JPS63123546A - Method and device for forming long body of nonuniform section by forming - Google Patents

Method and device for forming long body of nonuniform section by forming

Info

Publication number
JPS63123546A
JPS63123546A JP61269350A JP26935086A JPS63123546A JP S63123546 A JPS63123546 A JP S63123546A JP 61269350 A JP61269350 A JP 61269350A JP 26935086 A JP26935086 A JP 26935086A JP S63123546 A JPS63123546 A JP S63123546A
Authority
JP
Japan
Prior art keywords
forging
axis
section
long
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61269350A
Other languages
Japanese (ja)
Other versions
JPH0710408B2 (en
Inventor
Shinobu Watanabe
忍 渡辺
Kiyoshi Sagie
鷺重 清
Yoichi Kawada
川田 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61269350A priority Critical patent/JPH0710408B2/en
Publication of JPS63123546A publication Critical patent/JPS63123546A/en
Publication of JPH0710408B2 publication Critical patent/JPH0710408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • B21K3/04Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like blades, e.g. for turbines; Upsetting of blade roots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/08Accessories for handling work or tools
    • B21J13/10Manipulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To realize the forming of the long product of nonuniform section using no form by forging the long-sized blank whose both end parts are restrained by two manipulators in each section continuously in the longitudinal direction by the opposing die having the necessary die shape. CONSTITUTION:The upper die 55 and lower die 56 of a forging device 13 have the die shape corresponding to each section dividing a product in the longitudi nal direction, forging in order by dividing the blank 11 held by the clamping arm 14 of an manipulator 12 into the longitudinal direction. In the case, the blank 11 is forged with twisting it by the manipulator 12 with the longitudinal direction as (x) axis, the forging direction (y) axis and the direction at right angles with both axes (z) axis. This twisting restrains a root part N around each (y), (z) axial direction and each (x), (y) and (z) axes, restrains the other end side around each (y), (z) axial direction and each (y), (z) axes and the restraint around the (x) axis of the root part N is performed by giving in advance the twisting angle for the root part N of forging area. The forming of the long-sized product of nonuniform section using no form is thus realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、捩れを有し断面形状が上下左右に非対称であ
る変断面長物の鍛造によって成形する成形方法及び装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a forming method and apparatus for forming by forging a long object with a variable cross section that has a twist and a cross-sectional shape that is vertically and horizontally asymmetric.

〔従来の技術〕[Conventional technology]

従来、このような複雑な形状をした長物製品の成形は、
長物製品の形状全体を形成できる総型を用いた鍛造成形
にておこなっている。従来成形法を第13図〜第16図
に示す。このうち第13〜第15図は材料の成形パター
ンを示し、第16図はその装置を示している。成形方法
について説明する。第1;3図に基本素材、第14図に
鍛造前の第1次素材、第15図は鍛造後の形状を示して
いる6第1コ3図の基本素材は鍛造成形後の体積も一定
であるという考え方に基づき、その体積をみたす形状を
算出する。第14図の丸断面の第1次素材形状は、製品
が長手方向に長い長物であることから鍛造時に素材の材
料が全て幅方向に流れる考え方に基づいて、幅方向の断
面積が最終製品と同一になる寸法で丸断面の径を算出し
ている。この第14図形状の第1次素材を第13図の基
本素材から、機械加工又は鍛造にて成形する。この成形
した第1次素材1を第16図の装置の下型2にセットし
、駆動装置でスクリュー3を介して上型4を下降させ、
上型4・下型2内に第1次索材1を挾み込んで、型に沿
った第15図の製品形状に成形する。装置構成は、全体
フレーム5の内に上型4・下型2が摺動部6をガイドと
してセットされており、上型4はスクリュー:3を介し
て駆動装置7に連結され、昇降できる構造となっている
。この従来の方法及び装置による場合、総型を用いて鍛
造加工をおこなうため、必要とされる加工力が非常に大
きく、また一体物とつくる型の費用が高価となり、さら
に型の製作日数が多くかかる問題がある。
Conventionally, the molding of long products with such complex shapes was
This is done by forging using a mold that can form the entire shape of a long product. A conventional molding method is shown in FIGS. 13 to 16. Of these, FIGS. 13 to 15 show the molding pattern of the material, and FIG. 16 shows the apparatus. The molding method will be explained. Figure 1; Figure 3 shows the basic material, Figure 14 shows the primary material before forging, and Figure 15 shows the shape after forging.6 The basic material in Figure 1 and Figure 3 also has a constant volume after forging. Based on the idea that , the shape that fills that volume is calculated. The primary material shape with a round cross section in Figure 14 is based on the idea that all the raw material flows in the width direction during forging because the product is long in the longitudinal direction, so the cross-sectional area in the width direction is the final product. The diameter of the round cross section is calculated using the same dimensions. This primary material having the shape shown in FIG. 14 is formed from the basic material shown in FIG. 13 by machining or forging. This molded primary material 1 is set in the lower mold 2 of the apparatus shown in FIG. 16, and the upper mold 4 is lowered by the drive device via the screw 3.
The primary rope material 1 is inserted into the upper mold 4 and the lower mold 2 and molded into the product shape shown in FIG. 15 along the molds. The device has a structure in which an upper mold 4 and a lower mold 2 are set in an overall frame 5 using a sliding part 6 as a guide, and the upper mold 4 is connected to a drive device 7 via a screw 3 so that it can be raised and lowered. It becomes. In the case of this conventional method and equipment, the forging process is performed using a complete mold, which requires a very large processing force, the cost of the mold to be made as an integral part is high, and it takes a long time to manufacture the mold. There is such a problem.

また別の加工方法としては、特公昭59−11375号
に記載のように、異なる上型を順次被加工物に加えてい
く方法もあるが、基本的には上型・下型の総型が必要と
なり、高価となる。また加工力も最終的には長物製品の
全ての形状面積に上型が接触するため、それほど小さく
はならない。
Another processing method is to sequentially add different upper dies to the workpiece, as described in Japanese Patent Publication No. 11375/1981, but basically the total dies of the upper and lower dies are necessary and expensive. Furthermore, the processing force does not become so small because the upper mold ultimately comes into contact with the entire shape area of the long product.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明したように従来技術は、成形に要する加工力が
大きく、また型形状が複雑になるため型製作日数がかか
り、型の費用が高価になる問題があった。
As explained above, the conventional technology has the problem that the processing force required for molding is large, and the shape of the mold is complicated, which takes many days to manufacture the mold and increases the cost of the mold.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の鍛造成形方法は、総型を使用せず、長物製品の
長手方向に複数に分割した各区分に対応する型を使用す
る。この区分は長手方向に充分に小さくする必要があり
、したがって分割する数も充分に多いものとする必要が
ある。型は対向する型が使用される。そして長手方向に
連続して各区分毎に鍛造をおこなう、この鍛造は長手方
向に長物製品の断面が変化する箇所においては異なる形
状の型が使用される。長物製品の材料のもとになる素材
の両端の拘束は、鍛造に伴って生ずる曲がりを吸収した
り各断面毎に決められた撲り角をそのつど与えていくた
めに重要である。まず、長手方向をX軸方向とし鍛造加
工方向をy軸方向としX軸方向及びy軸方向と直角方向
を2軸方向として説明する。一端側の拘束は、y軸方向
、Z軸方向、X軸回り、X軸回り、及びX軸回りに拘束
をする。他端側の拘束は、y軸方向、Z軸方向、X軸回
り、及びX軸回りに拘束をおこなう。前記−端側の拘束
のうち、X軸回りの拘束は、鍛造をおこなう区分におけ
る決められた捩り角をあらかじめ与えるためにおこなう
。この捩り角は各断面毎に要求される捩り角を満足する
ように決められ、前記一端側に対する捩れ角として与え
られることになる。
The forging method of the present invention does not use a full die, but instead uses a die corresponding to each segment divided into a plurality of parts in the longitudinal direction of the long product. This division needs to be sufficiently small in the longitudinal direction, and therefore the number of divisions needs to be sufficiently large. The opposite type is used. Then, forging is performed for each section continuously in the longitudinal direction, and in this forging, dies of different shapes are used at locations where the cross section of the long product changes in the longitudinal direction. Constraining both ends of the raw material for long products is important in order to absorb the bending that occurs during forging and to provide a predetermined chamfer angle to each cross section. First, a description will be given assuming that the longitudinal direction is the X-axis direction, the forging direction is the y-axis direction, and the directions perpendicular to the X-axis direction and the y-axis direction are two-axis directions. The one end side is restrained in the y-axis direction, the Z-axis direction, around the X-axis, around the X-axis, and around the X-axis. The other end side is restrained in the y-axis direction, the Z-axis direction, around the X-axis, and around the X-axis. Among the constraints on the negative end side, the constraints around the X-axis are performed in order to give a predetermined torsion angle in the section to be forged. This torsion angle is determined to satisfy the torsion angle required for each cross section, and is given as the torsion angle with respect to the one end side.

本発明の鍛造成形装置は、前記鍛造成形方法の実施に使
用する装置である。すなわち長物製品の長手方向に複数
に分割した各区分に対応する型形状を有した対向する型
は、上型及び下型から成る。
The forging forming apparatus of the present invention is an apparatus used for carrying out the forging forming method. That is, the opposing molds each having a mold shape corresponding to each of the plurality of divisions in the longitudinal direction of the long product are composed of an upper mold and a lower mold.

該型を有する鍛造装置は長手方向に移動できる構成とな
っており、したがって長手方向に連続して各区分毎に鍛
造をおこなうことができる。長物製品の素材の両端の拘
束は、2台のマニピュレータによりおこなわれる。この
マニピュレータは長物製品の端部をクランプするための
クランプアームを有する。二つのクランプアームのうち
、一方は、前記長手方向軸回りすなわちX@回りの任意
の回転角で固定できる構造と成っている。他方のクラン
プアームは、長手方向軸回りすなわちX軸回りに自由に
回転可能な構造を有している。
The forging device having the mold is configured to be movable in the longitudinal direction, so that forging can be carried out in each section continuously in the longitudinal direction. Two manipulators are used to restrain both ends of the long product material. This manipulator has a clamp arm for clamping the end of a long product. One of the two clamp arms has a structure that allows it to be fixed at any rotation angle around the longitudinal axis, that is, around X@. The other clamp arm has a structure that allows it to freely rotate around the longitudinal axis, that is, around the X axis.

〔作用〕[Effect]

長手製品の長手方向に複数に区分した各区分に対応する
型形状を有した対向する型(以下区分型という)を使用
し、長手方向に連続して各区分毎に鍛造をおこなうこと
により、従来のような総型を必要としない。そしてこの
ような区分型による鍛造をおこなうと、上下左右に非対
称となっている断面形状を有する長物製品は鍛造のたび
に上下(y軸方向)あるいは左右(2軸方向)に曲がり
を生じてしまう。また長物製品全体に決められた捩りを
必要とする場合には1区分型のみでうまく加工すにとは
できない。以上の曲がり及び捩りについての問題は長物
製品の両端の拘束を工夫することにより解決している。
By using opposing dies (hereinafter referred to as sectional dies) that have a die shape corresponding to each section divided into multiple sections in the longitudinal direction of a long product, and by performing forging for each section continuously in the longitudinal direction, It does not require a total type like . When forging is performed using such a segmented die, long products with a cross-sectional shape that is asymmetrical vertically and horizontally tend to bend vertically (in the y-axis direction) or horizontally (in the biaxial direction) each time they are forged. . Furthermore, if a fixed twist is required for the entire long product, it is not possible to process the product successfully using only one section type. The above-mentioned problems regarding bending and twisting have been solved by devising restraints at both ends of the long product.

すなわち、上下及び左右の曲がりについては両端におい
てy軸方向及びz軸方向を拘束することにより曲がりを
強制的に防止している。なおX軸方向は、材料の流れが
生じるために拘束はしていない。またX軸回り2軸回り
についても両端において拘束する。X軸回りについては
一端側は、該一端に対する捩れ角をあらかじめ与えてお
き、この与えた状態で鍛造をおこなう、これにより、い
わゆる塑性関節という現象によって、鍛造をおこなう区
分にのみ該捩れ角が与えられることになる。すなわち、
鍛造がおこなわれる瞬間にはその区分においては材料は
降伏状態になっており捩れに対しても弾性を失っている
からである。なお、鍛造加工の方向は常に一定の方向、
例えば上下方向にのみおこなわれる。
That is, vertical and horizontal bending is forcibly prevented by restraining the y-axis direction and the z-axis direction at both ends. Note that the X-axis direction is not restricted because material flow occurs. Further, the two ends around the X axis are also restrained at both ends. Regarding the X-axis, a torsion angle for one end is given in advance, and forging is performed in this given state.This causes the torsion angle to be given only to the section to be forged, due to a phenomenon called a so-called plastic joint. It will be done. That is,
This is because at the moment when forging is performed, the material in that section is in a yield state and has lost its elasticity against torsion. Note that the direction of forging is always constant,
For example, it is performed only in the vertical direction.

他端側のX軸曲わりの拘束はおこなわず鍛造の際に素材
が自由に回動できる。
The X-axis bending on the other end side is not restricted, allowing the material to rotate freely during forging.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第12図により説明
する。第2図〜第6図は素材から製品への形状の変化を
あられす、第5図に本発明で製作する最終製品の形状を
示している。該断面形状は非対称をしており、また長手
方向に例えばB断面ではOL@、C断面ではθ2@とい
うように根部Nに対して捩れ形状を有している。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 12. 2 to 6 show the change in shape from raw material to product, and FIG. 5 shows the shape of the final product manufactured by the present invention. The cross-sectional shape is asymmetrical, and has a twisted shape with respect to the root N in the longitudinal direction, for example, OL@ in the B section and θ2@ in the C section.

成形方法として、まず第5図の最終製品形状から全体の
体積を算出し、第2図の形状の丸材(直径中り、長さL
L)で体積が同一となるように基本素材を切断する。な
お、この際、基本素材は丸形状でも角形状でもよい。
As for the forming method, first calculate the overall volume from the final product shape shown in Figure 5, and then create a round material (diameter medium, length L) with the shape shown in Figure 2.
Cut the basic material so that the volumes are the same at L). In this case, the basic material may have a round shape or a square shape.

この基本素材を第3図に示す第1次素材に成形する。成
形は、接触する部分がフラットな上型。
This basic material is formed into the primary material shown in FIG. Molding is done using an upper die with flat contact areas.

下型を用い、長手方向には充分幅のせまい型として、上
型、下型にて基本素材をはさんで成形する。
Using the lower mold, the basic material is sandwiched between the upper mold and the lower mold to form a narrow mold with sufficient width in the longitudinal direction.

該第1次素材は第5図最終製品の断面における幅Wo、
Boと同一寸法の幅を有し、最終製品の断面における高
さの寸法を包含する高さhoを有し、WoXhoの矩形
断面となる(図中Ao * Co断面参照)。この矩形
断面から製品の断面積を差引いた量(斜線部)が、鍛造
成形の際に全て長手方向に流動する。また体積一定の原
理により長さL2を決定する。この第1次素材の幅寸法
及び厚み寸法が、長手方向にWo −+Bo 、ho→
soに変化する場合は、めあすとして、これを直線的に
結んで成形する。
The primary material has a width Wo in the cross section of the final product in Figure 5,
It has the same width as Bo, has a height ho that includes the height dimension in the cross section of the final product, and has a rectangular cross section of WoXho (see the Ao*Co cross section in the figure). The amount obtained by subtracting the cross-sectional area of the product from this rectangular cross-section (the shaded area) entirely flows in the longitudinal direction during forging. Further, the length L2 is determined based on the principle of constant volume. The width and thickness of this primary material are as follows in the longitudinal direction: Wo −+Bo, ho→
If it changes to so, it is formed by connecting it in a straight line as a mesh.

次に第4図で示す第2次素材を成形する。この成形は、
1!品の長手方向に複数に分割した各区分に対応する型
形状を有する型(区分型という)による。この区分型は
上下と下型がら成り長手方向寸法は充分小さい長さの型
とする。この区分型を用いて第1次素材を間に挾み込ん
で成形をおこなう、ある断面位置の成形が完了したら長
手方向の位置を変えて連続して各区分毎に順次成形して
いく。長手方向で極端に断面が変化する場合は、型を交
換することにより対応する。それ以外は上型・下型のス
トローク位置をコントロールして同一の型を使用して成
形をおこなうことができる。この際製品の断面形状が非
対称であるため上下方向(y軸方向)、左右方向(2軸
方向)に曲がりを生じるが、これを型自体の拘束及び第
2次素材の両端をy軸方向、z軸方向の拘束によって防
止する。
Next, the secondary material shown in FIG. 4 is molded. This molding is
1! It is based on a mold (referred to as a segmented type) that has a mold shape that corresponds to each division divided into a plurality of parts in the longitudinal direction of the product. This segmented mold consists of an upper, lower and lower mold, and the length in the longitudinal direction is sufficiently small. Using this segmented die, the primary material is sandwiched between the sections to form the material. Once the forming of a certain cross-sectional position is completed, the position in the longitudinal direction is changed and each section is successively formed. If the cross section changes drastically in the longitudinal direction, replace the mold. Otherwise, the same mold can be used for molding by controlling the stroke positions of the upper and lower molds. At this time, since the cross-sectional shape of the product is asymmetrical, bending occurs in the vertical direction (y-axis direction) and left-right direction (biaxial direction), but this can be prevented by restraining the mold itself and bending both ends of the secondary material in the y-axis direction. This is prevented by constraint in the z-axis direction.

次に第5図の最終製品を成形するが、あらかじめ第4図
では最終成形寸法に対し、1〜2+s+wの仕上代を残
した形としておく、第5図の成形においては、根部Nを
基準として考え、例えば長手方向B断面にて、捩り角θ
1を必要とする場合、第2次素材全体を01に回転させ
、この状態で加工部、Bz断面の位置に上型と下型が根
部Nに対して0“の回転位置になるようセットし、鍛造
成形する。このとき第2次素材は仕上代の分(hl−h
o 、 Sr  So )だけ鍛造加工を受は材料は降
伏状態となる。そして、この降伏状態において前記捩り
角01であられされる捩りを受けるので小さな捩り力に
より捩りが形成される。このとき降伏状態になっていな
い他の区分には捩りは形成されず、必要とされるその断
面における捩り角を正確に形成することができる。なお
、上下方向の下降応力が捩り方向(X軸回り)の動きに
対しても降伏状態を作ってしまうことについては、ミー
ゼスの降伏条件の式によって簡単に説明できる。まず鍛
造のおこなわれる区分における材料の微小立方体を取り
出して第6図のように応力をあられす。
Next, the final product shown in Fig. 5 is molded. In Fig. 4, a finishing allowance of 1 to 2 + s + w is left for the final molded dimensions. In the molding shown in Fig. 5, the root part N is used as a reference. Consider, for example, in the longitudinal direction B cross section, the torsion angle θ
If 1 is required, rotate the entire secondary material to 01, and in this state, set the upper and lower molds at the processing section and Bz cross section so that they are at the rotational position of 0'' with respect to the root N. , forge-form.At this time, the secondary material is used for the finishing allowance (hl-h
o, SrSo), the material becomes in a yield state. In this yield state, the torsion is applied at the torsion angle 01, so that the torsion is formed by a small torsional force. At this time, no twist is formed in the other sections that are not in the yield state, and the required twist angle in the cross section can be accurately formed. Note that the fact that the downward stress in the vertical direction creates a yield state also with respect to movement in the torsional direction (around the X axis) can be easily explained using the Mises yield condition equation. First, a microcube of material in the section where forging will be performed is taken out and stressed as shown in Figure 6.

このとき材料の降伏の条件は以下の式によってあられさ
れる。
At this time, the conditions for material yield are expressed by the following formula.

(σX−σy)”+(σy−σz)”+(σ2−σx)
z+6 (τyz”+ f 2X”+ τxy”)= 
2 Y”ここでYは引張降伏応力である。
(σX-σy)"+(σy-σz)"+(σ2-σx)
z+6 (τyz”+ f 2X”+ τxy”)=
2 Y'' where Y is the tensile yield stress.

この式かられかるように、上下方向の鍛造による加工力
、すなわち応力σyが充分に大きくなれば捩り力に関係
するτxyHτ、2は小さくても材料の降伏状態が得ら
れる。このように鍛造のおこなわれている区分において
材料が捩り等の加工力に抵抗を失ってしまう状態は塑性
関節とよばれている。
As can be seen from this equation, if the working force due to forging in the vertical direction, that is, the stress σy, becomes sufficiently large, a yield state of the material can be obtained even if τxyHτ,2, which is related to the torsional force, is small. This state in which the material loses resistance to processing forces such as torsion in the section where forging is performed is called a plastic joint.

この区分型による鍛造加工を長手位置に連続しておこな
うことにより、a品全体に正確な捩り形状を与える。こ
の際、鍛造の成される仕上代の量は小さいが、断面が非
対称のため、第4図の場合と同様に曲がりを生じる。よ
って第2次素材を拘束し曲がりを防止すると同時にX軸
回りの回転は自由にして上型、下型で成形時に第2次素
材の先端が回転できる方式とする。
By continuously performing the forging process using this segmented die in the longitudinal position, an accurate twisted shape is given to the entire item A. At this time, although the amount of finishing allowance achieved by forging is small, since the cross section is asymmetrical, bending occurs as in the case of FIG. 4. Therefore, the secondary material is restrained and prevented from bending, and at the same time, rotation around the X axis is made free so that the tip of the secondary material can rotate during molding with the upper and lower molds.

次に本加工方法を実施するための装置の一例を説明する
。第1図は全体図を示しているが、装置構成は、左・右
に素材11をハンドリングするマニピュレータ12、そ
の間に素材11を成形する鍛造袋[13を設けている。
Next, an example of an apparatus for carrying out this processing method will be explained. Although FIG. 1 shows an overall view, the device configuration includes manipulators 12 for handling the material 11 on the left and right sides, and a forging bag [13 for forming the material 11] between them.

マニピュレータ12は左・右略同−のものであり、第7
図及び第8図に詳細を示す。マニピュレータ12は、X
軸方向。
The left and right manipulators 12 are approximately the same, and the seventh
Details are shown in the figure and FIG. The manipulator 12 is
Axial direction.

y軸方向、Z軸回りに動けるクランプアーム14を有し
ている。
It has a clamp arm 14 that can move in the y-axis direction and around the Z-axis.

まず素材をクランプするクランプアーム14の構造は、
クランプ当接部15がビン16を介してクランプアーム
14に連絡され、クランプアーム14はビン17を介し
て、クランプ軸18に連絡されクランプ軸18は、クラ
ンプシリンダ19に連絡されている。またクランプアー
ム14は、ピン20により位置を決められており、ピン
2oは面板21に固定されている。面板21はクッショ
ン材22を間に挾んでフレーム23に支持されている。
First, the structure of the clamp arm 14 that clamps the material is as follows.
The clamp abutting portion 15 is connected to a clamp arm 14 via a pin 16, the clamp arm 14 is connected to a clamp shaft 18 through a pin 17, and the clamp shaft 18 is connected to a clamp cylinder 19. Further, the position of the clamp arm 14 is determined by a pin 20, and the pin 2o is fixed to the face plate 21. The face plate 21 is supported by a frame 23 with a cushion material 22 in between.

クランプ軸18はブツシュ24をガイドとしてX軸方向
に移動でき、キー25を介して同軸力も素材に伝えられ
る構成となっている。
The clamp shaft 18 can move in the X-axis direction using the bush 24 as a guide, and the coaxial force is also transmitted to the material via the key 25.

X軸回りの回動は、クランプ軸18及び回転軸26全体
を同軸させるものであり、回動用モータ27により、ギ
ア28.28’ を介しておこなう。
Rotation around the X-axis is achieved by coaxially coaxially rotating the entire clamp shaft 18 and rotation shaft 26, and is performed by a rotation motor 27 via gears 28 and 28'.

回転軸26の回転がブツシュ24を介してクランプ軸1
82面板21に伝えられ、クランプアーム14を回転さ
せる。また回転軸26はベアリング30を介して、フレ
ーム31に保持されている。
The rotation of the rotating shaft 26 is transmitted to the clamp shaft 1 through the bushing 24.
It is transmitted to the 82-sided plate 21 and rotates the clamp arm 14. Further, the rotating shaft 26 is held by a frame 31 via a bearing 30.

y軸方向の移動は、クランプ軸18及び回転軸26、フ
レーム31全体を移動させる。移動モータ32により移
動軸33を介してフレーム31を摺動面34をガイドし
てy軸方向に移動させる。
Movement in the y-axis direction moves the clamp shaft 18, rotation shaft 26, and frame 31 as a whole. The frame 31 is guided by the sliding surface 34 and moved in the y-axis direction by the moving motor 32 via the moving shaft 33.

またZ軸方向の移動は、マニピュレータ全体を移動させ
る方式をとっており、駆動モータ35により駆動軸36
を介してサドル37を移動させる。
Furthermore, movement in the Z-axis direction is achieved by moving the entire manipulator, and the drive shaft 36 is moved by the drive motor 35.
The saddle 37 is moved through.

サドル37には摺動面が取付けてあり台座38上を移動
する。
A sliding surface is attached to the saddle 37 and moves on a pedestal 38.

X軸方向の移動はマニピュレータ全体を移動させるもの
であり、駆動用シリンダ39により摺動面をガイドとし
て駆動軸40を介して台座38を移動させることにより
おこなう0以上の機能を有するマニピュレータが対向し
て設置しである。
Movement in the X-axis direction is to move the entire manipulator, and is performed by moving the pedestal 38 via the drive shaft 40 using the sliding surface as a guide by the drive cylinder 39. It is installed.

次に鍛造機の構成を第9図において説明すると、全体フ
レーム50の内部に、上型駆動シリンダ51と下型駆動
シリンダ52がフランジ53゜54を介して取付けてあ
り、それらの先端部にそれぞれ上型55.下型56が取
付けである。また型はそれぞれ摺動板57をガイドとし
て上下移動できる構造となっている。また全体フレーム
50のサイドに上型及び下型の近傍において左右方向に
別々に移動できるガイド部材58を、駆動シリンダ59
の先端に設置しである。
Next, the configuration of the forging machine will be explained with reference to FIG. 9. Inside the overall frame 50, an upper die drive cylinder 51 and a lower die drive cylinder 52 are attached via flanges 53 and 54, and their tips are respectively attached. Upper mold 55. The lower die 56 is attached. Moreover, each mold is structured to be able to move up and down using a sliding plate 57 as a guide. Further, a guide member 58 that can be moved separately in the left and right direction near the upper mold and the lower mold is installed on the side of the overall frame 50, and a drive cylinder 59 is provided.
It is installed at the tip of the.

動作を第10図〜第12図において説明すると、まず基
本素材(第2図)を左右のマニピュレータにセットし、
クランプシリンダ19にてクランプアーム14にてクラ
ンプをおこなう、この際、基本素材の端面をストッパ1
8′に接触させて位置決めをおこなう。この状態で第1
0図に示すような、当り面がフラットな型を上・下に用
いて、丸形状から所定の矩形形状に成形する。これによ
り同一の成形装置が前加工にも使用できる。この際、上
・下2方向からの成形のため、基本素材を90゜回転さ
せて矩形の成形をおこなう、また断面がテーバ状になる
場合は、駆動シリンダ32等が任意の位置をコントロー
ルすることが可能な機能となっているので、この上型・
下型の位置決めを連絡しておこなうことにより、テーバ
形状を成形する。
To explain the operation with reference to Figures 10 to 12, first, the basic material (Figure 2) is set on the left and right manipulators,
Clamping is performed by the clamp arm 14 using the clamp cylinder 19. At this time, the end surface of the basic material is clamped by the stopper 1.
8' for positioning. In this state, the first
Using molds with flat contact surfaces as shown in Figure 0 for the upper and lower parts, a round shape is molded into a predetermined rectangular shape. This allows the same molding device to be used for pre-processing as well. At this time, the basic material is rotated 90 degrees to form a rectangular shape because it is formed from two directions, top and bottom. Also, if the cross section becomes tapered, the drive cylinder 32 etc. can control the arbitrary position. This upper type is a function that allows
By communicating the positioning of the lower die, the tapered shape is formed.

また、この際鍛造時に材料が長手方向に流動するが、こ
の衝撃力をダンパー22にて緩和する方式とする。この
方式で素材を長手方向に位置変化させてやることにより
、鍛造位置を変えて成形を順次おこなっていくことによ
り、第1次素材(第3図)を成形する。この際マニピュ
レータにてクランプしている部分を成形するときは、マ
ニピュレータをアングランプし、クランプしていた部分
を成形するものとする。
Furthermore, although the material flows in the longitudinal direction during forging, this impact force is alleviated by the damper 22. By changing the position of the material in the longitudinal direction using this method, the first material (Fig. 3) is formed by sequentially performing forming while changing the forging position. At this time, when molding the part clamped by the manipulator, the manipulator is unclamped and the clamped part is molded.

次に、第1次素材から、第2次素材(第4図)を製作す
る。その際、各区分における製品断面形状に合わせた形
状を有する型によって成形をおこなう、この場合、基本
的な加工方法は、前述の第1次素材の成形と同じである
が、相違点は第12図に示すように成形する断面が非対
称断面成形であることである。これによって生ずる曲が
りを防止するため第9図に示すように、第1次素材の先
端側の幅方向(2軸方向)をガイド部材58゜58で位
置決めをおこなう、このガイド58及び素材の両端に設
けたマニピュレータにより変形を拘束し、ストレートに
製作する。ただし、この場合の成形は最終製品形状に対
して1〜2mmの仕上代を残して成形する。
Next, a secondary material (Fig. 4) is produced from the primary material. At that time, molding is performed using a mold with a shape that matches the cross-sectional shape of the product in each category. In this case, the basic processing method is the same as the molding of the primary material described above, but the difference is that As shown in the figure, the cross section to be molded is asymmetric cross-sectional molding. In order to prevent the bending caused by this, as shown in FIG. The manipulator provided restricts deformation and produces a straight product. However, the molding in this case is performed with a finishing allowance of 1 to 2 mm left over from the final product shape.

次に最終製品(第5図)を成形する加工について説明す
る。この場合、根部Nを基準とし、長手方向の任意位置
、例えばB断面で01°の捩りを必要とする場合、根部
Nを回動用モータ27にて、ギア28.28’ を介し
て01°回転させる。この状態のマニピュレータの状態
を第8図に示す。
Next, the process of molding the final product (FIG. 5) will be explained. In this case, with the root N as a reference, if a 01° twist is required at any position in the longitudinal direction, for example at cross section B, the root N is rotated 01° by the rotation motor 27 via the gears 28 and 28'. let The state of the manipulator in this state is shown in FIG.

またこのときの鍛造前の鍛造区分を第11図に示す。第
2次素材がθ1°回転した状態で、鍛造部の上型55・
下型56は0°の状態(水平状態)にセットしてあり、
この状態で鍛造成形される。
Furthermore, the forging sections before forging at this time are shown in FIG. With the secondary material rotated by θ1°, the upper mold 55 of the forging section
The lower mold 56 is set at 0° (horizontal state),
In this state, it is forged.

成形状態を第12図に示す、この部分では0°状態であ
り、これにより、基準位置との間でθ1゜捩れ成形をお
こなう6鍛造部作によってこの部分は降伏状態になって
いるため、容易に換り成形がされる。
The forming state is shown in Fig. 12. This part is in a 0° state, and this part is in a yield state by the 6 forging parts that twist θ1° with respect to the reference position, so it is easy to Molding is performed instead.

ここでマニピュレータのy軸方向、Z軸方向及びX軸回
りの動きは、鍛造位置に対して、素材の位置を変えたり
、捩り中心軸を移動させるのに用いる0本実施例によれ
ば、同一装置によって任意に変化する断面と任意の捩り
形状を有する長物製品の成形をおこなうことができる効
果がある。
Here, the movements of the manipulator in the y-axis direction, the Z-axis direction, and around the This method has the advantage that it is possible to form a long product having a cross section that changes arbitrarily and an arbitrary twist shape depending on the apparatus.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、長手方向に複数に分割した型(区分型
)を使用でき鍛造加工の加工力を充分小さくでき、鍛造
装置の設備費を低減できる。また区分型を用いるため型
形状を簡単化でき、このため型製作工数及び型の費用も
低減できる。また型形状については、総型の場合、捩れ
形状のみが変った場合でも、型を再製しなければならな
い6本発明では、マニピュレータの回転角にて模りを制
御できるので型は同一で可能となる。また総型では、捩
れ形状を有する場合加工力の分布が不均一となり型寿命
が極端に短くなるが、本発明では区分型が加工力を均一
に受けるので、型寿命が長い。
According to the present invention, a mold divided into a plurality of parts in the longitudinal direction (segmented mold) can be used, the processing force for forging can be sufficiently reduced, and the equipment cost of the forging device can be reduced. Further, since a segmented mold is used, the mold shape can be simplified, and therefore the man-hours for manufacturing the mold and the cost of the mold can be reduced. Regarding the mold shape, in the case of a complete mold, even if only the torsion shape changes, the mold must be remanufactured.6 With the present invention, the mold can be controlled by the rotation angle of the manipulator, so it is possible to keep the mold the same. Become. Furthermore, in the case of a full mold having a twisted shape, the distribution of processing force becomes uneven and the mold life is extremely shortened, but in the present invention, the segmented mold receives the processing force uniformly, so the mold life is long.

また、本発明では、基本素材から最終製品まで同一装置
にておこなえる効果があり1作業性が向上する効果があ
る。
Furthermore, the present invention has the advantage that the same equipment can be used to process everything from basic materials to final products, thereby improving work efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図〜第5図に示す実施例を実施するに際し
使用する成形装置の全体正面図、第2図〜第5図は本発
明の一実施例を示すものであり素材から製品へ形状が変
化していく様子を示す図、第6図は鍛造加工を受ける材
料中の微小立方体に働く応力を示す図、第7図は第6図
のマニピュレータの拡大正面図、第8図は第7図の側面
図、第9図は第6図の鍛造装置の側面図、第10図〜第
12図は第9図の鍛造装置によって素材の断面が変化し
ていく様子をあられす図、第13図〜第15図は従来の
方法によって素材の形状が変化する状態をあられす図、
第16図は従来の成形装置をあられす図である。 11・・・素材、12・・・マニピュレータ、13・・
・鍛造装置、14・・・クランプアーム、55・・・上
型、56・・・下型、58・・・ガイド部材。
Fig. 1 is an overall front view of a molding device used in carrying out the embodiment shown in Figs. Figure 6 is a diagram showing the stress acting on a microcube in the material undergoing forging processing, Figure 7 is an enlarged front view of the manipulator in Figure 6, and Figure 8 is a diagram showing how the shape changes. 7 is a side view, FIG. 9 is a side view of the forging device shown in FIG. 6, and FIGS. 10 to 12 are diagrams showing how the cross section of the material changes with the forging device shown in FIG. Figures 13 to 15 are diagrams showing how the shape of the material changes using the conventional method;
FIG. 16 is a schematic diagram of a conventional molding device. 11...Material, 12...Manipulator, 13...
- Forging device, 14... Clamp arm, 55... Upper die, 56... Lower die, 58... Guide member.

Claims (1)

【特許請求の範囲】 1、長手方向に断面形状が変化し断面形状は上下左右に
非対称であり全体に捩れを有する長物製品を鍛造によつ
て成形する方法において、 長物製品の長手方向に複数に分割した各区分に対応する
型形状を有した対向する型を使用し、長手方向に連続し
て各区分毎に鍛造をおこない、長物製品の素材の両端の
拘束は、長手方向をx軸方向とし鍛造加工方向をy方向
としx軸方向及びy軸方向と直角の方向をz軸方向とし
て、一端側をy軸方向z軸方向x軸回りy軸回りz軸回
りに拘束し他端側をy軸方向z軸方向y軸回りz軸回り
に拘束し、前記一端側のx軸回りの拘束は鍛造をおこな
う区分における該一端側に対する捩れ角をあらかじめ与
えておこなうことを特徴とする変断面長物の鍛造成形方
法。 2、特許請求の範囲第1項において、素材は前加工を加
えたものを用い、この前加工は、まず角形状の第1素材
を成形し、次に特許請求の範囲第1項の型と同一の型を
使用しy軸方向に所定の仕上代を残し一端側のx軸回り
の拘束は捩れ角を与えずに鍛造加工をおこなうものであ
る変断面長物の鍛造成形方法。 3、特許請求の範囲第2項において、第1次素材の角形
状は、z軸方向の寸法すなわち幅寸法は製品の幅寸法と
同一とする変断面長物の鍛造成形方法。 4、長手方向に断面形状が変化し断面形状は上下左右に
非対称であり全体に捩れを有する長物製品を鍛造によつ
て成形する装置において、 長物製品の長手方向に複数に分割した各区分に対応する
型形状を有した上型及び下型を備えて前記長手方向に移
動することにより各区分毎に鍛造をおこなう鍛造装置と
、長物製品の両端をクランプするクランプアームを有す
る2台のマニピュレータとから成り、両クランプアーム
のうち一方は前記長手方向軸回りの任意の回転角で固定
でき他方は長手方向軸回りに自由に回転可能である変断
面長物の鍛造成形装置。 5、特許請求の範囲第4項において、鍛造装置は上型及
び下型の近傍に長物製品に接触して左右方向の曲りを防
止するガイド部材を有する変断面長物の鍛造成形装置。 6、特許請求の範囲第4項において、クランプアームは
長物製品の長手方向、上下方向及び左右方向に機能する
弾性材から成るダンパを有する変断面長物の鍛造成形装
置。
[Scope of Claims] 1. A method for forming a long product by forging, the cross-sectional shape of which changes in the longitudinal direction, the cross-sectional shape is asymmetrical in the vertical and horizontal directions, and has twist throughout the product, comprising: Using opposing dies with mold shapes corresponding to each divided section, forging is performed for each section continuously in the longitudinal direction, and both ends of the material of the long product are restrained with the longitudinal direction as the x-axis direction. The forging process direction is the y direction, and the direction perpendicular to the x-axis direction and the y-axis direction is the z-axis direction, and one end is restrained in the y-axis direction, z-axis direction, around the x-axis, around the y-axis, and around the z-axis, and the other end is A long article with a variable cross section, characterized in that it is constrained in the axial direction, the z-axis, the y-axis, the z-axis, and the constraint around the x-axis on the one end side is performed by giving a torsion angle in advance to the one end side in the section to be forged. Forging method. 2. In claim 1, the material is subjected to pre-processing, and this pre-processing involves first molding a square-shaped first material, and then molding the mold according to claim 1. A forging method for a long article with a variable cross section, using the same mold, leaving a predetermined finishing allowance in the y-axis direction, and constraining one end around the x-axis without giving a torsion angle. 3. The method for forging and forming a long article with a variable cross-section according to claim 2, wherein the rectangular shape of the primary material has a dimension in the z-axis direction, that is, a width dimension that is the same as the width dimension of the product. 4. In a device that uses forging to form a long product whose cross-sectional shape changes in the longitudinal direction, the cross-sectional shape is asymmetrical in the vertical and horizontal directions, and has twist throughout, it is compatible with each division of the long product divided into multiple parts in the longitudinal direction. A forging device that forges each section by moving in the longitudinal direction, and two manipulators that have clamp arms that clamp both ends of a long product. A forging and forming apparatus for a long object with a variable cross section, in which one of the two clamp arms is fixed at an arbitrary rotation angle around the longitudinal axis, and the other is freely rotatable around the longitudinal axis. 5. In claim 4, the forging device is a forging device for forging long objects with variable cross-sections, which has guide members near the upper and lower dies that come into contact with the long objects to prevent them from bending in the left-right direction. 6. The forging forming apparatus for a variable cross-section elongated article according to claim 4, wherein the clamp arm has a damper made of an elastic material that functions in the longitudinal direction, vertical direction, and left/right direction of the elongated article.
JP61269350A 1986-11-12 1986-11-12 Method and apparatus for forging of variable cross section Expired - Lifetime JPH0710408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269350A JPH0710408B2 (en) 1986-11-12 1986-11-12 Method and apparatus for forging of variable cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269350A JPH0710408B2 (en) 1986-11-12 1986-11-12 Method and apparatus for forging of variable cross section

Publications (2)

Publication Number Publication Date
JPS63123546A true JPS63123546A (en) 1988-05-27
JPH0710408B2 JPH0710408B2 (en) 1995-02-08

Family

ID=17471152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269350A Expired - Lifetime JPH0710408B2 (en) 1986-11-12 1986-11-12 Method and apparatus for forging of variable cross section

Country Status (1)

Country Link
JP (1) JPH0710408B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0610510A1 (en) * 1992-06-04 1994-08-17 TJURIN, Valery Alexandrovich Method of radial forging of blank
US7350389B2 (en) 2003-06-06 2008-04-01 Langenstein & Schemann Gmbh Method and device for reshaping a work piece with automatic handling
WO2013094327A1 (en) * 2011-12-21 2013-06-27 株式会社日立製作所 Free forging method and forging device
US20130298401A1 (en) * 2010-09-27 2013-11-14 Hitachi Metals, Ltd. Manufacturing method for blade material and manufacturing device for blade material
EP2924244A4 (en) * 2012-12-19 2016-03-09 Mitsubishi Hitachi Power Sys Method for manufacturing turbine rotor blade
JP2017094392A (en) * 2015-09-17 2017-06-01 ライストリッツ トゥルビネンテヒニーク ゲーエムベーハーLeistritz Turbinentechnik GmbH METHOD FOR PRODUCING PREFORM FROM α+γ TITANIUM ALUMINIDE ALLOY FOR PRODUCING COMPONENT WITH HIGH LOAD-BEARING CAPACITY FOR PISTON ENGINES AND GAS TURBINES

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0610510A1 (en) * 1992-06-04 1994-08-17 TJURIN, Valery Alexandrovich Method of radial forging of blank
EP0610510A4 (en) * 1992-06-04 1994-12-07 Valery Alexandrovich Tjurin Method of radial forging of blank.
US7350389B2 (en) 2003-06-06 2008-04-01 Langenstein & Schemann Gmbh Method and device for reshaping a work piece with automatic handling
US20130298401A1 (en) * 2010-09-27 2013-11-14 Hitachi Metals, Ltd. Manufacturing method for blade material and manufacturing device for blade material
US9221095B2 (en) * 2010-09-27 2015-12-29 Hitachi Metals, Ltd. Manufacturing method for a blade material
WO2013094327A1 (en) * 2011-12-21 2013-06-27 株式会社日立製作所 Free forging method and forging device
EP2924244A4 (en) * 2012-12-19 2016-03-09 Mitsubishi Hitachi Power Sys Method for manufacturing turbine rotor blade
US9919392B2 (en) 2012-12-19 2018-03-20 Mitsubishi Hitachi Power Systems, Ltd. Method for manufacturing turbine rotor blade
JP2017094392A (en) * 2015-09-17 2017-06-01 ライストリッツ トゥルビネンテヒニーク ゲーエムベーハーLeistritz Turbinentechnik GmbH METHOD FOR PRODUCING PREFORM FROM α+γ TITANIUM ALUMINIDE ALLOY FOR PRODUCING COMPONENT WITH HIGH LOAD-BEARING CAPACITY FOR PISTON ENGINES AND GAS TURBINES

Also Published As

Publication number Publication date
JPH0710408B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US8733143B2 (en) Method of incremental forming with successive wrap surfaces
CN102343386B (en) The progressively method of shaping workpiece
JP3787900B2 (en) Sequential stretch forming equipment for metal plates
CN109127913B (en) Multi-section around own axis controls profile three-dimensional bending forming mold
EP1087278A2 (en) Method of generating control data for bending and torsion apparatuses
US5307659A (en) Plate bending machine
DE102006022855A1 (en) Gripping DEvice for receiving object in DEtachably fixed manner, has outer or inner peripheral edge over object outer contour and grip body, which has matching contact surface on peripheral edge of object
JPS63123546A (en) Method and device for forming long body of nonuniform section by forming
Lamminen Incremental sheet forming with an industrial robot–forming limits and their effect on component design
WO2016021578A1 (en) Roll-bending processing method and processing device
Paniti et al. Novel incremental sheet forming system with tool-path calculation approach
Hesse et al. Controlling product stiffness by an incremental sheet metal forming process
CN110303090B (en) Automatic shape adjusting system for section bar multipoint stretch bending die head body
US20010035279A1 (en) Method and apparatus for the working of cavity walls of continuous casting molds
JP4525547B2 (en) Sheet metal product manufacturing method
Singh et al. Experimental investigation on elastic spring back in deformation machining bending mode
EP0059199A1 (en) Method and device for shaping a surface of a workpiece.
US6850813B1 (en) Method of producing a wobble die
Wernicke et al. Effect of multiple forming tools on geometrical and mechanical properties in incremental sheet forming
JP4792172B2 (en) Hypoid gear lead analysis method, computer-readable recording medium recording a hypoid gear lead analysis program, hypoid gear lead analysis device, hypoid gear molding mold manufacturing method, and hypoid gear release method
JP2020032433A (en) Rolling molding apparatus
KR102674858B1 (en) Smart jig for workpiece processing
JPS59174246A (en) Method and device for forming turbine blade by pressing
JP2001191122A (en) Control data preparation method for pressing through bending machine
COVACIU et al. Design and manufacturing of a 6 degree of freedom robotic arm