JPS63124011A - Distributed refractive index type achromatic lens - Google Patents

Distributed refractive index type achromatic lens

Info

Publication number
JPS63124011A
JPS63124011A JP27110986A JP27110986A JPS63124011A JP S63124011 A JPS63124011 A JP S63124011A JP 27110986 A JP27110986 A JP 27110986A JP 27110986 A JP27110986 A JP 27110986A JP S63124011 A JPS63124011 A JP S63124011A
Authority
JP
Japan
Prior art keywords
lens
refractive index
optical system
lenses
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27110986A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ichikawa
裕之 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP27110986A priority Critical patent/JPS63124011A/en
Publication of JPS63124011A publication Critical patent/JPS63124011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To satisfactorily correct a chromatic aberration and a tertiary aberration by a small number of lenses, by combining at least one piece each of lenses by which a refractive index of a medium is heterogeneous, especially, increases or decreases in an axially symmetric manner against an optical axis. CONSTITUTION:When (r), N00, and N10 denote a distance from an axis of a light beam 3, a refractive index on an optical axis, and refractive index distribution constant, respectively, a P lens 1 of N10<0 and an N lens 2 of N10>0 are combined by using a medium whose refractive index distribution becomes N(r)=N00+N10r<2>. Subsequently, N10 of 486.1nm, 587.6nm, and 656.3nm wavelength is denoted as N10F, N10d, and N10C, respectively, nu10=N10d/(N10F-N10C) denotes an Abbe number of a distribution constant, and Abbe numbers of the P lens 1 and the L lens 2 are denoted as nu10P and nu10N, respectively. In such a way, at the time of nu10P/nu10N>2, a primary chromatic aberration of an optical system can be corrected satisfactorily. Also, a correction of a tertiary monochromatic aberration can be performed by adjusting the distribution constant N10, and giving a curvature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、色収差を補正した光学系を構成する際に有用
な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technique useful in constructing an optical system in which chromatic aberration is corrected.

〔従来技術〕[Prior art]

従来より一般的な、媒質の屈折率が−様なレンズを用い
た光学系において、色収差を補正しようとすると、各々
のアツベ数が異なった凸レンズと凹レンズを少なくとも
1つづつ用いて、最低2枚構成のレンズ系を用いなくて
はならない。
In order to correct chromatic aberration in conventional optical systems that use lenses whose medium has a -like refractive index, it is necessary to use at least two convex lenses and one concave lens, each with a different Abbe number. A lens system of the following configuration must be used.

さらに、一般に光学系においては、色収差以外にも種々
の単色収差、例えば、3次の球面収差やコマ収差などの
ザイデルの5収差な補正してやる必要がある。アツベ数
の異なった凸レンズと凹レンズを貼り合わせたダブレッ
トでは、1次の色収差と3次の球面収差、コマ収差が補
正出来ることが公知である。ところが、より厳しい条件
で多くの収差を補正しようとすると、多数枚のレンズが
必要で光学系もより複雑になってくる。
Furthermore, in general, in an optical system, it is necessary to correct various monochromatic aberrations other than chromatic aberration, such as Seidel's five aberrations such as third-order spherical aberration and coma aberration. It is known that a doublet made by bonding a convex lens and a concave lens with different Abbe numbers can correct first-order chromatic aberration, third-order spherical aberration, and coma aberration. However, when attempting to correct many aberrations under more severe conditions, a large number of lenses are required and the optical system becomes more complex.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

屈折率が−様な媒質から成るレンズでは、光線の屈折は
媒質の境界面でのみ起こり、媒質中では光線は直進する
。したがって、複雑な、あるいは厳密な収差補正のため
には、多くの屈折面が必要になり、必然的にレンズ枚数
が増加する。ところが、光学系の製造や使用を考えると
、レンズ枚数の増加は材料コストの増加、加工コストの
増加、調整・検査コストの増加などによる製品価格の上
昇を招くばかりか、購入者にとっても重たい、かさばる
、など使用しにくい製品となってしまう。
In a lens made of a medium with a -like refractive index, refraction of light rays occurs only at the boundary surfaces of the medium, and the light rays travel straight through the medium. Therefore, for complex or strict aberration correction, many refractive surfaces are required, which inevitably increases the number of lenses. However, when considering the manufacturing and use of optical systems, an increase in the number of lenses not only increases product prices due to increased material costs, increased processing costs, and increased adjustment and inspection costs, but also puts a burden on buyers. This results in a product that is bulky and difficult to use.

そこで本発明の目的は、上記の問題点を解決し、従来実
用化されていなかった屈折率分布型媒質をレンズとして
用いることで、光学系のレンズ枚数、部品点数を減少さ
せて、低価格で、且つ、より小型・軽量の光学系を提供
することにある。
Therefore, the purpose of the present invention is to solve the above-mentioned problems and to reduce the number of lenses and parts in an optical system by using a gradient index medium, which has not been put into practical use, as a lens, thereby achieving a low cost. , and to provide an optical system that is more compact and lightweight.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決する本発明は、媒質の屈折率が不均
質、特に光軸に対して屈折率が軸対称に増加または減少
しているようなレンズを少なくとも7枚づつ組み合わせ
ることによって、レンズ枚数は少ないが、良好に色収差
や3次の収差を補正し、且つ、低価格で小型・軽量の光
学系を提供する0 〔作 用〕 媒質に屈折率の分布を有するようなレンズでは、媒質の
境界面だけでなく、媒質内部でも光線は屈折する。した
がって、このようなレンズは1枚でも屈折率が均一なレ
ンズ数枚に相当する機能を果たすことができる。このよ
うなレンズは、米国特許3729253号に詳しくその
特徴が述べられており、また、特開昭60−/1I90
/を号には具体的な実用例が示されている。
The present invention solves the above problems by combining at least seven lenses in which the refractive index of the medium is non-uniform, in particular, the refractive index increases or decreases axially symmetrically with respect to the optical axis. Although the number of lenses is small, it can effectively correct chromatic aberration and third-order aberration, and provides a small, lightweight optical system at a low price. Light rays are refracted not only at the interface of the medium, but also inside the medium. Therefore, even one such lens can perform the function equivalent to several lenses with uniform refractive index. The characteristics of such a lens are described in detail in U.S. Pat.
Specific practical examples are shown in /.

ところが、これらの例は単色光を用いた光学系であって
、色収差が問題となるような白色光を光源としたときの
検討はなされていない。これにたいして、特開昭4/−
I10/コ 号などでは色収差について触れられている
が、媒質に要求される条件については考察されていない
However, these examples are optical systems using monochromatic light, and no study has been made when using white light as a light source, where chromatic aberration would be a problem. In contrast, JP-A-4/-
Although chromatic aberration is mentioned in I10/Co, etc., the conditions required for the medium are not considered.

一般に、均質なレンズ系では次のように、凸レンズのア
ツベ数をν11パワーをφ・1とし、凹レンズのアツベ
数をν2、パワーをφ2とすると、φ1/シ1+φ2/
シ2 +w o       (1)φl十φ2−φ 
    (2) これより、 φ1−シ1・φ/(シ1−シ2)      (31φ
2−−ν2・φ/(シ1−シ2 )      (41
なる色消条件が存在する。ここでのパワーは、すべて屈
折面によるものである。そこで、屈折率分布型レンズに
おいて、そのパワーの大部分を媒質に負っている場合を
考えると、分布定数のアツベ数なる数値が重要になる。
Generally, in a homogeneous lens system, if the Abbe number of a convex lens is ν11 and the power is φ・1, and the Abbe number of a concave lens is ν2 and the power is φ2, then φ1/Si1+φ2/
shi2 + w o (1) φl + φ2 − φ
(2) From this, φ1-shi1・φ/(shi1-shi2) (31φ
2--ν2・φ/(shi1-shi2) (41
There is an achromatic condition. All the power here is due to the refractive surface. Therefore, in a gradient index lens, if we consider that most of its power is due to the medium, the value of the distribution constant, Abbe's number, becomes important.

ところが、この場合は上の式はそのまま適用は出来ない
。なぜなら、(3) 。
However, in this case, the above formula cannot be applied as is. Because (3).

(4)式においてν1とν2の差が小さい場合、各レン
ズのパワー配分φ1.φ2は、符号が逆で共に非常に大
きな値になってしまう。ここで、大パワーは大きなレン
ズ厚を示唆する。ところが、屈折率分布型レンズの内部
で光線は蛇行、わん曲しながら進行するため、均質なレ
ンズと等価の関係を維持する最大のレンズ厚が存在する
。したがって、媒質の屈折率分布によって決まる、ある
一定以上のパワー値φ1.φ2は実現できない。また、
(1)〜(4)式は、近似的に薄肉レンズにおける条件
であるため、媒質による屈折という点で、どうしても厚
みを無視できない屈折率分布型レンズに、そのまま適用
すること罠は無理がある。
In equation (4), if the difference between ν1 and ν2 is small, the power distribution of each lens φ1. φ2 has opposite signs and both become very large values. Here, large power suggests large lens thickness. However, since light rays travel inside a gradient index lens while meandering and curving, there is a maximum lens thickness that maintains a relationship equivalent to that of a homogeneous lens. Therefore, the power value φ1. φ2 cannot be realized. Also,
Since equations (1) to (4) are approximate conditions for a thin lens, it is unreasonable to apply them as they are to a gradient index lens whose thickness cannot be ignored in terms of refraction due to the medium.

ここで、もう−度(31、(41式を見ると、φ1とφ
2の差が大きい方が良いことは確かである。この観点か
ら調べてみると、凸レンズと凹レンズの分布定数のアツ
ベ数をそれぞれν10(P) yν10 (N)とする
とき、その比を νlo (P) /ν10(Nl > 2      
    (5Jとしたときに、光学系の7次の色収差が
良好に補正される事がわかった。
Here, - degree (31, (looking at formula 41, φ1 and φ
It is true that the larger the difference between the two, the better. Examining from this point of view, when the Atsube numbers of the distribution constants of convex lenses and concave lenses are respectively ν10 (P) yν10 (N), the ratio is νlo (P) / ν10 (Nl > 2
(It was found that when using 5J, the seventh-order chromatic aberration of the optical system was well corrected.

さらに、3次の単色収差の神正は分布定数N10の調整
、曲率の付与によって実施可能である。
Furthermore, correction of third-order monochromatic aberration can be implemented by adjusting the distribution constant N10 and adding curvature.

〔実 施 例〕〔Example〕

第1表記載の光学定数を有するレンズ系において、近軸
の細土色収差を求めてみた。ここで、評価関数として Δ−(FB(C)−1(Fl)/KFL(d)    
(61第7表 を定義すると、7ラウンホー77−腺の波MOe   
4!。
Paraxial Hosochi chromatic aberration was determined for a lens system having the optical constants listed in Table 1. Here, the evaluation function is Δ-(FB(C)-1(Fl)/KFL(d)
(61 Defining Table 7, 7 Loung Ho 77 - Gland Wave MOe
4! .

FにおけるバックフォーカスF B(C1及びF B(
F)は共にj、7446111m 、 7ラウンホーフ
アー線波長dにおける焦点距離EFLは6關であり、Δ
−0となる。
Back focus FB(C1 and FB(
F) are both j, 7446111 m, the focal length EFL at the 7 Raunhofer line wavelength d is 6 degrees, and Δ
-0.

第1図は上記光学系のレイアウトを示し、図中lは屈折
率分布型正レンズ、コは屈折率分布型負レンズ、3は光
線である。    − このように屈折面が平面でありながら、屈折率分布型w
:質のパワーだけで色収差が良好に補正されていること
がわかる。
FIG. 1 shows the layout of the above-mentioned optical system, in which l is a gradient index positive lens, C is a gradient index negative lens, and 3 is a ray. - In this way, although the refractive surface is flat, the refractive index distribution type w
: It can be seen that chromatic aberration is well corrected just by the quality power alone.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、凸レンズ作用を持つ屈折率分布型レン
ズと凹レンズ作用を持つ屈折率分布型レンズを少なくと
も1枚づつ組み合わせる事によって、色収差、単色収差
を良好に補正する光学系を構成する事ができる。こうし
て得られた光学系は、従来一般的であった均質媒質を用
いた光学系に比べて、レンズ枚数、部品点数が少ないた
め、光学系、光学部品の低価格化、小型・軽量化に大き
く貢献するものである。
According to the present invention, by combining at least one gradient index lens with convex lens action and one gradient index lens with concave lens action, it is possible to configure an optical system that can satisfactorily correct chromatic aberration and monochromatic aberration. can. The optical system obtained in this way has fewer lenses and fewer parts than the conventional optical system using a homogeneous medium, so it can significantly reduce the cost, size, and weight of the optical system and optical components. It is something that contributes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示し、lは正レンズ、2は
負レンズ、3は光線である。 第1図 手続補正書 昭和6−年3月6日 事件の表丞 特願昭A/−コア/10り号 特公昭  −号 −発明の名称 屈折率6分布型色消レンズ −補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市東区道修町4丁目8番地;、補正
の対象 1 ′ 明m!書’P 特許請求の範囲橢、及び発明の詳細な説
明欄Z 補正の内容 (1)明細書第1頁の「特許請求の範囲」全文を別紙の
通り補正する。 (2)明細書第7頁の第1表甲最下欄に「直径」とある
のを「半径」と補正する。 2、特許請求の範囲 (1)その屈折率が不均質であるような媒質を2つ以上
組み合わせて、色収差を補正した光学系。 (2)特許請求範囲第1項の光学系において、rを光軸
からの距離、NoOを光軸上の屈折率、N10を屈折率
分布定数とするとき、その屈折率分布がN(r)=N0
0+N10 r2  で表現されるような鋸質をレンズ
として用いる場合、N10<OなるPレンズと、N1,
0>01!7sNレンズを少なくとも7つづつ用いて構
成された光学系。 (3)特許請求範囲第2項において、波長弘♂4.7’
nm。 !♂7.jnm、AtJ、JnmのN10を、それぞれ
Nl0(Fl。 N10fd) 、 N10(C1とするとき、!’10
− Nl0(d) / (Nl0(Fl =Nl0(C
1)を分布定数のアツベ数とすると、PレンズとNレン
ズのν10の比がν10(Pl/ν10(Nl>xであ
るような光学系。
FIG. 1 shows an embodiment of the present invention, where l is a positive lens, 2 is a negative lens, and 3 is a ray. Figure 1 Procedural amendment document Showa 6 - Case of March 6, 1939 Patent application Showa/-Core/No. Relationship to the case Patent applicant address 4-8 Doshomachi, Higashi-ku, Osaka-shi, Osaka;, Subject of amendment 1' Akira m! Book'P Claims Extended and Detailed Description of the Invention Column Z Contents of Amendment (1) The entire text of the "Claims" on page 1 of the specification will be amended as shown in the attached sheet. (2) In the bottom column of the first table on page 7 of the specification, "diameter" is corrected to "radius." 2. Claims (1) An optical system in which chromatic aberration is corrected by combining two or more media whose refractive indexes are non-uniform. (2) In the optical system of claim 1, where r is the distance from the optical axis, NoO is the refractive index on the optical axis, and N10 is the refractive index distribution constant, the refractive index distribution is N(r) =N0
When using a sawtooth lens as expressed by 0+N10 r2, a P lens with N10<O, N1,
An optical system configured using at least seven 0>01!7sN lenses. (3) In claim 2, Watanabe Ko♂4.7'
nm. ! ♂7. When N10 of jnm, AtJ, and Jnm are respectively Nl0(Fl. N10fd) and N10(C1, !'10
- Nl0(d) / (Nl0(Fl = Nl0(C
1) is the Atsube number of the distributed constant, an optical system in which the ratio of ν10 of the P lens and the N lens is ν10 (Pl/ν10 (Nl>x).

Claims (3)

【特許請求の範囲】[Claims] (1)その屈折率が不均質であるような媒質を2つ以上
組み合わせて、色収差を補正した光学系。
(1) An optical system that corrects chromatic aberration by combining two or more media whose refractive indices are non-uniform.
(2)特許請求範囲第1項の光学系において、rを光軸
からの距離、N_0_0を光軸上の屈折率、N_1_0
を屈折率分布定数とするとき、その屈折率分布がN(r
)=N_0_0+N1_0r^2で表現されるような媒
質をレンズとして用いる場合、N_1_0<0なるPレ
ンズと、N_1_0>0Nレンズを少なくとも1つづつ
用いて構成された光学系。
(2) In the optical system according to claim 1, r is the distance from the optical axis, N_0_0 is the refractive index on the optical axis, and N_1_0
is the refractive index distribution constant, then the refractive index distribution is N(r
)=N_0_0+N1_0r^2 When using a medium as a lens, an optical system is configured using at least one P lens with N_1_0<0 and at least one N_1_0>0N lens.
(3)特許請求範囲第2項において、波長486.1n
m、587.6nm、656.3nmのN_1_0を、
それぞれN_1_0(F)、N_1_0(d)、N_1
_0(C)とするとき、ν_1_0=N_1_0(d)
/(N_1_0(F)−N_1_0(C))を分布定数
のアッベ数とすると、PレンズとNレンズのν_1_0
の比がν_1_0(P)/ν_1_0(N)>2である
ような光学系。
(3) In claim 2, the wavelength is 486.1n.
N_1_0 of m, 587.6 nm, 656.3 nm,
N_1_0(F), N_1_0(d), N_1 respectively
When _0(C), ν_1_0=N_1_0(d)
/(N_1_0(F)-N_1_0(C)) is the Abbe number of the distribution constant, then ν_1_0 of P lens and N lens
An optical system in which the ratio of ν_1_0(P)/ν_1_0(N)>2.
JP27110986A 1986-11-14 1986-11-14 Distributed refractive index type achromatic lens Pending JPS63124011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27110986A JPS63124011A (en) 1986-11-14 1986-11-14 Distributed refractive index type achromatic lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27110986A JPS63124011A (en) 1986-11-14 1986-11-14 Distributed refractive index type achromatic lens

Publications (1)

Publication Number Publication Date
JPS63124011A true JPS63124011A (en) 1988-05-27

Family

ID=17495461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27110986A Pending JPS63124011A (en) 1986-11-14 1986-11-14 Distributed refractive index type achromatic lens

Country Status (1)

Country Link
JP (1) JPS63124011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117308A (en) * 1990-06-08 1992-05-26 Olympus Optical Co., Ltd. Lens system using unhomogenous media
US5541775A (en) * 1993-03-30 1996-07-30 Konica Corporation Optical system including a distributed index optical element in combination with a lens having a homogeneous refractive index
US6034825A (en) * 1995-12-04 2000-03-07 Olympus Optical Co., Ltd. Objective lens system
WO2003007027A1 (en) * 2001-07-10 2003-01-23 Nippon Sheet Glass Co., Ltd. Refractive index profile type rod lens unit and micro- chemical system provided with the unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117308A (en) * 1990-06-08 1992-05-26 Olympus Optical Co., Ltd. Lens system using unhomogenous media
US5541775A (en) * 1993-03-30 1996-07-30 Konica Corporation Optical system including a distributed index optical element in combination with a lens having a homogeneous refractive index
US6034825A (en) * 1995-12-04 2000-03-07 Olympus Optical Co., Ltd. Objective lens system
WO2003007027A1 (en) * 2001-07-10 2003-01-23 Nippon Sheet Glass Co., Ltd. Refractive index profile type rod lens unit and micro- chemical system provided with the unit
JP2003021704A (en) * 2001-07-10 2003-01-24 Nippon Sheet Glass Co Ltd A pair of refractive index distributed rod lenses and microchemical system equipped with the lenses
US6941041B2 (en) 2001-07-10 2005-09-06 Nippon Sheet Glass Co., Ltd. Gradient index rod lens unit and microchemical system having the same

Similar Documents

Publication Publication Date Title
Maksutov New catadioptric meniscus systems
Greisukh et al. Diffractive–refractive correction units for plastic compact zoom lenses
JP2991524B2 (en) Wide-angle lens
JP3833754B2 (en) Electronic camera with diffractive optical element
JPS63124011A (en) Distributed refractive index type achromatic lens
JPH01214812A (en) Macro lens
JPS5834418A (en) Lens system capable of photographing at close distance
US3586418A (en) Wide-angle eyepiece lens system
Wilson Corrector systems for cassegrain telescopes
JPH1068878A (en) Lens
GB1602553A (en) Copying lens
US5796515A (en) Catadioptric optical system
US3449040A (en) Symmetrical projection lens
US4417787A (en) Five-component microscope objective
US2821113A (en) Wide angle photographic objective
JPS58126512A (en) Large-aperture telephoto lens
JPS63305315A (en) Apochromatic lens
CN108700681B (en) Aspherical cemented lens
US3045546A (en) Optical objectives of variable focal length
US2932236A (en) Anamorphosing lens system
US4235519A (en) Compact retrofocus type wide angle objective
US3694057A (en) Modified triplets with reduced secondary spectrum
US3647281A (en) Telephotographic objective having six lenses forming four lens groups
JPH085910A (en) Image forming lens system
JPS6111715A (en) Large aperture diameter single lens