JPS63122979A - Millimeter wave radar - Google Patents

Millimeter wave radar

Info

Publication number
JPS63122979A
JPS63122979A JP61269233A JP26923386A JPS63122979A JP S63122979 A JPS63122979 A JP S63122979A JP 61269233 A JP61269233 A JP 61269233A JP 26923386 A JP26923386 A JP 26923386A JP S63122979 A JPS63122979 A JP S63122979A
Authority
JP
Japan
Prior art keywords
mixer
noise power
amplifier
throw
millimeter wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61269233A
Other languages
Japanese (ja)
Other versions
JPH0410017B2 (en
Inventor
Osami Yoshizawa
吉澤 修身
Shigeo Kawasaki
川崎 繁男
Kuniaki Mitsui
三井 邦昭
Masahide Haratake
原竹 正英
Teruo Furuya
輝雄 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Electric Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP61269233A priority Critical patent/JPS63122979A/en
Publication of JPS63122979A publication Critical patent/JPS63122979A/en
Publication of JPH0410017B2 publication Critical patent/JPH0410017B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high-performance radar with less temperature resolutions while lowering the cost with reduction in weight and size of the apparatus, by arranging an antenna for receiving noise power of millimeter wave band, a local oscillator, a mixer, a single-throw unipole switch, an amplifier, a signal processing section and the like. CONSTITUTION:When a single-throw unipole switch 11 is turned ON, an antenna 1 is connected to a mixer 4 and receives a noise power of millimeter wave or the like radiated from an object. The noise power is mixed with a signal from a local oscillator 5 by the mixer 4 and the frequency of the signal is converted into an intermediate frequency from the millimeter wave by frequency conversion. After amplified with an amplifier 6, the noise power thus converted to the intermediate frequency is detected with a power meter 7 to be converted into a voltage value and sent to a signal processing section 8. When the single- throw unipole switch 11 is turned OFF, internal noise power generated within the switch 11, the mixer 4 and the amplifier 6 is measured and the noise power from the object is compared with the results as reference to calculate an equivalent noise temperature of the object.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ミリ波電力を受信するミリ波レーダ装置の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a millimeter wave radar device that receives millimeter wave power.

〔従来の技術〕[Conventional technology]

第3図は、従来からあるミリ波電力を受信するミリ波レ
ーダ装置の一例である。第3図において。
FIG. 3 is an example of a conventional millimeter wave radar device that receives millimeter wave power. In fig.

(1)はアンテナ、(2)は終端抵抗器、(3)は、上
記アンテナ(1)と終幼抵抗器(21をミキサ(4ンに
それぞれ切換接続するための単投双極スイッチ(5)は
ミキサ(4)に接続された局部発振器、(6)は上記ミ
キサ(4)に接続された増幅器、(7)はパワーメータ
、(8)は信号処理部、(9)は信号処理部(8)から
の測定と較正のタイミングをそれぞれ受けてスイッチ(
3)を切換える制御回路である。
(1) is an antenna, (2) is a terminating resistor, and (3) is a single-throw double-pole switch (5) for switchingly connecting the antenna (1) and the terminating resistor (21) to the mixer (4). is a local oscillator connected to the mixer (4), (6) is an amplifier connected to the mixer (4), (7) is a power meter, (8) is a signal processing section, and (9) is a signal processing section ( After receiving the measurement and calibration timing from 8), switch (
3) is a control circuit that switches.

次に動作について説明する。上記ミリ波レーダ装置は、
物体から放射される雑音を受信し、その電力を基準雑音
源の電力で較正することにより。
Next, the operation will be explained. The above millimeter wave radar device is
By receiving the noise emitted by an object and calibrating its power with the power of a reference noise source.

物体の等価雑音温度を測定しようとする装置である。This is a device that attempts to measure the equivalent noise temperature of an object.

物体から放射されたt’J波帯の雑音電力はアンテナ(
1)でとらえられ、単投双極スイッチ(3)を経てミキ
サ(4)に入る。ミキサ(4)にて1局部発振器(5)
からの信号と混合され、信号周波数をi’J波より中間
周波数に周波数変換される。中間周波数に変換された雑
音電力は、増幅器(6)により増幅された後パワーメー
タ(7)により検波され電圧値に変換されて信号処理品
(8)に送られる。
The noise power in the t'J wave band radiated from the object is transmitted by the antenna (
1) and enters the mixer (4) via a single-throw double-pole switch (3). 1 local oscillator (5) in mixer (4)
The signal frequency is converted from the i'J wave to an intermediate frequency. The noise power converted to an intermediate frequency is amplified by an amplifier (6), detected by a power meter (7), converted to a voltage value, and sent to a signal processing product (8).

一方、単投双極スイッチ(3)を切換えて終端抵抗器(
2)にミキサ(4)を接続した場合には、終端抵抗器(
2)で発生した雑音電力が上記で説明した経路で電圧値
に変換されて信号処理部(8)へ送られる。信号処理部
(8)では、終端抵抗器(2)で発生した雑音電力を基
準として、物体からの雑音電力と比較して。
On the other hand, switch the single-throw double-pole switch (3) and connect the terminating resistor (
When the mixer (4) is connected to 2), the terminating resistor (
The noise power generated in step 2) is converted into a voltage value and sent to the signal processing section (8) through the path described above. In the signal processing unit (8), the noise power generated by the terminating resistor (2) is compared with the noise power from the object.

物体の等価雑音温度を算出する。制御回路(9)は。Calculate the equivalent noise temperature of the object. The control circuit (9) is.

信号処理部(8)からの測定、較正のタイミングにより
、単投双極スイッチ(3)を切り換える働きを行う。
It functions to switch the single-throw double-pole switch (3) according to the timing of measurement and calibration from the signal processing section (8).

次に以上の動作を第4図を用いて理論的に説明する。第
4図に示すように温度’roの終端抵抗器(2)から発
生する雑音電力Enは En = K−To−B         −−−−−
−+13ただしKはボルツマン定数、Bは増幅器(6)
の帯域槽である。増幅器(6)からでる出力雑音電力E
outは Eoui = G−K(To+’re)B      
    ・−・・−+2まただし、Gは増幅回路a1利
得e  ’reは増幅器(6)の等価雑音温度である。
Next, the above operation will be explained theoretically using FIG. As shown in Fig. 4, the noise power En generated from the termination resistor (2) at temperature 'ro is En = K-To-B ------
-+13 where K is Boltzmann's constant and B is the amplifier (6)
This is a band tank. Output noise power E from amplifier (6)
out is Eoui = G-K(To+'re)B
...-+2 where G is the amplifier circuit a1 gain e're is the equivalent noise temperature of the amplifier (6).

第4図における増幅回路α1は第3図の単投双極スイッ
チ(3)s  ミキサ(4)、増幅器(6)を一体化し
た形で考えており、その等価雑音温度’reは。
The amplifier circuit α1 in FIG. 4 is considered as an integrated form of the single-throw double-pole switch (3), the mixer (4), and the amplifier (6) in FIG. 3, and its equivalent noise temperature 're is.

Te”To×(LswXF−リ      −・−+3
まただしe  Law  は単投双極スイッチ(3)の
挿入損失、Fは、ミキサ(4)、増幅器(6)を合わせ
てみこんだ雑音指数である。
Te"To×(LswXF-Lee -・-+3
Furthermore, eLaw is the insertion loss of the single-throw bipole switch (3), and F is the noise figure including the mixer (4) and amplifier (6).

ここで、単投双極スイッチ(3)をアンテナ(り側に接
続すると物体の放射雑音を受信することができ。
Here, if you connect the single-throw double-pole switch (3) to the antenna (reverse side), you can receive the radiation noise from the object.

増幅回路α1の出力端Aから出力される雑音電力E’O
utは E’out ”” G−K (Ta+Te)     
 −−−−−−(4)ここで、Taは物体の等価雑音温
度である。
Noise power E'O output from output terminal A of amplifier circuit α1
ut is E'out "" G-K (Ta+Te)
-------(4) Here, Ta is the equivalent noise temperature of the object.

(2)式、(3)式(4)式から、明らかなようにe 
 EoutとE’o u tの比を求めることにより終
端抵抗器り2)の温度’roを基準として、物体の等価
雑音温度Taを算出することができる。この計算は信号
処理部(8)で行なわれる。
From equations (2), (3), and (4), it is clear that e
By determining the ratio between Eout and E'out, the equivalent noise temperature Ta of the object can be calculated using the temperature 'ro of the termination resistor 2) as a reference. This calculation is performed in the signal processing section (8).

以上説明したミリ波レーダの性能は、温度分解能ΔTM
giで定められ で表される。Bは帯域幅、τは積分時間* T’sys
はシステム温度、Cは定数でC岬ZOである。ここでT
’syaは ’rsys ” ’ra+ ’re = Ta+To (LawX F−1)    −・−
−−−(6)となる。C9J17はレーダ装置により定
まる定数であるから、比例定数をαとすると。
The performance of the millimeter wave radar explained above is based on the temperature resolution ΔTM
It is defined as gi and expressed as . B is the bandwidth, τ is the integration time * T'sys
is the system temperature, C is a constant and C cape ZO. Here T
'sya is 'rsys''ra+'re = Ta+To (LawX F-1) -・-
---(6). Since C9J17 is a constant determined by the radar device, let α be the proportionality constant.

ΔTrm−αX TSyB ;αx(Ta”To (LgwX F−1) ) −=
(7)となり、温度分解能はスイッチの損失L 8W 
sおよヒミキサ(4の雑音指数Fで定まる。従来例にお
いて、システム温度T8を計算した例を示す。
ΔTrm−αX TSyB; αx(Ta”To (LgwX F−1)) −=
(7), and the temperature resolution is the switch loss L 8W
s and the hismixer (determined by the noise figure F of 4. In the conventional example, an example of calculating the system temperature T8 is shown.

TaW250’にとする。ミリ波帯の単投双極スイッチ
(3)の損失しswは2.5dB程度、雑音指数F −
8dBであり、To””300’にとすると。
TaW250'. The loss sw of the millimeter-wave band single-throw double-pole switch (3) is approximately 2.5 dB, and the noise figure is F −
It is 8dB, and if it is set as To""300'.

TByB−250’に+300’K(1−78X&31
 1)−3319°K          ・・・・・
・(8)となる。
TByB-250'+300'K(1-78X&31
1) -3319°K...
・(8) becomes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のミリ波レーダ装置は、温度をToに制御した終端
抵抗器(2)を用いる必要があったため9重量・寸法が
大きくなり1価格が高(なるという問題点があった。ま
た、単投双極スイッチ(3)を用いるため、ミリ波帯で
は挿入損失しswが太き(なり。
Conventional millimeter wave radar equipment has had the problem of increasing weight and dimensions, as well as increasing the price, since it is necessary to use a terminating resistor (2) whose temperature is controlled to To. Since a bipolar switch (3) is used, there is an insertion loss in the millimeter wave band, and the sw becomes thick.

レーダの基本性能である温度分解能ΔTMが劣化すると
いう問題点があった。
There was a problem in that the temperature resolution ΔTM, which is the basic performance of radar, deteriorated.

この発明は上記のような問題点を解消するためになされ
たもので9重量・寸法を小さくし価格を低(できるとと
もに温度分解能を小さくできるミリ波レーダ装置を得る
ことを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a millimeter wave radar device that can reduce the weight and size, reduce the price, and reduce the temperature resolution.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るミリ波レーダ装置は、終端抵抗器を使用
しないとともに、単投双極スイッチを単投単極スイッチ
に変更したものである。
The millimeter wave radar device according to the present invention does not use a terminating resistor, and the single-throw double-pole switch is replaced with a single-throw single-pole switch.

〔作 用〕[For production]

この発明におけるミリ波レーダ装置は終端抵抗器を削除
し、その代わりに、単投単極スイッチをOFF[/たと
きに発生する内部雑音電力を基準とし、上記スイッチを
ONL、た時に物体からの雑音電力を測定することによ
り、物体の等価雑音度を算出する。単投単極スイッチは
単投双極スイッチより挿入損失が小さく、ミリ波レーダ
の温度分解能を小さくできる。
The millimeter wave radar device according to the present invention eliminates the terminating resistor, and instead uses the internal noise power generated when the single-throw single-pole switch is turned OFF as a reference, and when the switch is turned ONL, the noise from the object is By measuring the noise power, the equivalent noise degree of the object is calculated. Single-throw, single-pole switches have lower insertion loss than single-throw, double-pole switches, and can reduce the temperature resolution of millimeter-wave radar.

〔実強例〕[Strong example]

第1図はこの発明の一実施例を示すミリ波レーダ装置の
構成図であり、第1図において、 +1)、 +4〜(
9)は第3図に示した従来例と同様である。任υはアン
テナ(1)とミキサ(4)との間に接続された単投単極
スイッチである。
FIG. 1 is a block diagram of a millimeter wave radar device showing an embodiment of the present invention. In FIG. 1, +1), +4 to (
9) is similar to the conventional example shown in FIG. υ is a single-throw, single-pole switch connected between the antenna (1) and the mixer (4).

次に動作について説明する0本実施例のミリ波レーダに
おいては、単投単極スイッチallがONL。
In the millimeter-wave radar of this embodiment, whose operation will be explained next, the single-throw single-pole switches all are ONL.

たときにはアンテナ(1)とミキサ(4)とを接続し、
物体から放射された雑音電力を受信する。なお信号を処
理する経路は上記従来例で説明したものと同様である。
When the antenna (1) and mixer (4) are connected,
Receives noise power emitted from an object. Note that the signal processing path is the same as that described in the conventional example above.

単投単極スイッチαυを0FFL/た場合には、上記従
来例で説明したような終端抵抗器(2ンで発生した雑音
を基準とするかわりに、単投単極スイッチαυ、iキサ
(4)、および増幅器(6)の内部で発生した内部雑音
電力を測定して、これを基準とする0以上の動作を第2
図を用いて理論的に説明する。上記従来例で示したと同
様にアンテナ111から物体の雑音電力を受信した場合
、出力端子Aから出力される雑音電力Fi:outは。
When the single-throw, single-pole switch αυ is set to 0 FFL/ ), and the internal noise power generated inside the amplifier (6), and the operation of 0 or more based on this is measured as a second
This will be explained theoretically using diagrams. When the noise power of an object is received from the antenna 111 in the same manner as shown in the conventional example above, the noise power Fi:out output from the output terminal A is as follows.

Eout = G−K (TB+Te) B     
 ・・・・”+9まただしGは増幅回路α1の利得、に
はボルツマン定数、Taは物体の等価雑音温度eTeは
増幅器(6)の等価雑音温度、Bは増幅器(6)の帯域
幅である。
Eout = G-K (TB+Te) B
..."+9 where G is the gain of the amplifier circuit α1, is the Boltzmann constant, Ta is the equivalent noise temperature of the object eTe is the equivalent noise temperature of the amplifier (6), and B is the bandwidth of the amplifier (6) .

第2図における増幅回路αQは、第2図の単投単極スイ
ッチαυ、ミキサ(4)、増幅器(6)を一体化した形
で考えている。また9等価雑音温度Teは。
The amplifier circuit αQ in FIG. 2 is considered to be an integrated form of the single-throw single-pole switch αυ, the mixer (4), and the amplifier (6) shown in FIG. Also, the equivalent noise temperature Te is 9.

Te = To X (Law X F−t )   
   ・−−−−−Q(1ここでToは増幅回路αQの
温度tLBW  は単投単極スイッチα力の挿入損失、
Fはミキサ(4)、増幅器(6)を合せてみこんだ雑音
指数である。
Te = To X (Law X F-t)
----Q (1 Here, To is the temperature tLBW of the amplifier circuit αQ, and the insertion loss of the single-throw single-pole switch α power,
F is the noise figure including the mixer (4) and amplifier (6).

また、単投単極スイッチαυを0FFL/た場合。Also, when the single-throw single-pole switch αυ is set to 0FFL/.

出力端子Aより出力される出力雑音電力E’outは。The output noise power E'out output from output terminal A is.

E’out= 2GKT6B+GKT6B    −・
・・・4υとなる。(9)式、 84式、Q9式から明
らかなように。
E'out= 2GKT6B+GKT6B -・
...It becomes 4υ. As is clear from formula (9), formula 84, and formula Q9.

EoutとE’outとの比を求めることにより増幅回
路’roの温度を基準として、物体の等価雑音温度Ta
を算出することができる。この計算は信号処理部(8)
で行なわれる。
By calculating the ratio of Eout and E'out, the equivalent noise temperature Ta of the object is determined based on the temperature of the amplifier circuit 'ro.
can be calculated. This calculation is performed by the signal processing section (8)
It will be held in

以上から、終端抵抗器(2)を使用しな(とも物体の等
価雑音温度Taを測定することができることがわかる。
From the above, it can be seen that the equivalent noise temperature Ta of the object can be measured without using the terminating resistor (2).

ここで、温度分解能ΔTヨは(7)式より。Here, the temperature resolution ΔT is calculated from equation (7).

ΔTm1n=αTs =α(Law X F−1) TO−”・αりここで、
ミリ波帯においては、単投単極スイッチの損失は、1.
5dB程度、雑音指数F = 8 dB。
ΔTm1n=αTs =α(Law
In the millimeter wave band, the loss of a single-throw single-pole switch is 1.
About 5 dB, noise figure F = 8 dB.

’fa=250°Km  T(1冨3800K  とす
ると。
'fa=250°Km T (assuming 1 depth is 3800K.

T’sys = 250°に+300’K (1,41
X 6.31−1 )寓2619°K        
     ・・・・・・α3となる。(8)式、 (1
3式の結果より* T’sysが従来例では、  33
19°K であったことから9本実施例ではT’sys
が小さくなり、従って温度分解能ΔT++oxが小さく
tつだことがわかる。レーダ装置のS/N比が温度分解
能によって定まるので1本実m%Jでは、従来例に比べ
て、(8)式、 (13式により。
T'sys = 250° +300'K (1,41
X 6.31-1) Fable 2619°K
...It becomes α3. Equation (8), (1
From the result of formula 3, *T'sys is 33 in the conventional example.
Since the temperature was 19°K, in this example, T'sys
It can be seen that the temperature resolution ΔT++ox is small and therefore the temperature resolution ΔT++ox is small. Since the S/N ratio of the radar device is determined by the temperature resolution, for one actual m%J, compared to the conventional example, Equation (8) and (Equation 13) are used.

から1.03dBS/N比が良くなったことを示す。This shows that the BS/N ratio has improved by 1.03 dB.

な詔上記実施例では単投単極スイッチαυの切換えを信
号処理回路(8)からの測定、較正のタイミングにより
制御するようになっていたが、この発明はこれに限るも
のではなく例えば手動によりON。
In the above embodiment, the switching of the single-throw single-pole switch αυ was controlled by the timing of measurement and calibration from the signal processing circuit (8), but the present invention is not limited to this, and for example, switching of the single-throw single-pole switch αυ is controlled manually. ON.

0FFL/でも良いことは言うまでもない。0FFL/But it goes without saying that it's a good thing.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、レーダ装置の中から
終端抵抗器を使用しない形で構成したので構成が簡単で
寸法・重量が小さく1価格の低いミリ波レーダ装置を得
られるという効果がある。
As described above, according to the present invention, since the radar device is configured without using a terminating resistor, it is possible to obtain a millimeter wave radar device with a simple configuration, small size and weight, and a low price. be.

また、単投単極スイッチを使用して構成したので。Also, since I configured it using a single-throw single-pole switch.

温度分解能の小さい、性能の良いレーダ装置を得られる
という効果がある。
This has the effect of providing a radar device with low temperature resolution and good performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるiり波レーダ装置の
構成図、第2図は、この発明によるレーダ装置の概念図
、第3図は従来のiす波レーダ装置の構成図、第4図は
従来例のレーダ装置の概念図である。 図中+11はアンテナ、(4)はミキサ、(6)は増幅
器。 (7)はパワーメータ、(8)は信号処理部、(9)は
制御回路、αQは増幅回路、aυは単投単極スイッチで
ある。 なお図中同一あるいは相当部分には同一符号を付して示
しである。
FIG. 1 is a block diagram of an i-wave radar device according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of a radar device according to the present invention, and FIG. 3 is a block diagram of a conventional i-wave radar device. FIG. 4 is a conceptual diagram of a conventional radar device. In the figure, +11 is an antenna, (4) is a mixer, and (6) is an amplifier. (7) is a power meter, (8) is a signal processing section, (9) is a control circuit, αQ is an amplifier circuit, and aυ is a single-throw single-pole switch. In the drawings, the same or corresponding parts are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 物体から放射されるミリ波帯の雑音電力を受信するアン
テナと、局部発振器と、この局部発振器の出力信号によ
り上記アンテナで受信された信号周波数を中間周波数に
変換するミキサと、上記アンテナと上記ミキサとの間に
接続された単投単極スイッチと、上記ミキサの出力を増
幅する増幅器と、上記単投単極スイッチがONのとき上
記アンテナで受信された物体の雑音電力を上記単投単極
スイッチ、ミキサおよび増幅器を介して導入し、また上
記単投単極スイッチがOFFのとき上記単投単極スイッ
チ、ミキサおよび増幅器とから構成される増幅回路内部
で発生する温度T_0の内部雑音電力を導入し、上記物
体の雑音電力と上記内部雑音電力との比を求めることに
より上記内部雑音電力の温度T_0を基準として物体の
等価雑音温度T_aを算出する信号処理部とを具備した
ことを特徴とするミリ波レーダ装置。
An antenna that receives noise power in the millimeter wave band radiated from an object, a local oscillator, a mixer that converts the signal frequency received by the antenna into an intermediate frequency using an output signal of the local oscillator, and the antenna and the mixer. a single-throw, single-pole switch connected between the mixer and an amplifier for amplifying the output of the mixer; and an amplifier for amplifying the output of the mixer; The internal noise power at temperature T_0 is introduced through the switch, mixer, and amplifier, and is generated inside the amplifier circuit composed of the single-throw single-pole switch, mixer, and amplifier when the single-throw single-pole switch is OFF. and a signal processing unit that calculates an equivalent noise temperature T_a of the object based on the temperature T_0 of the internal noise power by calculating a ratio between the noise power of the object and the internal noise power. millimeter wave radar equipment.
JP61269233A 1986-11-12 1986-11-12 Millimeter wave radar Granted JPS63122979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269233A JPS63122979A (en) 1986-11-12 1986-11-12 Millimeter wave radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269233A JPS63122979A (en) 1986-11-12 1986-11-12 Millimeter wave radar

Publications (2)

Publication Number Publication Date
JPS63122979A true JPS63122979A (en) 1988-05-26
JPH0410017B2 JPH0410017B2 (en) 1992-02-24

Family

ID=17469514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269233A Granted JPS63122979A (en) 1986-11-12 1986-11-12 Millimeter wave radar

Country Status (1)

Country Link
JP (1) JPS63122979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547879U (en) * 1991-11-29 1993-06-25 住友重機械工業株式会社 Device for identifying objects in the sky
JP2008185471A (en) * 2007-01-30 2008-08-14 Denso Corp Radar device
WO2010100976A1 (en) * 2009-03-05 2010-09-10 株式会社日立国際電気 Multi-function radar device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547879U (en) * 1991-11-29 1993-06-25 住友重機械工業株式会社 Device for identifying objects in the sky
JP2008185471A (en) * 2007-01-30 2008-08-14 Denso Corp Radar device
WO2010100976A1 (en) * 2009-03-05 2010-09-10 株式会社日立国際電気 Multi-function radar device
JP2010204003A (en) * 2009-03-05 2010-09-16 Hitachi Kokusai Electric Inc Multi-function radar device
US8537049B2 (en) 2009-03-05 2013-09-17 Hitachi Kokusai Electric Inc. Multi-function radar device

Also Published As

Publication number Publication date
JPH0410017B2 (en) 1992-02-24

Similar Documents

Publication Publication Date Title
US7598903B2 (en) Sensor for measuring distance and method for measuring distance using the sensor
US6362777B1 (en) Pulse-doppler radar apparatus
JPH11352219A (en) Vehicle-mounted radar system
JPS63122979A (en) Millimeter wave radar
JPH01116475A (en) Fm-cw radar
US2580679A (en) High-frequency directional coupler apparatus
US5140859A (en) Long range ultrasonic distance measuring system
US3185985A (en) Microwave delay system
JPH02280083A (en) Measuring instrument for water vapor content and rainfall quantity
JP2879991B2 (en) Distance measuring device
JP2962983B2 (en) CW Doppler measurement radar device
KR20020054616A (en) Apparatus for gausing Voltage Standing Wave Ratio
US4104587A (en) Bandwidth substitution method and system for absolute measurement of power at all radio frequencies
SU1040923A1 (en) Doppler device for measuring radar effective scattering area
JPH022539B2 (en)
JPS5946542A (en) Receiver of microwave radiometer
JPH11183600A (en) Radar device
JP2000055605A (en) Body detecting method and body detector using same
JPS63108237A (en) Frequency sweep type radiometer
JPH0414757B2 (en)
GB2149256A (en) Phase measurement
GB2266155A (en) Measuring standing wave ratios
SU1053021A1 (en) Device for measuring amplitude-phase distribution of phased array field
JPS62108176A (en) Radar equipment
JPH09257921A (en) Mono pulse radar tranceiver device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term