JPS63123413A - Filter condensing device - Google Patents

Filter condensing device

Info

Publication number
JPS63123413A
JPS63123413A JP26664786A JP26664786A JPS63123413A JP S63123413 A JPS63123413 A JP S63123413A JP 26664786 A JP26664786 A JP 26664786A JP 26664786 A JP26664786 A JP 26664786A JP S63123413 A JPS63123413 A JP S63123413A
Authority
JP
Japan
Prior art keywords
porous tube
cylindrical porous
tube
vortex
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26664786A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasegawa
宏 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP26664786A priority Critical patent/JPS63123413A/en
Publication of JPS63123413A publication Critical patent/JPS63123413A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a filter condensing device to save power to be used by rotating a cylindrical porous tube for generating vortexes provided in a filter, and carrying out cross flow filtration. CONSTITUTION:Slurry solution to be filtered is fed from a slurry solution feeding port 5 to between a cylindrical porous tube 3 and a rotating cylindrical porous tube 4 for generating vortexes, and filtered on the inner surface f the tube 3 and on the outer surface of the tube 4. Then, condensed slurry solution is discharged out through a slurry solution discharge port 6. Also, after the filtrate is collected in a space between an outer cylinder 2 and the tube 3 by the tube 3, and then the filtrate thus filtered by the tube 4 is collected in a space between a flange support rod 8 and the tube 4, the filtrates are joined and led out outside through a discharge port 1. By said process, the filtrate after filtration can be collected out of the discharge port 1 in the case of clarifying filtration, while condensed slurry solution can be collected out of a slurry discharge port 6 in the case of filter condensation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスラリ、−液をクロスフロー濾過することによ
り、固形分濃度が低いスラリー液の場合は清澄濾過器と
して、固形分濃度が高いスラリー液の場合は濾過濃縮器
として使用することができる濾過濃縮器に関するもので
ある。
Detailed Description of the Invention (Industrial Field of Application) The present invention performs cross-flow filtration of slurry and liquid. In the case of a liquid, it relates to a filtration concentrator that can be used as a filtration concentrator.

(従来の技術) 従来、清澄濾過器としては、円筒状多孔質管を用いて多
孔質管内にスラリー液をクロスフロー濾過するクロスフ
ロー濾過器等が、また濃縮器としてはフィルタープレス
、あるいは遠心分離器などが知られている。
(Prior art) Conventionally, clarification filters include cross-flow filters that use cylindrical porous tubes to cross-flow filter slurry into the porous tubes, and concentrators include filter presses and centrifugal separation. It is known for its utensils.

(発明が解決しようとする問題点) 上述した濾過器のうち前者の従来のクロスフロー濾過器
は、円筒状多孔質管の濾過層表面にスラリー液中の固形
粒子が堆積すると濾材抵抗が大きくなり濾過速度が低下
するため、濾過層表面に固形粒子がケーキとして堆積し
ないようにスラリー液を高速で流す必要がありその結果
大きな動力費を要する欠点があった。
(Problems to be Solved by the Invention) Among the above-mentioned filters, in the former conventional cross-flow filter, when solid particles in the slurry liquid accumulate on the surface of the filtration layer of the cylindrical porous tube, the resistance of the filter medium increases. Since the filtration speed decreases, it is necessary to flow the slurry liquid at a high speed so that solid particles do not accumulate as a cake on the surface of the filtration layer, resulting in a disadvantage that large power costs are required.

また、濃縮器としての従来のフィルタープレスはバッチ
運転であること濾材の閉塞が早く逆洗再生を頻繁に行う
必要があることなどにより、メンテンスの点、省エネの
点で問題があり、一方遠心分離器は大きな動力費が必要
となるばかりか分離に限界があり分離液中に微小粒子を
少なからず含む為、分離効率が悪く高価な粒子、あるい
は公害の点で問題があるなどの欠点があった。
In addition, conventional filter presses used as concentrators have problems in terms of maintenance and energy saving, as they operate in batches and require frequent backwashing and regeneration because the filter media gets clogged quickly. Not only does this require a large amount of power, but it also has limitations in terms of separation, and the separation liquid contains quite a few small particles, which has disadvantages such as poor separation efficiency, expensive particles, and problems with pollution. .

本発明の目的は上述した不具合を解消して、スラリー液
の流速が遅くても十分な濾過速度および分離効率を達成
できその結果使用する動力等の点で省エネを達成できる
濾過濃縮器を提供しようとするものである。
The purpose of the present invention is to eliminate the above-mentioned problems and provide a filtration concentrator that can achieve sufficient filtration speed and separation efficiency even when the flow rate of the slurry liquid is slow, and as a result, can achieve energy savings in terms of the power used, etc. That is.

(問題点を解決するための手段) 本発明の濾過濃縮器は、濾過液の排出孔を有する外筒と
、核外筒の内部に同心状に設置された円筒状多孔質管と
、該円筒状多孔質管の内部に同心状に設置された渦発生
用円筒状多孔質管と、前記円筒状多孔質管と該渦発生用
円筒状多孔質管との間の両端にそれぞれ設けられたスラ
リー液供給孔およびスラリー液排出孔とから構成され、
前記渦発生用円筒状多孔質管を回転させながら前記スラ
リー液供給孔より濾過すべきスラリー液を供給し、供給
されたスラリー液を前記円筒状多孔質管と前記渦発生用
円筒状多孔質管とを介して濾過して濾過液を前記排出孔
から外部へ排出すると共に、濾過後のスラリー液を前記
スラリー液排出孔から排出することを特徴とするもので
ある。
(Means for Solving the Problems) The filtration concentrator of the present invention comprises: an outer cylinder having a filtrate discharge hole; a cylindrical porous tube installed concentrically inside the nuclear outer cylinder; a vortex-generating cylindrical porous tube installed concentrically inside the shaped porous tube; and a slurry provided at each end between the cylindrical porous tube and the vortex-generating cylindrical porous tube. Consists of a liquid supply hole and a slurry liquid discharge hole,
While rotating the vortex generating cylindrical porous tube, the slurry liquid to be filtered is supplied from the slurry liquid supply hole, and the supplied slurry liquid is transferred to the cylindrical porous tube and the vortex generating cylindrical porous tube. The filtrate is filtered through the drain hole and the filtrate is discharged to the outside from the discharge hole, and the slurry liquid after filtration is discharged from the slurry discharge hole.

(作 用) 上述した構成において、濾過器内に渦発生用円筒状多孔
管を設けてこの渦発生用円筒状多孔管を回転させること
により、濾材表面にスラリー液中の固形粒子によるケー
キの堆積をおこさないで濾材のみの抵抗にてスラリー液
を濾過するいわゆるクロスフロー濾過を達成している。
(Function) In the above-described configuration, by providing a vortex-generating cylindrical porous tube in the filter and rotating the vortex-generating cylindrical porous tube, a cake is deposited on the surface of the filter medium by solid particles in the slurry. So-called cross-flow filtration is achieved in which the slurry liquid is filtered using only the resistance of the filter medium without causing any turbulence.

また、濾過操作を円筒状多孔管と渦発生用円筒状多孔管
との両者を濾材として行っているため、濾過面積すなわ
ち濾過効率を高めることができる。
Furthermore, since the filtration operation is performed using both the cylindrical porous tube and the vortex-generating cylindrical porous tube as filter media, the filtration area, that is, the filtration efficiency can be increased.

すなわち、本発明の濾過濃縮器は、濾材表面にケーキの
堆積が起こらないように渦発生用円筒状多孔管を回転さ
せて濾材表面近傍のスラリー液に機械工学でいうティラ
ー渦を発生させ、濾材表面を常に清掃させてクロスフロ
ー濾過する濾過器であり、従来のクロスフロー濾過器に
比較してスラリー液を高速度にて流す必要がなく、小さ
な流速言いかえれば小さな動力費でしかも高い濾過速度
を得ることができる。また、濾過濃縮器として使用する
場合、連続操作が可能であるばかりでなくスラリー液に
適した濾材を用いれば分離効率100%で分離でき、更
には小さな動力費で濾過濃縮が行なえると言う従来の欠
点を大幅に改良した省エネタイプの高精度、高速濾過器
を達成することができる。
That is, the filtration concentrator of the present invention rotates the vortex-generating cylindrical porous tube to generate what is called a tiller vortex in mechanical engineering in the slurry liquid near the surface of the filter medium, so as to prevent the accumulation of cake on the surface of the filter medium. This is a filter that performs cross-flow filtration by constantly cleaning the surface, and compared to conventional cross-flow filters, there is no need to flow the slurry liquid at high speeds, and in other words, the flow rate is small.In other words, it is possible to achieve high filtration speed with low power costs. can be obtained. In addition, when used as a filtration concentrator, not only can it be operated continuously, but if a filter material suitable for the slurry liquid is used, it can be separated with a separation efficiency of 100%, and furthermore, filtration and concentration can be performed with a small power cost. It is possible to achieve an energy-saving, high-precision, high-speed filter that has greatly improved the drawbacks of the above.

(実施例) 第1図は本発明の濾過濃縮器の一実施例を示す部分断面
図である。本実施例では、その中はどに濾液の排出孔1
を有する外筒2の内部に、円筒状多孔質管3を同心状に
設ける。円筒状多孔質管3の内部には、同心状に外部の
図示しないモータにより回転可能な渦発生用円筒状多孔
質管4を設けている。この円筒状多孔質管3および渦発
生用円筒状多孔質管4は、濾過すべきスラリー液の耐食
性、温度等によってその材質を使いわける必要があるが
、アルミナ、シリカ−アルミナ、シリカ、ムライト、コ
ージェライト、SiC、ZrO2などのセラミックス、
さらには金属または有機物の多孔体より構成されると好
適である。また円筒状多孔質管3方よび渦発生用円筒状
多孔質管4の細孔径は0.01〜10μm好ましくは0
.05〜5μmが好適である。さらに円筒状多孔質管3
および渦発生用円筒状多孔質管4は、上述した多孔体自
身あるいは該多孔体の内側あるいは外側に該多孔体の細
孔径より小さな細孔径を有する濾布、濾紙、有機膜、金
網、セラミック層などのいずれかを設けた複層構造であ
ると濾過速度の点でさらに好ましい。
(Example) FIG. 1 is a partial sectional view showing an example of the filtration concentrator of the present invention. In this embodiment, there is a filtrate discharge hole 1 inside.
A cylindrical porous tube 3 is provided concentrically inside an outer cylinder 2 having a cylindrical shape. Inside the cylindrical porous tube 3, there is provided a vortex-generating cylindrical porous tube 4 that can be concentrically rotated by an external motor (not shown). The material of the cylindrical porous tube 3 and the vortex generating cylindrical porous tube 4 must be selected depending on the corrosion resistance, temperature, etc. of the slurry liquid to be filtered; Ceramics such as cordierite, SiC, ZrO2,
Furthermore, it is preferable that it is made of a porous body of metal or organic material. Further, the pore diameter of the cylindrical porous tube 3 and the vortex generating cylindrical porous tube 4 is 0.01 to 10 μm, preferably 0.
.. 05 to 5 μm is suitable. Furthermore, cylindrical porous tube 3
The vortex generating cylindrical porous tube 4 may include the above-mentioned porous body itself or a filter cloth, filter paper, organic membrane, wire mesh, or ceramic layer having a pore diameter smaller than the pore diameter of the porous body on the inside or outside of the porous body. It is more preferable to have a multi-layer structure in which any one of the following is provided in terms of filtration rate.

また、円筒状多孔質管3と渦発生用円筒状多孔質管4と
の間の両端部には、それぞれスラリー液供給孔5および
スラリー液排出孔6を設けて本発明の濾過濃縮器7を得
ている。また渦発生用円筒状多孔質問4の回転数は、通
常lO〜5000rpm 、好ましくは20〜200O
rpmであると好適である。
Further, a slurry liquid supply hole 5 and a slurry liquid discharge hole 6 are provided at both ends between the cylindrical porous tube 3 and the vortex generating cylindrical porous tube 4, so that the filtration concentrator 7 of the present invention can be configured. It has gained. The rotational speed of the vortex generating cylindrical porous probe 4 is usually 10 to 5000 rpm, preferably 20 to 200 rpm.
Preferably, it is rpm.

上述した構成の第1図にその一実施例を示す本発明の濾
過濃縮器において、実際の濾過操作は以下のように行わ
れる。まず、濾過すべきスラIJ +液をスラリー液供
給孔5から円筒状多孔質管3と渦発生用円筒状多孔質管
4との間隙に供給する。
In the filtration concentrator of the present invention having the above-described configuration and an embodiment of which is shown in FIG. 1, the actual filtration operation is performed as follows. First, the slurry IJ+ liquid to be filtered is supplied from the slurry liquid supply hole 5 to the gap between the cylindrical porous tube 3 and the vortex generating cylindrical porous tube 4.

供給されたスラリー液は一定の速度すなわち0.01〜
2m/s、好ましくは0.05〜im/sの速度でこの
間隙を通り、円筒状多孔質管3の内表面および渦発生用
円筒状多孔質管4の外表面で濾過された後、濃縮された
スラリー液はスラリー液排出孔6を介して外部へ排出さ
れる。円筒状多孔質管3により濾過された濾液は外筒2
と円筒状多孔質管3との間隙に集められた後、また渦発
生用円筒状多孔質管4により濾過された濾液はフランジ
支持棒8と渦発生用円筒状多孔質管4との間隙に集めら
れた後、合流して排出孔1を介して外部へ導かれる。
The supplied slurry liquid is supplied at a constant speed, that is, from 0.01 to
It passes through this gap at a speed of 2 m/s, preferably 0.05 to im/s, and is filtered by the inner surface of the cylindrical porous tube 3 and the outer surface of the vortex-generating cylindrical porous tube 4, and then concentrated. The slurry liquid is discharged to the outside through the slurry liquid discharge hole 6. The filtrate filtered through the cylindrical porous tube 3 is transferred to the outer tube 2.
After being collected in the gap between the cylindrical porous tube 3 and the vortex-generating cylindrical porous tube 3, the filtrate is filtered through the vortex-generating cylindrical porous tube 4 into the gap between the flange support rod 8 and the vortex-generating cylindrical porous tube 4. After being collected, they merge and are led to the outside through the discharge hole 1.

これにより、清澄濾過の場合は濾過後の濾液を排出孔1
から得ることかできると共に、濾過濃縮の場合は濃縮さ
れたスラリー液はスラリー液排出孔6から得ることがで
きる。上述した濾過操作中、渦発生用円筒状多孔質管4
は外部の図示しないモータ等の駆動手段により、lO〜
5000rpm 、好ましくは20〜200Orpmの
回転数で常に回転するよう構成している。そのため、回
転により発生したティラー渦により円筒状多孔質管3の
内表面ふよび渦発生用円筒状多孔質管4の外表面に堆積
した濾滓を除去できるため、連続してスラリー液等を濾
過速度が大きな条件で長時間に亘って濾過可能となる。
As a result, in the case of clarifying filtration, the filtrate after filtration is transferred to the discharge hole 1.
In addition, in the case of filtration and concentration, the concentrated slurry liquid can be obtained from the slurry liquid discharge hole 6. During the above-mentioned filtration operation, the vortex-generating cylindrical porous tube 4
is driven by an external driving means such as a motor (not shown),
It is configured to constantly rotate at a rotation speed of 5000 rpm, preferably 20 to 200 rpm. Therefore, the filter dregs accumulated on the inner surface of the cylindrical porous tube 3 and the outer surface of the vortex generating cylindrical porous tube 4 can be removed by the tiller vortex generated by the rotation, so that slurry liquid etc. can be continuously filtered. It becomes possible to filter for a long time under conditions of high speed.

以下、実際の例について説明する。An actual example will be explained below.

実施例1 渦発生用円筒状多孔質管を有しない従来のクロスフロー
濾過器と、渦発生用円筒状多孔質管を有する本発明の濾
過濃縮器とを準備し、これらの濾過器をサブミクロンオ
ーダーの蛋白コロイドを11000pp含む処理規模1
 m’/HRのしゅう油のおりの濾過濃縮に使用して両
者を比較した。なお、このときのしゅう油のおりの入力
圧力は従来例の場合と本発明の場合共に1kg/cm2
とし、さらに渦発生用円筒状多孔質管の回転数は110
0rpと設定した。
Example 1 A conventional cross-flow filter without a cylindrical porous tube for generating a vortex and a filtration concentrator of the present invention having a cylindrical porous tube for generating a vortex were prepared, and these filters were Processing scale 1 containing 11,000 pp of protein colloid of the order
The two were compared by using it for filtration and concentration of m'/HR's soybean oil cage. The input pressure of the oil cage at this time is 1 kg/cm2 for both the conventional example and the present invention.
Furthermore, the rotation speed of the cylindrical porous tube for vortex generation is 110.
It was set to 0rp.

また、円筒状多孔質管としては平均細孔径0.2μmの
セラミック製内側コート品を、さらに渦発生用円筒状多
孔質管としては平均細孔径0.2μmのセラミック製外
側コート品を使用した。
Further, as the cylindrical porous tube, an inner coated ceramic product with an average pore diameter of 0.2 μm was used, and as a vortex generating cylindrical porous tube, an outer coated ceramic product with an average pore diameter of 0.2 μm was used.

第1表 第1表から明かなように、本発明の渦発生用円筒状多孔
質管を有する濾過濃縮器は従来の濾過器に比べて、濾過
面積、濾過速度が大きいため濾過器体積あたりの生産量
が約18倍多いと共に少ない動力で同じ処理ができるこ
とがわかった。
Table 1 As is clear from Table 1, the filtration concentrator having the vortex-generating cylindrical porous tube of the present invention has a larger filtration area and filtration speed than conventional filters, so It was found that the production volume was about 18 times higher and the same processing could be done with less power.

(発明の効果) 以上詳細に説明したところから明かなように、本発明の
濾過濃縮器によれば、濾過器内に渦発生部材を設けこれ
を回転することにより濾過材に堆積する濾滓等を常に除
去しているため、従来の渦発生部材を有してないクロス
フロー濾過器に比べて大きな濾過速度が得られると共に
少ない動力で処理できるため、省エネ化、コンパクト化
を達成することができる。また、濾過濃縮の場合は、従
来のクロスフロー濾過器等に比べて大きな濾過速度と分
離効率を得られると共に連続運転が可能なため、省エネ
化、コンパクト化、省メシテナンス化を達成できる。
(Effects of the Invention) As is clear from the detailed explanation above, according to the filtration concentrator of the present invention, a vortex generating member is provided in the filter, and by rotating the vortex generating member, filter dregs etc. are deposited on the filter material. Because it constantly removes vortex, it can achieve a higher filtration speed than conventional cross-flow filters that do not have a vortex generating member, and can process with less power, resulting in energy savings and downsizing. . In addition, in the case of filtration and concentration, it is possible to obtain higher filtration speed and separation efficiency than with conventional cross-flow filters, etc., and continuous operation is possible, so energy saving, compactness, and maintenance savings can be achieved.

そのため本発明の濾過濃縮器は、ビーノペワイン、酒等
の飲料、しょう油、食酢、ダシ汁等の食品、工場廃水、
錫メツキ液、酸性亜鉛メッキ液、バイオ等の菌体除去の
清澄濾過に使用すると好適であり、特にコロイド物質を
含む通常ケーキの圧縮指数が高い難濾過性スラリー液の
濾過に使用すると好適である。また本発明は湖水、バイ
オ農薬、発酵液等のバイオ、化学、製薬、食品、乳業等
の分野の濾過濃縮に使用すると好適で、さらに濃縮ケー
キを酸、アルカリ、水洗浄などして洗浄濾過濃縮する場
合に用いてもよい。
Therefore, the filtration concentrator of the present invention is suitable for use in beverages such as Beanope wine and alcoholic beverages, foods such as soy sauce, vinegar, and dashi soup, factory wastewater, etc.
Suitable for use in clarification filtration of tin plating solutions, acidic galvanizing solutions, bio-based products, etc. to remove microbial cells, and particularly suitable for use in filtration of difficult-to-filter slurry liquids that contain colloidal substances and have a high compaction index. . Furthermore, the present invention is suitable for use in the filtration and concentration of lake water, biopesticides, fermentation liquids, etc. in the bio, chemical, pharmaceutical, food, and dairy industries. It may be used when

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の濾過濃縮器の一実施例を示す部分断面
図である。 1・・・排出孔     2・・・外筒3・・・円筒状
多孔質管 4・・・渦発生用円筒状多孔質管 5・・・スラリー液供給孔 6・・・スラリー液排出孔
FIG. 1 is a partial sectional view showing an embodiment of the filtration concentrator of the present invention. 1... Discharge hole 2... Outer tube 3... Cylindrical porous tube 4... Cylindrical porous tube for vortex generation 5... Slurry liquid supply hole 6... Slurry liquid discharge hole

Claims (1)

【特許請求の範囲】 1、濾過液の排出孔を有する外筒と、該外筒の内部に同
心状に設置された円筒状多孔質管と、該円筒状多孔質管
の内部に同心状に設置された渦発生用円筒状多孔質管と
、前記円筒状多孔質管と該渦発生用円筒状多孔質管との
間の両端にそれぞれ設けられたスラリー液供給孔および
スラリー液排出孔とから構成され、前記渦発生用円筒状
多孔質管を回転させながら前記スラリー液供給孔より濾
過すべきスラリー液を供給し、供給されたスラリー液を
前記円筒状多孔質管と前記渦発生用円筒状多孔質管とを
介して濾過して濾過液を前記排出孔から外部へ排出する
と共に、濾過後のスラリー液を前記スラリー液排出孔か
ら排出することを特徴とする濾過濃縮器。 2、前記円筒状多孔質管および渦発生用円筒状多孔質管
が、セラミックス、ガラスなどの無機物あるいは金属あ
るいは有機物からなる多孔体である特許請求の範囲第1
項記載の濾過濃縮器。 3、前記円筒状多孔質管が、無機物あるいは金属あるい
は有機物からなる多孔体自身あるいは該多孔体の内側に
、該多孔体の細孔径より小さい細孔径を有する濾布、濾
紙、有機膜、金網、セラミック層などのいずれかを設け
た複層構造の多孔体である特許請求の範囲第1項記載の
濾過濃縮器。 4、前記渦発生用円筒状多孔質管が、無機物あるいは金
属あるいは有機物からなる多孔体自身あるいは該多孔体
の外側に、該多孔体の細孔径より小さい細孔径を有する
濾布、濾紙、有機膜、金網、セラミック層などのいずれ
かを設けた複層構造の多孔体である特許請求の範囲第1
項記載の濾過濃縮器。
[Claims] 1. An outer cylinder having a filtrate discharge hole, a cylindrical porous tube installed concentrically inside the outer cylinder, and a cylindrical porous tube installed concentrically inside the cylindrical porous tube. From the installed vortex-generating cylindrical porous tube, and a slurry liquid supply hole and a slurry liquid discharge hole provided at both ends between the cylindrical porous tube and the vortex-generating cylindrical porous tube, respectively. The slurry liquid to be filtered is supplied from the slurry liquid supply hole while rotating the vortex-generating cylindrical porous tube, and the supplied slurry liquid is transferred between the vortex-generating cylindrical porous tube and the vortex-generating cylindrical porous tube. A filtration concentrator characterized in that the filtrate is filtered through a porous pipe and the filtrate is discharged to the outside from the discharge hole, and the slurry liquid after filtration is discharged from the slurry discharge hole. 2. Claim 1, wherein the cylindrical porous tube and the vortex generating cylindrical porous tube are porous bodies made of an inorganic material such as ceramics or glass, or a metal or an organic material.
Filtration concentrator as described in section. 3. A filter cloth, filter paper, organic membrane, wire mesh, in which the cylindrical porous tube has a pore diameter smaller than the pore diameter of the porous body itself or inside the porous body made of an inorganic, metal, or organic substance; The filtration concentrator according to claim 1, which is a porous body with a multilayer structure provided with any one of a ceramic layer. 4. The vortex-generating cylindrical porous tube is made of a porous body made of an inorganic, metal, or organic substance, or a filter cloth, filter paper, or organic membrane having a pore diameter smaller than the pore diameter of the porous body, or on the outside of the porous body. , a wire mesh, a ceramic layer, etc.
Filtration concentrator as described in section.
JP26664786A 1986-11-11 1986-11-11 Filter condensing device Pending JPS63123413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26664786A JPS63123413A (en) 1986-11-11 1986-11-11 Filter condensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26664786A JPS63123413A (en) 1986-11-11 1986-11-11 Filter condensing device

Publications (1)

Publication Number Publication Date
JPS63123413A true JPS63123413A (en) 1988-05-27

Family

ID=17433734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26664786A Pending JPS63123413A (en) 1986-11-11 1986-11-11 Filter condensing device

Country Status (1)

Country Link
JP (1) JPS63123413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006903A (en) * 2016-03-02 2017-01-12 東洋スクリーン工業株式会社 Filtering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006903A (en) * 2016-03-02 2017-01-12 東洋スクリーン工業株式会社 Filtering device

Similar Documents

Publication Publication Date Title
US8308953B2 (en) Methods of dynamic filtration using centrifugal force and methods of making a dynamic filtration device
US6808634B1 (en) Method and device for cross-flow filtration
AU2003240937B2 (en) Vortex enhanced filtration device and methods
JP3577460B2 (en) Rotating disk type filtration device equipped with means for reducing axial force
CN108939922A (en) A kind of rotary type ceramic film is separated by filtration technique and device
CN113788513B (en) Filtering and separating device and application thereof
CN200939364Y (en) Inorganic membrane dyanmic filter
CN101874948B (en) Barrel type filtering assembly
CN202237500U (en) Dynamic filter
CN208906018U (en) A kind of rotary type ceramic film filtering separation device
Wroński et al. Dynamic filtration in biotechnology
WO2018235901A1 (en) Filtration membrane module and filtration method
CN207667447U (en) Ceramic membrane filter component and separation of fermentative broth processing system
CN107185283A (en) Liquid precise filter
JPH08173771A (en) Porous monolithic support body for filteration film
JPH0365222A (en) Tubular filter element
CN201578904U (en) Cylindrical filter component
JPS63123413A (en) Filter condensing device
CN105617754A (en) Full-automatic press filter
JPS62213815A (en) Revolving continuous high speed filter
CN114452830A (en) Disc type ceramic membrane and one-step forming method thereof
CN102059015B (en) Layer filtering component
CN106809973A (en) A kind of inorganic hollow earthenware slab membrane cartridge drinking water apparatus
CN205412448U (en) Full -automatic filter press
CN202654786U (en) Fine filter for liquid-solid two-phase product