JPS63123418A - Gas controlling method inside closed container - Google Patents

Gas controlling method inside closed container

Info

Publication number
JPS63123418A
JPS63123418A JP61270690A JP27069086A JPS63123418A JP S63123418 A JPS63123418 A JP S63123418A JP 61270690 A JP61270690 A JP 61270690A JP 27069086 A JP27069086 A JP 27069086A JP S63123418 A JPS63123418 A JP S63123418A
Authority
JP
Japan
Prior art keywords
gas
closed container
nitrogen
oxygen
separating membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61270690A
Other languages
Japanese (ja)
Other versions
JPH0242526B2 (en
Inventor
Keisuke Kasahara
敬介 笠原
Shinichi Nishimura
伸一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP61270690A priority Critical patent/JPS63123418A/en
Publication of JPS63123418A publication Critical patent/JPS63123418A/en
Publication of JPH0242526B2 publication Critical patent/JPH0242526B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To control gas in a closed container simply and at a low cost by separating specific gas by means of a first gas separating membrane, and sucking other specific gas into a vacuum closed container by a second gas separating membrane. CONSTITUTION:Air inside a closed container 11 of a CA refrigerator or the like is sent to a gas separator 12 by a blower 15. The gas is divided by a gas separating membrane 14 into a high-pressure side 12a and a low pressure side 12b by a gas separating membrane 14, permeating the gas separating membrane 14 for separating O2 and CO2 in the air and is exhausted by a vacuum pump 18, and non-permeable gas rich in N2 is returned to the closed container 11 through a returning tube 17. Non-permeable gas rich in N2, out of the air sent to a gas separating membrane 22 of the second gas separator 13, is fed to the evacuated container 11 to prevent the container from being damaged, or the atmosphere from mixing therein. O2 and CO2 which have permeated the gas separating membrane 22 are exhausted out of an exhausting pump 26.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えば環境制御式冷7a庫 (Controlled Atmospheric R
e4rigerator以下CA冷蔵庫と略称する)内
の空気組成を内蔵物に適した組成にするためにガス分離
膜を利用して窒素及び酸素や炭酸ガス濃度を調整する密
閉型中のガス制御方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to, for example, an environmentally controlled refrigerator (Controlled Atmosphere R).
This invention relates to a gas control method in a closed type refrigerator that uses a gas separation membrane to adjust the concentration of nitrogen, oxygen, and carbon dioxide gas in order to make the air composition in the e4rigerator (hereinafter referred to as CA refrigerator) suitable for the internal contents.

(従来の技術) 従来密閉容器やCA冷蔵庫内の酸素を減少させる方法と
しては、フラッシング法、再wI環法、その他の方法が
あり、ツーラッシング法には、窒素ボンベからN210
0%の窒素ガスを容器中の空気と置換させる方法、PS
A法(pressureSw r ng^dsorpt
ion )による窒素製造装置から発生させた窒素リッ
チガス(N2:95〜99%、02  二1〜5%)を
容器中の空気と置換させる方法、プロパン等炭化水素系
燃料を燃焼させて得られたガス(Nz :85.4%、
02 :5%、CO2:9.6%)を密閉容器中の空気
と置換させる方法がある。
(Prior art) Conventional methods for reducing oxygen in airtight containers and CA refrigerators include flushing methods, rewiring methods, and other methods.
Method of replacing air in a container with 0% nitrogen gas, PS
A method (pressureSw rng^dsorpt
A method in which air in a container is replaced with nitrogen-rich gas (N2: 95-99%, 02-21-5%) generated from a nitrogen production device by ion), obtained by burning hydrocarbon fuel such as propane. Gas (Nz: 85.4%,
There is a method of replacing air in a closed container with CO2: 5%, CO2: 9.6%).

上述のフラッシング法において窒素ボンベを使用する方
法は、密閉容器やCA冷蔵庫を開放するたびにMlが外
部から入り込んでくるため、その都度窒素ガスを封入し
なければならず、窒素ガスが消耗品となって不経済であ
った。
In the above-mentioned flushing method using a nitrogen cylinder, Ml enters from the outside every time a closed container or CA refrigerator is opened, so nitrogen gas must be filled each time, and nitrogen gas becomes a consumable item. It became uneconomical.

またPSA法で得られた窒素リッチガス(Nz  :9
5〜99%)によるフラッシング法は、窒素ボンベ方式
によるものより窒素濃度が低く、酸素も1〜5%含まれ
るので、vi素を減少させる速度が遅くなり、かつ、最
終酸素濃度もフラッシュガス中に含まれる酸素′aa位
までしか下がらず、また窒素リッチガスを製造するのに
大きな動力を要していた。
In addition, nitrogen-rich gas (Nz: 9
The flushing method using nitrogen gas (5% to 99%) has a lower nitrogen concentration than the nitrogen cylinder method and also contains 1% to 5% oxygen, so the rate of reduction of VI element is slower and the final oxygen concentration is lower than that in the flash gas. The concentration of nitrogen-rich gas has been reduced only to the level of oxygen contained in nitrogen, and a large amount of power has been required to produce nitrogen-rich gas.

さらに窒素ボンベあるいは窒素リッチガスによる方法は
密閉容器あるいは冷R庫に炭酸ガスを発生する物を入れ
ておく場合、炭酸ガスの濃度を1節しなければならない
ので、窒素発生装置とは別に炭酸ガス除去装置が必要で
あった。
Furthermore, when using a nitrogen cylinder or nitrogen-rich gas method, if you put something that generates carbon dioxide in a closed container or refrigerator, the concentration of carbon dioxide must be adjusted, so carbon dioxide must be removed separately from the nitrogen generator. equipment was needed.

次に燃焼ガスによるフラッシング法は炭化水素系燃料を
直接燃焼させるため、燃焼ガス中の酸素濃度が5%程度
までしか下がらないので、密閉容器やCA冷蔵庫内の酸
素濃度も5%位が限界になっていた。また燃焼による酸
素mriの減少と共に炭酸ガスの増加が伴い、従って炭
酸ガス除去装置も大きくする必要があった。
Next, since the flushing method using combustion gas directly burns hydrocarbon fuel, the oxygen concentration in the combustion gas only drops to about 5%, so the oxygen concentration in a closed container or CA refrigerator is also limited to about 5%. It had become. Further, as the oxygen mri decreases due to combustion, the amount of carbon dioxide gas increases, so it is necessary to increase the size of the carbon dioxide removal device.

次に再循環法を第3図について説明すると、1はCA冷
蔵庫等の密閉容器、2は反応室でヒーター3、無炎触媒
層4、冷mコイル5を備えプロパン等の炭化水素燃料タ
ンク6からプロパンガス等の燃料が導入されるようにな
っている。別に密閉容器1には炭酸ガス除去装置7を備
えた送風機8を有する循環路9が連通されている。そし
て、密閉容器1内の空気を送風機10によって反応室1
に導入して燃焼タンク6からの燃料とともに燃焼さl!
酸素の少ないガスを触tjX層4、冷却コイル5を介し
て再び密閉容器1に導入して循環させ酸素を減少させて
ゆく方法である。
Next, to explain the recirculation method with reference to FIG. 3, 1 is a closed container such as a CA refrigerator, 2 is a reaction chamber equipped with a heater 3, a flameless catalyst layer 4, and a cold m-coil 5, and a tank 6 for hydrocarbon fuel such as propane. Since then, fuels such as propane gas have been introduced. Separately, a circulation path 9 having a blower 8 equipped with a carbon dioxide removal device 7 is connected to the closed container 1 . Then, the air inside the closed container 1 is blown into the reaction chamber 1 by the blower 10.
is introduced into the combustion tank 6 and burned together with the fuel from the combustion tank 6!
This is a method in which oxygen-poor gas is introduced into the closed container 1 again via the tjX layer 4 and the cooling coil 5 and circulated to reduce oxygen.

上述の再循環法では、密閉容器1あるいはCA冷蔵庫内
の酸素と炭化水素系燃料とを触媒で反応させる無炎燃焼
法で酸素濃度を下げていくので、酸素濃度をゼロ近くま
で下げることができるが、やはり燃焼法のため炭酸ガス
の発生が伴い、炭酸ガス除去装置it7が大きくなり、
プロパン等の炭化水素燃料が消耗品として必要であり、
反応前のガス加熱用に大きなヒーター3も必要となり、
反応時に数100℃の高温になるので装置の破損や火災
の危険性もある。また燃焼後のガスを冷やす冷却コイル
5等の冷却装置も必要である。
In the above-mentioned recirculation method, the oxygen concentration is lowered by a flameless combustion method in which the oxygen in the closed container 1 or the CA refrigerator reacts with the hydrocarbon fuel using a catalyst, so the oxygen concentration can be lowered to nearly zero. However, since it is a combustion method, carbon dioxide gas is generated, and the carbon dioxide removal device IT7 becomes large.
Hydrocarbon fuels such as propane are required as consumables,
A large heater 3 is also required to heat the gas before the reaction.
During the reaction, the temperature reaches a high temperature of several hundred degrees Celsius, so there is a risk of equipment damage and fire. A cooling device such as a cooling coil 5 for cooling the gas after combustion is also required.

以上の他に酸素を減少させる方法としては、鉄を酸化さ
せることにより酸素を減らす方法があるが、密閉容器や
CA冷蔵庫の容積が大きくなると鉄分等が大同に必要に
なること及び酸素の減少速度が緩慢である等の欠点があ
る。
In addition to the above methods, there is a method to reduce oxygen by oxidizing iron, but as the volume of a closed container or CA refrigerator increases, iron content is required at the same time, and the rate of oxygen reduction There are disadvantages such as slow speed.

(発明が解決しようとする問題点) 上述のように密閉容器やCA冷R庫内のガスコントロー
ル、特に酸素を減少させる方法にはそれぞれ何らかの問
題を抱えていた。さらに共通する問題として、密閉容器
やOA冷蔵庫内に炭酸ガスを発生するもの(一般には青
果物等呼吸をしているもの)を貯蔵する場合には、庫内
の炭酸ガスが次第に多くなり、余分な炭酸ガスを除去す
る必要がでてくるので、酸素を減少させる装置の他に炭
酸ガス除去装置が必要になり、設備コストが高くなって
いた。
(Problems to be Solved by the Invention) As mentioned above, gas control in closed containers and CA refrigerated refrigerators, particularly methods for reducing oxygen, each have some problems. Another common problem is that when storing items that generate carbon dioxide gas (generally respiring items such as fruits and vegetables) in airtight containers or OA refrigerators, the amount of carbon dioxide inside the refrigerator gradually increases. Since it becomes necessary to remove carbon dioxide gas, a carbon dioxide gas removal device is required in addition to a device for reducing oxygen, which increases the equipment cost.

本発明の目的は、窒素ガスボンベや窒素ガス発生装置、
炭酸ガス除去装置、炭化水素系燃料及びその反応室を不
要にし簡易で安価な方法で密閉容器内のガスをfbll
lllする方法を提供しようとするものである。
The purpose of the present invention is to provide a nitrogen gas cylinder, a nitrogen gas generator,
FBLL gas in a closed container is a simple and inexpensive method that eliminates the need for a carbon dioxide removal device, hydrocarbon fuel, and its reaction chamber.
This is intended to provide a method to do this.

(発明の構成) (問題点を解決するための手段) 本発明は密閉容器内のガスをイーj御する方法であって
複数種のガスを含む密閉容器内より特定のガスを第1の
ガス分離膜によって括除し、特定のガスの排除によって
減圧された前記密閉容器内へ、第2のガス分離aによっ
て複数種のガスから分離した他の特定のガスを吸入させ
ることを特徴とするものである。
(Structure of the Invention) (Means for Solving the Problems) The present invention provides a method for easily controlling gas in a closed container, in which a specific gas is mixed into a first gas from a closed container containing multiple types of gases. Another specific gas separated from the plurality of gases by the second gas separation a is inhaled into the sealed container whose pressure is reduced by removing the specific gas by a separation membrane. It is.

(作用) 密閉容器内の複数種のガスのうち特定のガスは第1のガ
ス分離膜を透過して排除され、特定のガスの排除によっ
て減圧された密閉容器内に第2のガス分離膜で分離され
た他の特定のガスが供給され、減圧による密閉容器の破
損防止と、外気混入による特定のガス濃度の上品を防ぐ
(Function) A specific gas among the plurality of gases in the sealed container is removed by passing through the first gas separation membrane, and a second gas separation membrane is passed into the sealed container whose pressure is reduced by the removal of the specific gas. Separated other specific gases are supplied to prevent damage to the sealed container due to reduced pressure and to prevent concentration of specific gases from increasing due to outside air being mixed in.

(実施例) 本発明の一実施例を第1図によって説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

11はCA冷aX等の密閉容器であり、第1のガス分離
器12間で器内雰囲ヌが循環し、特定のガス例えば酸素
または酸素と炭酸ガスを使除し窒素リッチの雰囲気とし
第2のガス分11[13より他の特定のガス例えば窒素
リッヂガスが第1のガス分離器12で排除されたガスの
減圧弁だけ供給され、減圧による密閉容器11の破損と
、外気混入による酸素濃度の上界を防止するようになっ
ている。
Reference numeral 11 denotes a sealed container such as a CA-cooled AX, and the atmosphere inside the container is circulated between the first gas separators 12, and a specific gas such as oxygen or oxygen and carbon dioxide is removed to create a nitrogen-rich atmosphere. 2 gas component 11[13, other specific gas such as nitrogen ridge gas is supplied only to the pressure reducing valve of the gas removed by the first gas separator 12, and the sealed container 11 is damaged due to pressure reduction and the oxygen concentration due to outside air mixing. It is designed to prevent the upper bound of .

第1のガス分離器12は第1のガス分Ill膜14で高
圧側12aと低圧側12bとに区分され、高圧側12a
には前記密閉容器11から途中に送風機15を有するガ
ス送出管16が導入されるとともに密閉容器11ヘガス
を戻すガス返送管17が導出されて密閉容B11とガス
分離器12の高圧側でガスが循環するようになっている
。さらに、低圧側12bからは途中に直空ポンプ18と
バイパス弁19、圧力計20を有する排気管21が導出
されている。
The first gas separator 12 is divided into a high pressure side 12a and a low pressure side 12b by a first gas membrane 14.
A gas delivery pipe 16 having a blower 15 in the middle is introduced from the sealed container 11, and a gas return pipe 17 is led out to return gas to the sealed container 11, so that gas is passed between the sealed container B11 and the high pressure side of the gas separator 12. It's supposed to circulate. Furthermore, an exhaust pipe 21 having a direct air pump 18, a bypass valve 19, and a pressure gauge 20 is led out from the low pressure side 12b.

第1のガス分離膜14は薄い高分子ガス分離膜を何枚も
重ねたモジュールになっていて、窒素に比べて酸素及び
炭酸ガスを多く〈速く)透過させる高速透過性膜である
。(例えば窒素の透過速度を1とすれば、酸素のそれは
約2、炭酸ガスのそれ約8である) したがって第1のガス分離膜14の直空ポンプ18で引
かれる低圧側12bには酸素及び炭酸ガスが透過し易く
、高圧側12aの透過速度が低い窒素は高圧側12aよ
り再び密閉容器11に戻されて密閉容器11内は窒素リ
ッチの雰囲気となり、また密閉容器11内の圧力は非透
過ガスが戻されるので急激な圧力変動は起らない。さら
に、ガス透過量はガス分111i1114の面積が一定
であれば低圧側12bの圧力によって決まるので、バイ
パス弁19の開閉具合により圧力を調整し得るようにな
っている。
The first gas separation membrane 14 is a module in which a number of thin polymer gas separation membranes are stacked, and is a high-speed permeability membrane that allows oxygen and carbon dioxide to permeate more (faster) than nitrogen. (For example, if the permeation rate of nitrogen is 1, that of oxygen is about 2, and that of carbon dioxide is about 8.) Therefore, on the low pressure side 12b of the first gas separation membrane 14 drawn by the direct air pump 18, oxygen and Nitrogen, which carbon dioxide easily permeates and has a low permeation rate on the high-pressure side 12a, is returned to the closed container 11 from the high-pressure side 12a, creating a nitrogen-rich atmosphere inside the closed container 11, and the pressure inside the closed container 11 is non-permeable. Since the gas is returned, sudden pressure fluctuations do not occur. Furthermore, since the amount of gas permeation is determined by the pressure on the low pressure side 12b if the area of the gas portions 111i1114 is constant, the pressure can be adjusted by adjusting the opening/closing condition of the bypass valve 19.

また、密閉容器11内の減圧による破損事故や減圧よる
外気混入のための酸素濃度上昇を防ぐために、第1のガ
ス分離wA14で透過除去されたガスmを第2のガス分
11器13より補給する。
In addition, in order to prevent damage caused by reduced pressure inside the closed container 11 and an increase in oxygen concentration due to outside air being mixed in due to reduced pressure, the gas m that has been permeated and removed in the first gas separation wA 14 is replenished from the second gas separation unit 13. do.

rJ2のガス分離器13は第2のガス分離膜22によっ
て高圧側13aと低圧側13bとに区分され高圧側13
aには空気圧縮機23からガス供給管24によって高圧
空気が供給され第2のガス分離膜22によって低圧側1
3bへ酸素を透過させた窒素リッチのガスがガス補給管
26より密閉容器11へ供給される。
The gas separator 13 of rJ2 is divided into a high pressure side 13a and a low pressure side 13b by a second gas separation membrane 22.
High-pressure air is supplied from the air compressor 23 to the gas supply pipe 24 to a, and the low-pressure side 1 is
Nitrogen-rich gas, which has passed through oxygen to 3b, is supplied to the closed container 11 from the gas supply pipe 26.

第2のガス分離膜22は高分子ガス分離膜を何内も重ね
たモジュールよりなり、第1のガス分離g!14に比べ
て透過するガス量は少い(透過速度が遅い)が分離効率
(選別性)が高い躾で、空気から酸素を透過させて排除
することにより窒素97%のガスを得ることができる。
The second gas separation membrane 22 consists of a module in which several polymeric gas separation membranes are stacked on top of each other, and the second gas separation membrane 22 is composed of a module in which several polymeric gas separation membranes are stacked one on top of the other. Compared to No. 14, the amount of gas that permeates is small (the permeation rate is slow), but the separation efficiency (selectivity) is high, and by permeating and eliminating oxygen from the air, a gas containing 97% nitrogen can be obtained. .

例えば、第1のガス分離膜14での窒素の透過速度を1
としたとき、第2のガス分離膜22では0.08となり
、ガスの透過mは第1のガス分llll114に比べて
非常に少いが、第2のガス分11i膜22では、窒素の
透過速度に比べて酸素は約4倍、炭酸ガスは約16倍で
酸素と炭酸ガスが透過し易く、従って窒素の分離性が良
い。
For example, the nitrogen permeation rate in the first gas separation membrane 14 is set to 1.
Then, in the second gas separation membrane 22, it is 0.08, and the gas permeation m is very small compared to the first gas fraction lllll114, but in the second gas separation membrane 22, the nitrogen permeation is Compared to the speed, oxygen is about 4 times faster and carbon dioxide is about 16 times more permeable, making it easier for oxygen and carbon dioxide to permeate, so the separation of nitrogen is good.

第2のガス分1ilt膜22を透過した酸素と炭酸ガス
は途中にガス排出ポンプ26を有するガス排出管27か
ら排出される。
The oxygen and carbon dioxide that have passed through the second gas component 1ilt membrane 22 are discharged from a gas discharge pipe 27 having a gas discharge pump 26 in the middle.

次に上述の実施例(第1図に示す)の方法と、従来の無
炎燃焼式再循環法(第3図に示す)によるCA冷蔵庫内
のガス制御方法を比較すると次の表のようになる。
Next, a comparison of the method of the above embodiment (shown in Figure 1) and the gas control method in a CA refrigerator using the conventional flameless combustion recirculation method (shown in Figure 3) shows the following table. Become.

(以下次頁) (1)  *1 、:)、 2、*3は何れも本発明の
実施例の方法を1とした場合の比率である。
(See next page below) (1) *1, :), 2, and *3 are all ratios when the method of the embodiment of the present invention is set to 1.

(2)送fi檄10.15で送られる空気帛は何れも3
Nu/hrである。
(2) The air packets sent at 10.15 are all 3
Nu/hr.

また第2図は本発明の他の実施例を示し、ガス分ilI
器12.22が一体的に形成され、装置の小型化をはか
っている。
Further, FIG. 2 shows another embodiment of the present invention, in which the gas component ilI
The containers 12 and 22 are integrally formed to reduce the size of the device.

なお第2図の他の構成並に作用は、第1図に示す実施例
と同様である。
Note that the other structures and operations in FIG. 2 are similar to the embodiment shown in FIG. 1.

(発明の効果〕 本発明によれば、密閉容器内のガス雰囲気をガス分離膜
によって制御するため、ガス燃焼法によって特定のガス
を得る方法に比べて燃焼装置、燃焼により発生した炭酸
ガス除去装置、熱源としてのヒーター等が不要となり設
備費、管1!I!費を低減させることができる。
(Effects of the Invention) According to the present invention, since the gas atmosphere in the closed container is controlled by a gas separation membrane, the combustion device and the carbon dioxide removal device generated by combustion are This eliminates the need for a heater or the like as a heat source, reducing equipment costs and tube costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の夫々異なる実施例を説明する
フローシート、第3図は従来法を説明するフローシート
である。 11・・密閉容器、14・・第1のガス分離膜、18・
・直空ポンプ、22・・第2のガス分離膜。
1 and 2 are flow sheets explaining different embodiments of the present invention, and FIG. 3 is a flow sheet explaining a conventional method. 11. Sealed container, 14. First gas separation membrane, 18.
- Direct air pump, 22... second gas separation membrane.

Claims (5)

【特許請求の範囲】[Claims] (1)複数種のガスを含む密閉容器内より特定のガスを
第1のガス分離膜によつて排除し、特定のガスの排除に
よつて減圧された前記密閉容器内へ、第2のガス分離膜
によって複数種のガスから分離した他の特定のガスを吸
入させることを特徴とする密閉容器内のガス制御方法。
(1) A specific gas is removed from a sealed container containing multiple types of gases using a first gas separation membrane, and a second gas is transferred into the sealed container whose pressure is reduced by removing the specific gas. A method for controlling gas in a closed container, characterized by inhaling a specific gas separated from multiple types of gas by a separation membrane.
(2)特定のガスが酸素であり他の特定のガスが窒素富
化ガスであることを特徴とする特許請求の範囲第1項記
載の密閉容器内のガス制御方法。
(2) The method for controlling gas in a closed container according to claim 1, wherein the specific gas is oxygen and the other specific gas is nitrogen-enriched gas.
(3)特定のガスが酸素と炭酸ガスであることを特徴と
する特許請求の範囲1項または第2項記載の密閉容器内
のガス制御方法。
(3) The method for controlling gas in a closed container according to claim 1 or 2, wherein the specific gases are oxygen and carbon dioxide.
(4)第2のガス分離膜を透過するガスがポンプで吸引
されることを特徴とする特許請求の範囲第1項ないし第
3項の何れかに記載の密閉容器内のガス制御方法。
(4) The method for controlling gas in a closed container according to any one of claims 1 to 3, wherein the gas passing through the second gas separation membrane is sucked by a pump.
(5)密閉容器が環境制御式冷蔵庫であることを特徴と
する特許請求の範囲第1項ないし第4項の何れかに記載
の密閉容器内のガス制御方法。
(5) A method for controlling gas in a closed container according to any one of claims 1 to 4, wherein the closed container is an environment-controlled refrigerator.
JP61270690A 1986-11-13 1986-11-13 Gas controlling method inside closed container Granted JPS63123418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270690A JPS63123418A (en) 1986-11-13 1986-11-13 Gas controlling method inside closed container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270690A JPS63123418A (en) 1986-11-13 1986-11-13 Gas controlling method inside closed container

Publications (2)

Publication Number Publication Date
JPS63123418A true JPS63123418A (en) 1988-05-27
JPH0242526B2 JPH0242526B2 (en) 1990-09-25

Family

ID=17489594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270690A Granted JPS63123418A (en) 1986-11-13 1986-11-13 Gas controlling method inside closed container

Country Status (1)

Country Link
JP (1) JPS63123418A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944776A (en) * 1989-10-05 1990-07-31 Andrew Corporation Dehumidifier for waveguide system
US5120329A (en) * 1989-09-27 1992-06-09 American Air Liquide Integrated system and method for providing a controlled atmosphere in a food storage facility
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
WO2014078833A1 (en) * 2012-11-19 2014-05-22 Membrane Technology And Research, Inc. Membrane separation process for controlling gas concentrations within produce shipping or storage containers
CN108731351A (en) * 2018-07-06 2018-11-02 珠海格力电器股份有限公司 Refrigerator
WO2019229132A1 (en) * 2018-06-01 2019-12-05 Maersk Container Industry A/S Two selective modules for a controlled atmosphere container

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120329A (en) * 1989-09-27 1992-06-09 American Air Liquide Integrated system and method for providing a controlled atmosphere in a food storage facility
US4944776A (en) * 1989-10-05 1990-07-31 Andrew Corporation Dehumidifier for waveguide system
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
WO2014078833A1 (en) * 2012-11-19 2014-05-22 Membrane Technology And Research, Inc. Membrane separation process for controlling gas concentrations within produce shipping or storage containers
WO2019229132A1 (en) * 2018-06-01 2019-12-05 Maersk Container Industry A/S Two selective modules for a controlled atmosphere container
CN112203743A (en) * 2018-06-01 2021-01-08 马士基集装箱工业公司 Two selection modules for controlled atmosphere containers
CN108731351A (en) * 2018-07-06 2018-11-02 珠海格力电器股份有限公司 Refrigerator

Also Published As

Publication number Publication date
JPH0242526B2 (en) 1990-09-25

Similar Documents

Publication Publication Date Title
EP0054941B1 (en) Oxygen enriched gas supply arrangement for combustion
US4331456A (en) Process for recovering hydrocarbons with air-hydrocarbon vapor mixtures
US4062197A (en) Absorption heating-cooling system
KR101824092B1 (en) Nitrogen gas supply system capable of controlling nitrogen flow rate and concentration and method of supplying nitrogen gas using the same
US20190001264A1 (en) Inert gas generation with dehumidification
JP7239849B2 (en) air composition regulator
KR880013459A (en) How to store fruits and vegetables
NO137565B (en) PROCEDURE AND AIR SEPARATION APPLIANCE
ES532523A0 (en) PROCEDURE FOR PRODUCING A CONSTANT COMPOSITION, INERT GAS ATMOSPHERE OF NITROGEN AND CARBON DIOXIDE IN A REFRIGERATED CONTAINER
JPS63123418A (en) Gas controlling method inside closed container
EP0294036A2 (en) Conditioning of the atmosphere over perishable goods
RU2095698C1 (en) Method of conditioning atmosphere in fruit storage chamber and plant for realization of this method
JPH04278046A (en) Humidity control system for controlled air container
NO853316L (en) PROCEDURE FOR OZONE MANUFACTURING.
WO1991011913A1 (en) Controlled atmosphere generation in horticultural applications
US6132693A (en) Process and device for reducing pollutants, especially nitrogen oxides in combustion exhaust gases
US20210212332A1 (en) Two selective modules for a controlled atmosphere container
JPS62134028A (en) Atmosphere conditioning equipment for stocker
EP0880903B1 (en) Apparatus and method for treating the atmosphere contained in enclosed spaces
KR102538599B1 (en) System for processing volatile organic compounds in ship
JPH0493580A (en) Method of reducing oxygen gas in atmosphere of storage room
SU895386A1 (en) Apparatus for storing agricultural products
JPH01273515A (en) Vegetable preservation cabinet
US20220226774A1 (en) Electrochemical Nitrogen Generator System and Method
JPS62236412A (en) Perishable food storage apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees