JPS63123545A - Manufacture of bar stock of dissimilar diameter - Google Patents

Manufacture of bar stock of dissimilar diameter

Info

Publication number
JPS63123545A
JPS63123545A JP26918886A JP26918886A JPS63123545A JP S63123545 A JPS63123545 A JP S63123545A JP 26918886 A JP26918886 A JP 26918886A JP 26918886 A JP26918886 A JP 26918886A JP S63123545 A JPS63123545 A JP S63123545A
Authority
JP
Japan
Prior art keywords
roll
pass line
diameter
rolls
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26918886A
Other languages
Japanese (ja)
Other versions
JPH0581322B2 (en
Inventor
Kazuyuki Nakasuji
中筋 和行
Koichi Kuroda
浩一 黒田
Chihiro Hayashi
千博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26918886A priority Critical patent/JPS63123545A/en
Publication of JPS63123545A publication Critical patent/JPS63123545A/en
Publication of JPH0581322B2 publication Critical patent/JPH0581322B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the bar of dissimilar diameter in the necessary length with good accuracy by using the slanting rolling mill made by biholding the rolls in the necessary number by facing to a pass line and forming the bar of dissimilar diameter from a cylindrical blank by adjusting the distance between the roll and pass line with oil pressure. CONSTITUTION:A slanting rolling mill 20 faces three or four conical rolls 1... around a pass line and each roll shaft le... is supported by biholding it with checks 23, 24 at the inlet side and outlet side respectively. This rolling mill 20 moves the cylindrical hot blank 10 bitten between the rolls 1... in the shaft length direction with driving it by rotating around the shaft center line thereof and works the dissimilar diameter bar 11 whose outer diameter varies at the position in the shaft length direction. In case of working, the distance between each roll 1... and the pass line is adjusted via the chocks 23, 24 by the hydraulic cylinders 25, 26 fixed to a rotary and stationary housings 21, 22 respectively. The dissimilar diameter bar in the necessary length can be thus manufactured with good dimensional accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、円柱状の素材を加工して外径が軸長方向位置
で異なる異径棒鋼等の異径棒材を製造する方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a different diameter bar such as a different diameter steel bar whose outer diameter differs depending on the position in the axial direction by processing a cylindrical material.

〔従来技術〕[Prior art]

異径棒鋼は、軸長方向位置で外径が異なるものであり、
従来、丸鋼片を熱間鍛造により外径を軸長方向位置で変
えて、外表面を段付状に成形してこれを所定寸法に切削
することにより製造していた。
Different diameter steel bars have different outer diameters depending on their position in the axial direction.
Conventionally, round steel pieces have been manufactured by hot forging to change the outer diameter in the axial direction position, forming the outer surface into a stepped shape, and cutting this into a predetermined size.

この方法による場合には、熱間鍛造時、ハンマによる間
欠的な打撃作業にて騒音が発生するという難点がある。
This method has the disadvantage that noise is generated by intermittent hammering during hot forging.

この難点を解消して異径棒鋼を製造する方法としては、
へりカルロール加工法がある。この方法は、第9図に示
す如くパスライン周りに配した3個のロール31.31
.31の間に円柱状の素材35の先端部を噛込ませ、先
端部をチャック34にて挟持したのち素材35を引抜く
と共に、ロールとパスラインとの距離を素材35の軸長
方向位置に応じて変更して異径棒鋼36を製造する方法
である。
As a method for solving this difficulty and producing steel bars of different diameters,
There is a helical roll processing method. This method involves three rolls 31, 31 placed around the pass line as shown in Figure 9.
.. The tip of a cylindrical material 35 is bitten between the holes 31 and 31, and after the tip is clamped by the chuck 34, the material 35 is pulled out, and the distance between the roll and the pass line is adjusted to the position in the axial direction of the material 35. This is a method of manufacturing steel bars 36 of different diameters by changing the method accordingly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記方法による場合は、ロール31を支
持する軸31aが片持型式であるため(第9図参照)、
加工中に軸31a等が撓み、異径棒鋼の寸法精度が悪く
、またチャック34にて引抜くため素材35の引抜可能
長さが設備上定まり、長尺の異径棒鋼36を製造できな
いという問題点があった。
However, in the case of the above method, since the shaft 31a supporting the roll 31 is of a cantilever type (see FIG. 9),
The problem is that the shaft 31a etc. are bent during processing, the dimensional accuracy of the steel bar of different diameter is poor, and the length that can be pulled out of the material 35 is determined by the equipment because it is pulled out by the chuck 34, making it impossible to manufacture a long steel bar of different diameter 36. There was a point.

本発明は斯かる事情に鑑みてなされたものであり、異径
棒材を寸法精度よく、また長さに拘わらずに製造できる
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing bars of different diameters with good dimensional accuracy and regardless of length.

C問題点を解決するだめの手段〕 本発明は、素材を加工することにより素材を自ら軸長方
向に進ませ得、またロールを両持型式にて支持し、ロー
ルとパスラインとの距離を油圧機構により調整する傾斜
圧延機を用い、これによる素材の加工の際に上記距離を
調整する。
[Means for Solving Problem C] The present invention allows the material to move in the axial direction by itself by processing the material, supports the roll in a double-supported type, and reduces the distance between the roll and the pass line. An inclined rolling mill that is adjusted by a hydraulic mechanism is used to adjust the above-mentioned distance during processing of the material.

即ち、本発明に係る異径棒材の製造方法は、円柱状の素
材を加工して外径が軸長方向位置で異なる異径棒材を製
造する方法において、パスライン周りに臨んで3個又は
4個のロールを有し、各ロールの軸をロールの両側で支
持してあり、ロールとパスラインとの距離を油圧により
調整できるようになした傾斜圧延機を用い、前記素材の
加工の際、前記距離を調整して異径棒材を製造すること
を特徴とする。
That is, the method for manufacturing bars of different diameters according to the present invention is a method of processing a cylindrical material to produce bars of different diameters whose outer diameters differ depending on the position in the axial direction. Alternatively, the material can be processed using an inclined rolling mill that has four rolls, the axis of each roll is supported on both sides of the roll, and the distance between the roll and the pass line can be adjusted by hydraulic pressure. In this case, bars with different diameters are manufactured by adjusting the distance.

〔作用〕[Effect]

本発明にあっては、素材が両持型式の傾斜したロールに
て圧延されて縮径され、また圧延により進んでいき、そ
の圧延中に油圧制御にてロールとパスラインとの距離が
調整され、異径棒材となる。
In the present invention, the material is rolled with inclined rolls of a double-sided type to reduce its diameter, and the material is rolled further, and during rolling, the distance between the rolls and the pass line is adjusted by hydraulic control. , resulting in bars with different diameters.

このため、騒音の発生を抑制して寸法精度に優れた+A
径径行材長さに拘わらずに製造できる。
Therefore, +A with excellent dimensional accuracy and suppresses noise generation.
It can be manufactured regardless of the length of the radial material.

〔実施例〕〔Example〕

以下本発明を、H[lilのロールを用いる場合につい
て図面に基づき具体的に説明する。第1図は本発明の実
施状態をブロック図と共に示す傾斜圧延機の側面断面図
(第2図の[−I線による矢視図)、第2図、第3図は
その正面図及び背面図、第4図はロール近傍を示す側面
図(図中ロール1.2は第5図のrV−rV線による断
面図としている)、第5図は第4図のV−V線による正
面図、第6図は(IJi斜角βを示す側面図であり、図
中IOは円柱状の素材を示す。素材10は、図示しない
加熱炉にて所定温度に加熱されたのら、図示しない移送
装置にて軸長方向(白抜矢符方向)に螺進移送されつつ
、高加工度圧延が可能な交叉型の傾斜圧延ta20にて
その軸長方向位置に応じて圧下量を段階的に変更して圧
延されて縮径され、これにより異径棒鋼11となり、そ
の後、図示しない冷却装置にて冷却されて更に下流側へ
送られる。
Hereinafter, the present invention will be specifically explained based on the drawings regarding the case where a roll of H[lil is used. Fig. 1 is a side cross-sectional view of an inclined rolling mill showing the implementation state of the present invention together with a block diagram (a view taken along the line [-I in Fig. 2]), and Figs. 2 and 3 are its front and rear views. , FIG. 4 is a side view showing the vicinity of the roll (roll 1.2 in the figure is a sectional view taken along the line rV-rV in FIG. 5), FIG. 5 is a front view taken along the line V-V in FIG. 4, FIG. 6 is a side view showing the (IJi oblique angle β), in which IO indicates a cylindrical material. The material 10 is heated to a predetermined temperature in a heating furnace (not shown), and then While being spirally transferred in the axial direction (in the direction of the white arrow), the reduction amount is changed in stages according to the axial position in the cross-type inclined rolling TA20, which is capable of high workability rolling. The steel bar 11 is rolled and reduced in diameter, thereby becoming a different diameter steel bar 11, which is then cooled in a cooling device (not shown) and sent further downstream.

傾斜圧延機20はパスライン周りに臨んで3個のコーン
形ロール1,2.3を有しく第2TyJ参照)、各ロー
ル1. 2. 3の軸1e、 2e、 3eは各ロール
1゜2.3を挟んで夫々の入側及び出側が入側チョック
23.23.23及び出側チョック24.24.24に
て回転可能に支持されており、その入側チョック23゜
23、23及び出側チョック24.24.24は夫々の
基端側に先端を取付けた支持棒23a、・・・及び24
a、・・・の基端部を、回転ハウジング21.固定ハウ
ジング22に形成した穴部(図示せず)に摺動可能に挿
入して設けられている(第2図、第3図参照)。つまり
ロール1,2.3は両持型式となっている。
The inclined rolling mill 20 has three cone-shaped rolls 1, 2.3 facing around the pass line (see 2nd TyJ), each roll 1. 2. The shafts 1e, 2e, 3e of 3 are rotatably supported on the entry side and the exit side by the entry side chock 23.23.23 and the exit side chock 24.24.24 with each roll 1°2.3 in between. The inlet chocks 23, 23, 23 and the outlet chocks 24, 24, 24 are supported by support rods 23a, 23, 24, 24, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24 type type type types types have be in the inlet side of.
The base end portions of a, . . . are connected to the rotating housing 21. It is slidably inserted into a hole (not shown) formed in the fixed housing 22 (see FIGS. 2 and 3). In other words, the rolls 1, 2.3 are of a dual-support type.

3個夫々の入側チョック23.出側チョック24の基端
には各油圧シリンダ25.26のシリンダロッドが取付
けられており、油圧シリンダ25.26のシリンダチュ
ーブは夫々回転ハウジング21.固定ハウジング22に
固設されている。入側チョック23とパスラインとの距
離及び出側チョック24とパスラインとの距離は夫々油
圧シリンダ25.26により調整される。従って、ロー
ルとパスラインとの距離の調整は、ロールの両軸端を支
持している入側および出側チョックとパスラインとの距
離の調整によって行われるのである。
Three entry chocks 23. The cylinder rod of each hydraulic cylinder 25, 26 is attached to the base end of the outlet chock 24, and the cylinder tube of each hydraulic cylinder 25, 26 is connected to the rotating housing 21, respectively. It is fixedly installed in the fixed housing 22. The distance between the entry chock 23 and the pass line and the distance between the exit chock 24 and the pass line are adjusted by hydraulic cylinders 25 and 26, respectively. Therefore, the distance between the roll and the pass line is adjusted by adjusting the distance between the pass line and the entry and exit chocks that support both ends of the roll.

回転ハウジング21には油圧シリンダ27のシリンダロ
ッドが取付けられており、油圧シリンダ27のシリンダ
チューブは固定ハウジング22に固定されている。回転
ハウジング21は油圧シリンダ27により固定ハウジン
グ22に対して回転せしめられる。
A cylinder rod of a hydraulic cylinder 27 is attached to the rotating housing 21, and a cylinder tube of the hydraulic cylinder 27 is fixed to the fixed housing 22. The rotary housing 21 is rotated relative to the fixed housing 22 by a hydraulic cylinder 27.

油圧シリンダ25.26.27には夫々これに供給され
る圧油の流量、圧力を制御する圧延制御装置40が設け
られている。圧延制御装置40は素材10の寸法、異径
棒鋼11の寸法等を入力する入力設定器41を備えてお
り、入力設定器41に入力設定された信号は/i1算制
御装置42へ与えられる。演算制御装置42は入力信号
に基づきロール毎に設けた3組の油圧シリンダ25.2
6及び回転ハウジング回転用の油圧シリンダ27へ供給
する圧油の圧力、流量につむ)ての制御量を求めて、そ
の制御信号を3組の油圧シリンダ25.26及びもう1
つの油圧シリンダ27に対して各別に備えている減算器
43.・・・を介してサーボアンプ44.・・・へ与え
るようになっている。サーボアンプ44.・・・は、圧
油が通流する図示しない配管の中途に設けたサーボ弁4
5.・・・の開度を調整し、圧油を3組の油圧シリンダ
25.26及びもう1つの油圧シリ、ンダ27へ供給す
る。
The hydraulic cylinders 25, 26, and 27 are each provided with a rolling control device 40 that controls the flow rate and pressure of pressure oil supplied thereto. The rolling control device 40 is equipped with an input setting device 41 for inputting the dimensions of the material 10, the dimensions of the different diameter steel bar 11, etc., and the signals inputted to the input setting device 41 are given to the /i1 calculation control device 42. The arithmetic and control unit 42 controls three sets of hydraulic cylinders 25.2 provided for each roll based on input signals.
6 and the pressure and flow rate of the pressure oil supplied to the hydraulic cylinder 27 for rotating the rotary housing.
A subtractor 43 is provided for each hydraulic cylinder 27. ... to the servo amplifier 44. It is designed to be given to... Servo amplifier 44. ... is a servo valve 4 installed in the middle of a pipe (not shown) through which pressure oil flows.
5. ... and supplies pressure oil to three sets of hydraulic cylinders 25, 26 and another hydraulic cylinder, cylinder 27.

各サーボ弁45.・・・には速度変位計46.・・・が
設けられており、速度変位計46.・・・は油量を測定
し、その測定信号をサーボアンプ44.・・・へ与えて
圧油の流量が制御される。
Each servo valve 45. ... has a speed displacement meter 46. ... is provided, and a speed displacement meter 46. . . . measures the oil amount and sends the measurement signal to the servo amplifier 44. The flow rate of pressure oil is controlled by applying it to...

また、油圧シリンダ25.26.27には圧力センサ4
7、・・・が取付けられており、圧力センサ47.・・
・は油圧シリンダ内の圧油圧力を測定し、その測定信号
を圧力アンプ48を介して減算器43へ与えて圧力制御
がなされる。更に、油圧シリンダ25.26にて作動さ
れる入側、出側チョック23.24及び油圧シリンダ2
7のシリンダロッドには夫々位置センサ49が取付けら
れており、位置センサ49.・・・は入側。
In addition, the hydraulic cylinders 25, 26, 27 have pressure sensors 4.
7,... are attached, and the pressure sensor 47.・・・
- Measures the hydraulic pressure in the hydraulic cylinder, and applies the measured signal to the subtractor 43 via the pressure amplifier 48 to perform pressure control. Furthermore, the entry and exit chocks 23,24 and the hydraulic cylinder 2 are actuated by the hydraulic cylinders 25,26.
A position sensor 49 is attached to each cylinder rod of position sensor 49.7. ... is the entry side.

出側チョック23.24及びシリンダロッドの進出。Advancement of exit chock 23, 24 and cylinder rod.

工大量を測定し、測定信号を演算制御装置42へ与える
。演算制御装置42は、位置センサ49.・・・からの
入力信号とシリンダロッドの進出、工大量の設定値とが
異なる場合には一致するように補償信号をサーボアンプ
44.・・・へ与えて油圧シリンダ25゜26を制御す
る。
The amount of work is measured and a measurement signal is given to the arithmetic and control unit 42. The arithmetic and control device 42 includes a position sensor 49 . If the input signal from . . . differs from the cylinder rod advance and machining amount settings, a compensation signal is sent to the servo amplifier 44 so that they match. ... to control the hydraulic cylinders 25 and 26.

3個のロール1,2.3は中央部にゴージ部1a。The three rolls 1, 2.3 have a gorge portion 1a in the center.

2a、 3aを備え(第4図参照)、このゴージ部を境
にして素材10の入側は軸端に向けて漸次直径を縮小さ
れた入側傾斜部1b、 2b、 3bを備え、また、出
側端に向けては直径を漸次拡大されたリーリング部1c
、 2c、 3cを備え、続いて、直径を漸次縮小され
た出側傾斜部1d、 2d、 3dを備えている。尚、
リーリング部1c、 2c、 3cではパスラインとの
距離をゴージ部とパスラインとの距離に一致させている
2a and 3a (see Fig. 4), and the entrance side of the material 10 with this gorge as a border includes entrance side inclined parts 1b, 2b, and 3b whose diameters are gradually reduced toward the shaft end, and A reeling part 1c whose diameter is gradually enlarged toward the exit end.
, 2c, and 3c, followed by outlet inclined portions 1d, 2d, and 3d whose diameters are gradually reduced. still,
In the reeling parts 1c, 2c, and 3c, the distance from the pass line is made to match the distance between the gorge part and the pass line.

このような形状のロール1,2.3はいずれもその入口
傾斜部1b 2b、 3bを素材10の移動方向上流側
に位置させた状態とし、また軸心線Y−Yと、ゴージ部
1a、 2a、 3aを含む平面との交点O(以下ロー
ル設定中心という)を、素材10のパスラインX−Xと
直交する同一平面上にてバスラインX−X周りに略等間
隔に位置せしめるべく配設されている。そして各ロール
1,2.3の軸心線Y−Yはロール設定中心回りに、素
材IOのパスラインX−Xとの関係において第1図に示
すように前方の軸端がパスラインX−Xに向けて接近す
るよう交叉角Tだけ交叉(傾斜)せしめられ、且つ第5
図。
Each of the rolls 1, 2.3 having such a shape has its inlet inclined portions 1b, 2b, 3b located upstream in the direction of movement of the material 10, and the axial center line Y-Y, the gorge portion 1a, 2a and 3a (hereinafter referred to as the roll setting center) are arranged to be located at approximately equal intervals around the bus line XX on the same plane perpendicular to the pass line XX of the material 10. It is set up. The axial center line Y-Y of each roll 1, 2.3 is centered around the roll setting center, and the front axis end is located at the pass line X-X as shown in FIG. are crossed (inclined) by a crossing angle T so as to approach toward
figure.

第6図に示すように前方の軸端が素材lOの周方向の同
じ側に向けて傾斜角βだけ傾斜せしめられている。
As shown in FIG. 6, the front shaft end is inclined toward the same side in the circumferential direction of the material 1O by an inclination angle β.

交叉角γ及び傾斜角βは夫々3個の油圧シリンダ25.
26.27のシリンダロッドの進出退入により調整され
、特に交叉角Tは主として油圧シリンダ25及び26に
より、また傾斜角βは主として油圧シリンダ27により
夫々調整される。
The intersection angle γ and the inclination angle β are determined by three hydraulic cylinders 25.
It is adjusted by advancing and retracting the cylinder rods 26 and 27. In particular, the crossing angle T is mainly adjusted by the hydraulic cylinders 25 and 26, and the inclination angle β is mainly adjusted by the hydraulic cylinder 27, respectively.

但し、β、γは圧延上、次に定めた範囲内とする。However, β and γ are within the ranges specified below for rolling purposes.

0°くγ〈15゜ 3 °〈β〈20゜ 5°〈T+β<25゜ 上記β、γの値は素材10及び異径棒&H11の寸法に
基づいて定まり、両者の関係は前記演算制御装置42に
テーブルとして設定されており、演算制御装置42は素
材10及び異径棒鋼11の寸法が入力されるとテーブル
よりβ、γを読出せるようになっている。
0° γ<15°3°<β<20°5°<T+β<25° The values of β and γ above are determined based on the dimensions of the material 10 and the different diameter rod &H11, and the relationship between the two is determined by the arithmetic and control device. 42 as a table, and when the dimensions of the material 10 and the different diameter steel bar 11 are input, the arithmetic and control unit 42 can read out β and γ from the table.

ロール1.2.3は図示しない駆動源に連繋されており
、第5図に矢符で示す如く同方向に回転駆動され、これ
らのロール間に噛み込まれた熱間の素材10はその軸心
縁周りに回転駆動されつつ軸長方向に移動される、即ち
螺進移動せしめられる。
The rolls 1.2.3 are connected to a drive source (not shown) and are driven to rotate in the same direction as shown by arrows in FIG. 5, and the hot material 10 caught between these rolls is It is rotated around the core edge and moved in the axial direction, that is, it is moved in a spiral manner.

ロール1の軸1eにはタコジェネレータ50が取付けら
れており、タコジェネレータ50にて検出された長さ信
号は演算制御装置42へ与えられて圧延長さが測定され
る。
A tachometer generator 50 is attached to the shaft 1e of the roll 1, and a length signal detected by the tachometer generator 50 is given to an arithmetic and control unit 42 to measure the rolled length.

ロール1,2.3の上、下流側夫々の異径棒鋼11の移
動域に側温視野を臨ませて放射温度計等の光学式温度計
51.52が設けられており、温度計51゜52は夫々
素材10の温度、異径棒鋼11の温度を測定し、11定
信号を圧延制御装置40の演算制御装置42へ出力する
Optical thermometers 51 and 52 such as radiation thermometers are provided with side temperature fields facing the moving areas of the steel bars 11 of different diameters on the upper and downstream sides of the rolls 1 and 2.3, respectively. 52 measures the temperature of the material 10 and the temperature of the different diameter steel bar 11, respectively, and outputs a 11 constant signal to the arithmetic and control device 42 of the rolling control device 40.

演算制御装置42はロール入側、出側の各温度が入力さ
れると、これに基づき素材10の変形抵抗を推定し、そ
の推定値と予めこれに設定されている有限要素法等によ
り解析的に求められたミル剛性曲線とに基づき、外径寸
法変化量を予測し、そのときの位置センサ49からの入
力信号、つまりそのときの入側、出側チョック23.2
4の進退量に関する信号を基準とした進退変更量を算出
し、その算出値に応した制御信号を各サーボアンプ44
.・・・へ出力する。
When the temperatures at the entrance and exit sides of the roll are input, the arithmetic and control unit 42 estimates the deformation resistance of the material 10 based on this, and performs an analytical analysis using the estimated value and the finite element method set in advance. Based on the mill stiffness curve obtained in
The forward/backward change amount is calculated based on the signal regarding the forward/backward amount of No. 4, and a control signal corresponding to the calculated value is sent to each servo amplifier 44.
.. Output to...

このように構成された傾斜圧延機を用いて実施される本
発明方法を以下に説明する。
The method of the present invention, which is carried out using the inclined rolling mill configured as described above, will be explained below.

まず、第7図に示す異径棒鋼の各寸法、つまり大径部の
外径: I)o、大径部の長さ:Lo、小径部の外径:
Dl、小径部の長さ:L1.大径部から小径部へ縮径す
る傾斜面の軸心とのなす角度:α、。
First, the dimensions of the different diameter steel bar shown in Fig. 7, that is, the outer diameter of the large diameter part: I) o, the length of the large diameter part: Lo, and the outer diameter of the small diameter part:
Dl, length of small diameter part: L1. Angle formed with the axis of the inclined surface whose diameter decreases from the large diameter part to the small diameter part: α.

小径部から大径部へ拡径する傾斜面の軸心とのなす角度
:α2.小径部及び大径部の数並びに素材10の外径、
長さ等を入力設定器41より演算制御装置42へ入力す
る。
Angle formed with the axis of the inclined surface whose diameter increases from the small diameter part to the large diameter part: α2. The number of small diameter parts and large diameter parts and the outer diameter of the material 10,
The length etc. are input from the input setting device 41 to the arithmetic and control unit 42 .

演算制御装置42は入力信号゛を記憶すると共に、その
入力信号とこれに予め設定している前記テーブルとに基
づき小径部を圧延するときのβ、γの設定値を読出し、
その制御信号を全てのサーボアンプ44.・・・へ与え
て油圧シリンダ25.26.27の各シリンダロッドの
進退量を調整する。これによりβ及びγは設定値となり
、またパスラインとロールとの距離はD1/2となる。
The arithmetic and control unit 42 stores the input signal and reads out the set values of β and γ when rolling the small diameter portion based on the input signal and the table set in advance for the input signal.
The control signal is sent to all servo amplifiers 44. ... to adjust the amount of movement of each cylinder rod of the hydraulic cylinders 25, 26, 27. As a result, β and γ become set values, and the distance between the pass line and the roll becomes D1/2.

斯かる操作が終了すると、ロール1.2.3を回転させ
ると共に、素材10を送給させる。これにより、素材1
0は圧延されて外径がDlの小径部が形成される。
When this operation is completed, the rolls 1.2.3 are rotated and the material 10 is fed. As a result, material 1
0 is rolled to form a small diameter portion having an outer diameter of Dl.

演算制御装置42はタコジェネレータ50からの信号に
基づき大径部の圧延長さがLlとなると、その後に所定
長さ圧延したときに入側、出側チョック23.24を共
に圧延長さに応じた比例関係で同量退入させていく。こ
れにより角度がα2の傾斜面が形成される。ただし、チ
ョック移動量は(D。
Based on the signal from the tacho generator 50, when the rolling length of the large diameter portion reaches Ll, the arithmetic and control unit 42 controls both the entrance and exit chocks 23 and 24 according to the rolling length when rolling a predetermined length. The same amount will be withdrawn in a proportional relationship. As a result, an inclined surface having an angle α2 is formed. However, the amount of chock movement is (D.

−DI )/2には一致しない。ここで、その理由につ
いて説明する。
-DI)/2 does not match. Here, the reason will be explained.

本来ミルの設定は、入・出側チョックの開度および入・
出側ハウジングの相対的な回転角度とで行われ、所定の
ロール傾斜角、交叉角およびゴージ部での設定外径が得
られる。しかし3個の設定値を同時に制御するのは繁雑
であり、実用的でない。ここでは、入・出側チg7りを
同時同量移動させる前提で述べている。従って、この場
合、チョックを入・出側で同量(1)だけ移動してもゴ
ージ部で設定される外径は2を変化するわけではない。
Originally, the mill settings were the opening of the inlet and outlet chocks and the inlet and outlet chocks.
This is done by adjusting the relative rotation angle of the exit housing to obtain a predetermined roll inclination angle, crossing angle, and set outer diameter at the gorge. However, controlling three set values simultaneously is complicated and impractical. The description here is based on the assumption that the input and output chips are moved by the same amount at the same time. Therefore, in this case, even if the chock is moved by the same amount (1) on the input and output sides, the outer diameter set at the gorge portion does not change by 2.

その1例を第8図に示す。An example is shown in FIG.

第8図は横軸に基準位置からのチョックの開方向移動量
をとり、縦軸に異径棒鋼の外径増加量とIIFi斜角β
の変化量と交叉角γの変化量とをとって、4者間の関係
を示した図である。この図より理解される如く、ある設
定値からチョックを開方向に移動させるとβ及びγが夫
々破線、−点鎖線にて示すように増加し、例えば、チョ
ックをlO鶴パスラインから遠ざけてチョック開度を入
・出側でそれぞれ201大きくしても外径増加量(実線
)は20龍とはならず、それよりも僅かに小さい外径と
なる。このため、D、−’D、に変更する場合には、チ
ョックの移動量は(Do −DI )/2+Δt(Δt
:正の変数)とする必要がある。ただし、Δtは基準設
定外径D1、ロール傾斜角・交叉角およびゴージ部とチ
ョックとの相対位置関係などの関数で決定される。
In Figure 8, the horizontal axis shows the amount of movement of the chock in the opening direction from the reference position, and the vertical axis shows the amount of increase in the outer diameter of the different diameter steel bar and the IIFi angle β.
FIG. 3 is a diagram showing the relationship between the four values, taking the amount of change in the intersection angle γ and the amount of change in the intersection angle γ. As can be understood from this figure, when the chock is moved in the opening direction from a certain setting value, β and γ increase as shown by the dashed line and -dotted chain line, respectively.For example, when the chock is moved away from the lO Tsuru pass line, the chock is Even if the opening degree is increased by 201 on the inlet and outlet sides, the increase in outer diameter (solid line) will not be 20 dragons, but will be slightly smaller than that. Therefore, when changing to D, -'D, the movement amount of the chock is (Do -DI)/2+Δt(Δt
: positive variable). However, Δt is determined by functions such as the reference setting outer diameter D1, the roll inclination angle/crossing angle, and the relative positional relationship between the gorge portion and the chock.

そして叙上の理由により位置センサ49からの信号に基
づきチョックの移動量が(Do  DI )/2+ΔL
に達した時点で一定に維持する。これにより外径がDo
の大径部が形成される。
For the reason mentioned above, the amount of movement of the chock is (Do DI )/2+ΔL based on the signal from the position sensor 49.
When it reaches , it is kept constant. This makes the outer diameter Do
A large diameter portion is formed.

然る後、タコジェネレータ50からの信号に基づき大径
部の圧延長さがLDとなると、演算制御装置42はその
後に所定長さ圧延したときにパスラインとロールとの距
離がり、/2となるように入側。
Thereafter, when the rolling length of the large diameter portion becomes LD based on the signal from the tachogenerator 50, the arithmetic and control unit 42 determines that the distance between the pass line and the roll increases by /2 when rolling is performed for a predetermined length. Iri side so that it becomes.

、出側チョック23.24を共に圧延長さに応じた比例
関係で同量進出させていく。これにより角度がα1の傾
斜面が形成される。
, the outlet chocks 23 and 24 are both advanced by the same amount in proportion to the rolling length. As a result, an inclined surface having an angle α1 is formed.

そして、位置センサ49からの信号に基づきパスライン
とロールとの距離がD1/2に達するとり。
Then, based on the signal from the position sensor 49, the distance between the pass line and the roll reaches D1/2.

/2に一定に維持し、以後、同様の制御を小径部及び大
径部の数に応じて繰り返す。
/2, and thereafter similar control is repeated depending on the number of small diameter parts and large diameter parts.

上記実施例では初期基準設定値を小径部とした場合につ
き説明したが、本発明は基準設定を大径側にしてもよい
し、あるいはその中間の任意の位置にしてもよい。
In the above embodiment, the initial reference setting value is set to the small diameter portion, but in the present invention, the reference setting value may be set to the large diameter side, or may be set to an arbitrary position in between.

このようにして製造された異径棒鋼11は、両持型式の
ロール1.2.3を使用していることにより軸1e、 
2g、 3eに撓みが殆どないため、また後述する理由
により油圧による圧下制御を行っているため、寸法18
度に優れる。
The steel bar 11 with different diameters manufactured in this way has a shaft 1e, a
Because there is almost no deflection in 2g and 3e, and because pressure is controlled by hydraulic pressure for reasons explained later, the dimension 18
Excellent degree.

上述の油圧圧下制御を行う理由は、従来の電動機と減速
歯車と圧下スクリューとを組合せた構成の電動圧下方式
ではその慣性モーメントが大であり、また圧下スクリュ
ーの動力伝達効率が低いために制御の応答速度が劣るの
で、これを解決するためである。
The reason for performing the above-mentioned hydraulic reduction control is that the moment of inertia is large in the conventional electric reduction method that combines an electric motor, reduction gear, and reduction screw, and the power transmission efficiency of the reduction screw is low. This is to solve the problem of poor response speed.

なお、上記実施例ではロールを3個備えた傾斜圧延機に
て製造しているが、本発明はこれに限らずロールを4個
備えた傾斜圧延機にて製造しても同様な異径棒鋼等の異
径鋼材を製造できる。
In the above example, the steel bar is manufactured using an inclined rolling mill equipped with three rolls, but the present invention is not limited to this. It is possible to manufacture steel materials with different diameters such as

〔数値例〕[Numerical example]

外径50s−φの素材を用いて小径部を3wI所、大径
部を4箇所有し、Do:40mφ、D1 :20n+φ
Using a material with an outer diameter of 50s-φ, there are 3 small diameter parts and 4 large diameter parts, Do: 40mφ, D1: 20n+φ
.

Lo:301腫、  L+   :   200m曹、
  α 1 及びα2  : 45゜の異径棒鋼を本発
明方法により製造した場合の数値例を示す。大径部の製
造条件としてはロール開度:40龍φ、T: 3°、β
:15°、ロール回転数(圧延速度)  : 1001
00rp、16m/秒)であり、小径部のそれはロール
開度:2o龍φ、r:2.8°、β:13°であり、そ
の時のチョック移動量は10.5mとした。その他の条
件としては、ロールのゴージ部の外径: 120龍φ、
ロールの材質: SCM445.素材10ノ加熱温度:
1200’l:、素材10(7)材質: 545(、テ
あった。
Lo: 301m, L+: 200m,
α 1 and α 2 : Numerical examples are shown when steel bars with different diameters of 45° are manufactured by the method of the present invention. The manufacturing conditions for the large diameter part are roll opening: 40 φ, T: 3°, β
: 15°, roll rotation speed (rolling speed): 1001
00 rpm, 16 m/sec), and the roll opening degree of the small diameter part was: 2 o dragon φ, r: 2.8°, β: 13°, and the chock movement amount at that time was 10.5 m. Other conditions include: outer diameter of the gorge part of the roll: 120mmφ;
Roll material: SCM445. Heating temperature for material 10:
1200'l:, Material 10 (7) Material: 545 (, Te was.

〔効果〕〔effect〕

以上詳述した如く本発明による場合には両持型式のロー
ルを3乃至4個有し、油圧により圧下制御を行う傾斜圧
延機を用いるので、素材が圧延されることにより進み、
これにより寸法精度のよい異径棒材を長さに拘わらず製
造できるという優れた効果を奏する。
As described in detail above, in the case of the present invention, an inclined rolling mill having three or four double-supported rolls and controlling the reduction by hydraulic pressure is used, so that the material progresses as it is rolled.
This provides an excellent effect in that bars of different diameters with good dimensional accuracy can be manufactured regardless of length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す側面断面図(第2図の
1−1線による矢視図)、第2図、第3図はその正面図
及び背面図、第4図はロール近傍を示す側面図、第5図
は第4図のV−V線による正面図、第6図は傾斜角βを
示す側面図、第7図は異径棒鋼を製造する上での寸法説
明図、第8図はチョックの移動量と異径棒鋼の小径部・
大径部の外径変化發等との関係説明図、第9図は従来技
術の説明図である。 1、 2. 3−0−ル Ie、2e、3e・・・軸 
10−・・素材11・・・異径棒鋼 23・・・入側チ
ョック 24川出側チヨツク 25,26.27・・・
油圧シリンダ特 許 出願人  住友金属工業株式会社
代理人 弁理士  河  野  登  夫纂 5 目 第 Gll ?4’7tl チa−1′7I)間方自】捗智量(mm)第 1 圓
Fig. 1 is a side cross-sectional view (view taken along line 1-1 in Fig. 2) showing the implementation state of the present invention, Figs. 2 and 3 are front and rear views thereof, and Fig. 4 is a view of the vicinity of the roll. 5 is a front view taken along the line V-V in FIG. 4, FIG. 6 is a side view showing the inclination angle β, and FIG. 7 is a dimensional explanatory diagram for manufacturing a steel bar with different diameters. Figure 8 shows the movement of the chock and the small diameter section of the steel bar with different diameters.
FIG. 9 is an explanatory diagram of the relationship with changes in the outer diameter of the large diameter portion, etc., and is an explanatory diagram of the prior art. 1, 2. 3-0-ru Ie, 2e, 3e...axis
10-...Material 11...Steel bar with different diameter 23...Inlet chock 24Outlet side chock 25, 26.27...
Hydraulic cylinder patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 5th Gll? 4'7tl Chia-1'7I) Between self] Progress amount (mm) 1st circle

Claims (1)

【特許請求の範囲】 1、円柱状の素材を加工して外径が軸長方向位置で異な
る異径棒材を製造する方法において、パスライン周りに
臨んで3個又は4個のロ ールを有し、各ロールの軸をロールの両側で支持してあ
り、ロールとパスラインとの距離を油圧により調整でき
るようになした傾斜圧延機を用い、 前記素材の加工の際、前記距離を調整して 異径棒材を製造することを特徴とする異径棒材の製造方
法。
[Scope of Claims] 1. A method for manufacturing a bar material with different diameters whose outer diameter differs depending on the position in the axial direction by processing a cylindrical material, which includes three or four rolls facing around the pass line. Then, an inclined rolling mill is used in which the axis of each roll is supported on both sides of the roll, and the distance between the roll and the pass line can be adjusted by hydraulic pressure, and the distance can be adjusted when processing the material. 1. A method for producing bars of different diameters, the method comprising producing bars of different diameters.
JP26918886A 1986-11-12 1986-11-12 Manufacture of bar stock of dissimilar diameter Granted JPS63123545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26918886A JPS63123545A (en) 1986-11-12 1986-11-12 Manufacture of bar stock of dissimilar diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26918886A JPS63123545A (en) 1986-11-12 1986-11-12 Manufacture of bar stock of dissimilar diameter

Publications (2)

Publication Number Publication Date
JPS63123545A true JPS63123545A (en) 1988-05-27
JPH0581322B2 JPH0581322B2 (en) 1993-11-12

Family

ID=17468904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26918886A Granted JPS63123545A (en) 1986-11-12 1986-11-12 Manufacture of bar stock of dissimilar diameter

Country Status (1)

Country Link
JP (1) JPS63123545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718809B1 (en) * 1998-01-10 2004-04-13 General Electric Company Method for processing billets out of metals and alloys and the article
JP2011218380A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Device for manufacturing stepped shaft member, and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832497A (en) * 1971-08-31 1973-04-28
JPS5049157A (en) * 1973-08-31 1975-05-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832497A (en) * 1971-08-31 1973-04-28
JPS5049157A (en) * 1973-08-31 1975-05-01

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718809B1 (en) * 1998-01-10 2004-04-13 General Electric Company Method for processing billets out of metals and alloys and the article
US6826940B2 (en) * 1998-01-10 2004-12-07 General Electric Company Method of metal and alloy billet treatment
JP2011218380A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Device for manufacturing stepped shaft member, and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0581322B2 (en) 1993-11-12

Similar Documents

Publication Publication Date Title
JPS6326209A (en) Method and facility for manufacturing seamless steel pipe
CA1140237A (en) Roller-dies-processing method and apparatus
JPH05237556A (en) Continuous manufacture of helical or annular corrugated metal tube and its device
JPS63123545A (en) Manufacture of bar stock of dissimilar diameter
JP4055850B2 (en) Flow forming method and apparatus
JPS58218307A (en) Rolling installation equipped with idle oblique rolling machine
JP3082665B2 (en) Method and apparatus for manufacturing hollow steel bars
JP3977111B2 (en) Method and apparatus for manufacturing helical wire
JP3082415B2 (en) Tube rolling method
JP3820896B2 (en) Seamless pipe inclined rolling mill and rolling method thereof
JP4441143B2 (en) Taper tube manufacturing equipment
JPH05177221A (en) Method for inclination-rolling tube
JPS613601A (en) Production of metallic material having circular section
JP2004202552A (en) Edge-bending roll, and roll position initialization method therefor
JP4065260B2 (en) Tapered steel pipe manufacturing method
JPS5861911A (en) Manufacture of taper rod
JP2998395B2 (en) Tube rolling method
KR850001522B1 (en) Manufacturing of large diameter tubes without welding
JPH07106368B2 (en) Manufacturing method of seamless pipe
JP2008296239A (en) Method for chamfering roll of rolling mill
JPS5856646B2 (en) Press roll drilling method
JPS5853320A (en) Controlling method for wall thickness in mandrel mill
SU1585025A1 (en) Method of producing sections
JPH09314205A (en) Method for stretch reduction of circular steel tube
JPS5829164B2 (en) Pipe rolling method