only one comparator circuit is required.

次に前述したように、同調機能、帯域幅選択機
能がマイクロプロセツサ8によつて実行される場
合、受信周波数の設定、電圧比較器6の検出信号
の読み取り、帯域幅の選択がどのような手順で行
われているかを第5図のフローチヤートを用いて
説明する。ただしここでは切換可能な帯域幅は広
帯域と狭帯域の2種類とする。まず11で新しく
受信周波数が設定されたかどうか(新たに選局さ
れたかどうか)を繰り返しチエツクする。新たに
受信周波数が設定されれば12へ移り「広帯域」
を選ぶ。次に13で受信周波数を0+△に設定
し、14において検出信号Q1を読み取る。15
でこの検出信号Q1がロウレベルか否かを調べ、
ロウレベルであれば、すなわち妨害が無ければ1
6に移り、今度は受信周波数を0−△に設定す
る。17で検出信号Q2を読み取り、これがロウ
レベルか否かを18で調べる。ここでやはりロウ
レベルなら20に移つて0で受信を開始するとと
もに11に戻つて次の0設定を待機する。一方1
5において検出信号Q1がハイレベルのときある
いは18において検出信号Q2がハイレベルのと
きは妨害があつたと見なされるので19において
「狭帯域」に切換えてから20に移る。
Next, as described above, when the tuning function and the bandwidth selection function are executed by the microprocessor 8, how are the settings of the reception frequency, the reading of the detection signal of the voltage comparator 6, and the selection of the bandwidth performed? The procedure to be followed will be explained using the flowchart shown in FIG. However, here, there are two types of switchable bandwidths: wideband and narrowband. First, in step 11, it is repeatedly checked whether a new reception frequency has been set (or whether a new station has been selected). If a new receiving frequency is set, it will move to 12 "Wideband"
Choose. Next, in step 13, the reception frequency is set to 0 + Δ, and in step 14, the detection signal Q1 is read. 15
Check whether this detection signal Q1 is low level or not,
If it is low level, that is, if there is no interference, it is 1.
Moving on to step 6, this time set the receiving frequency to 0 - △. At step 17, the detection signal Q2 is read, and at step 18, it is checked whether or not it is at a low level. Here, if the level is still low, it moves to 20 and starts reception at 0 , and returns to 11 to wait for the next 0 setting. On the other hand 1
When the detection signal Q 1 is at a high level in step 5 or when the detection signal Q 2 is at a high level in step 18, it is considered that interference has occurred, so in step 19 the mode is switched to "narrow band" and then the process moves to step 20.

ここで、△の具体的な値については一般の
FM受信機では、±200,±300KHz隣接の妨害が問
題となるので、△=100KHzに選ぶのが適当で
ある。
Here, regarding the specific value of △, please refer to the general
In FM receivers, adjacent interference of ±200 and ±300KHz is a problem, so it is appropriate to choose Δ=100KHz.

以上の実施例により説明したように本発明で
は、受信周波数の近傍妨害信号の検出を例えば0
+△と0−△の2点だけで行えるので、例え
ばそれぞれの受信点での検出に要する時間が0.1
秒ならば、計0.2秒後にすみやかに通常の受信状
態に復帰させることができる。また妨害の程度を
検波出力中の直流分より得ているので、単に電圧
比較器の追加だけで構成でき、しかも選択のため
の判断も複雑なプログラムによる演算を必要とし
ないなど、コスト面でも有利な帯域幅自動切換え
が可能となつたものである。
As explained in the above embodiments, in the present invention, detection of nearby interference signals of the reception frequency is performed, for example, at 0.
Since it can be performed using only two points, +△ and 0 -△, for example, the time required for detection at each receiving point is 0.1
If it is seconds, the normal reception state can be restored immediately after a total of 0.2 seconds. In addition, since the degree of interference is obtained from the DC component in the detected output, it can be configured simply by adding a voltage comparator, and selection decisions do not require calculations using complex programs, which is advantageous in terms of cost. This enables automatic bandwidth switching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の妨害信号検出の原理を説明す
るための図、第2図は本発明の妨害信号検出の実
用的な原理を説明するための図、第3図は本発明
を用いた受信機の一実施例を示すブロツク図、第
4図はその電圧比較器の具体構成例を示す図、第
5図は帯域自動切換えの手順を示す図、第6図、
第7図は本発明による具体例の特性を示す特性図
である。 4……FM検波器、6……電圧比較器、8……
マイクロプロセツサ、9,10……電圧コンパレ
ータ回路。
Figure 1 is a diagram for explaining the principle of interference signal detection according to the present invention, Figure 2 is a diagram for explaining the practical principle of interference signal detection according to the present invention, and Figure 3 is a diagram for explaining the practical principle of interference signal detection according to the present invention. FIG. 4 is a block diagram showing an example of the receiver, FIG. 4 is a diagram showing a specific configuration example of the voltage comparator, FIG. 5 is a diagram showing the procedure for automatic band switching, FIG.
FIG. 7 is a characteristic diagram showing the characteristics of a specific example according to the present invention. 4...FM detector, 6...Voltage comparator, 8...
Microprocessor, 9, 10... Voltage comparator circuit.

Claims (1)

【特許請求の範囲】 1 複数の異なる信号通過帯域幅を選択可能なシ
ンセサイザ受信機であつて、受信信号を周波数検
波手段で周波数検波した周波数検波信号の直流成
分を検出する検出手段と、この検出手段の検出結
果を用いて上記複数の帯域幅の1つを選択する手
段とを有するとともに、上記検出手段で上記直流
成分の検出を行う時に受信周波数を希望信号周波
数の近傍の周波数に変化させるように受信周波数
を制御する手段を有することを特徴とするシンセ
サイザ受信機。 2 希望信号周波数を0とするとき、周波数検波
信号の直流成分検出時に受信周波数を1+△お
よび0−△(ただし、△は周波数変化幅)に
変化させることを特徴とする特許請求の範囲第1
項記載のシンセサイザ受信機。
[Scope of Claims] 1. A synthesizer receiver capable of selecting a plurality of different signal passing bandwidths, which includes: a detection means for detecting a DC component of a frequency detection signal obtained by frequency-detecting a received signal by a frequency detection means; means for selecting one of the plurality of bandwidths using the detection result of the means, and changing the reception frequency to a frequency near the desired signal frequency when the detection means detects the DC component. A synthesizer receiver characterized in that it has means for controlling a reception frequency. 2 When the desired signal frequency is 0 , the receiving frequency is changed to 1 +△ and 0 -△ (where △ is the frequency change width) when detecting the DC component of the frequency detection signal. 1
Synthesizer receiver described in Section 1.
JP19143781A 1981-11-28 1981-11-28 Synthesizer receiver Granted JPS5892148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19143781A JPS5892148A (en) 1981-11-28 1981-11-28 Synthesizer receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19143781A JPS5892148A (en) 1981-11-28 1981-11-28 Synthesizer receiver

Publications (2)

Publication Number Publication Date
JPS5892148A JPS5892148A (en) 1983-06-01
JPS6312408B2 true JPS6312408B2 (en) 1988-03-18

Family

ID=16274599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19143781A Granted JPS5892148A (en) 1981-11-28 1981-11-28 Synthesizer receiver

Country Status (1)

Country Link
JP (1) JPS5892148A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727704Y2 (en) * 1987-12-08 1995-06-21 シャープ株式会社 Audio signal detection circuit

Also Published As

Publication number Publication date
JPS5892148A (en) 1983-06-01

Similar Documents

Publication Publication Date Title
EP0543396B1 (en) Frequency modulation receiving apparatus having two intermediate-frequency band pass filters
US4356567A (en) Radio receiver with bandwidth switching
JPH05335855A (en) Radio receiver
US7860479B2 (en) FM receiver
WO2007000882A1 (en) Interfering wave detection device, and interfering wave elimination device
JP4475964B2 (en) Adjacent interference removal device
US4878252A (en) Modified multi-path detector
EP0696852B1 (en) FM receiver
JP3703878B2 (en) Method for determining reception quality of an AM receiver
JP2540299B2 (en) Wireless receiver
JPH07101856B2 (en) Receiving machine
JPS6312408B2 (en)
JPS6410142B2 (en)
JPH07183822A (en) Reception circuit provided with function for preventing malfunction due to high level disturbing wave of adjacent channel
JP2009273093A (en) Fm receiver
JP3123896B2 (en) Radio receiver
JP3911267B2 (en) FM radio receiver
JP3506950B2 (en) FM receiver
WO1998012821A1 (en) Interference detection circuit having amplitude frequency domain defined discrimination
JPH02194736A (en) Fm radio receiver
JP3157283B2 (en) Receiving machine
JPH0210682Y2 (en)
WO2007066528A1 (en) Reception sensitivity detection device and reception device
EP1100208B1 (en) Receiver with multipath interference dependent mono-stereo detector
JPS5928093B2 (en) receiving device