JPS63122942A - Activation of enzyme electrode - Google Patents

Activation of enzyme electrode

Info

Publication number
JPS63122942A
JPS63122942A JP61269189A JP26918986A JPS63122942A JP S63122942 A JPS63122942 A JP S63122942A JP 61269189 A JP61269189 A JP 61269189A JP 26918986 A JP26918986 A JP 26918986A JP S63122942 A JPS63122942 A JP S63122942A
Authority
JP
Japan
Prior art keywords
electrode
enzyme
measurement
potential
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61269189A
Other languages
Japanese (ja)
Other versions
JPH0454175B2 (en
Inventor
Ryuzo Hayashi
隆造 林
Akio Karigome
刈米 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Paper Manufacturing Co Ltd
Original Assignee
Kanzaki Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Paper Manufacturing Co Ltd filed Critical Kanzaki Paper Manufacturing Co Ltd
Priority to JP61269189A priority Critical patent/JPS63122942A/en
Publication of JPS63122942A publication Critical patent/JPS63122942A/en
Publication of JPH0454175B2 publication Critical patent/JPH0454175B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To enable stable measurement, by performing a triangular wave potential scanning on an enzyme electrode after measurement to recover the enzyme electrode from a drop in the sensitivity. CONSTITUTION:Given a measuring range, a fixed voltage is applied to a measuring electrode system 4 with a potentiostat 6 and current of the electrode system 4 is recorded to determine an object substance. With the repetition of such a measurement, a component with a relatively high molecular weight other than a substance to be measured contained in a sample adsorbs on the surface of an enzyme layer of an enzyme electrode 8 with a gradual permeation thereof while that with a relatively low molecular weight does on the surface of a conductor within the enzyme layer with a gradual permeation thereof, causing a drop in the sensitivity. To recover the sensitivity of the electrode 8, a triangular wave potential scanning is performed with a potential scan unit 7 attached to the potentiostat 6 within a stable area of water. Here, after the potential is scanned linearly in the positive direction from a fixed value of a measured density range, the scanning is reversed in the direction to cover down to the lower limit potential and the potential is returned to a fixed value in the original condition. This enables the stabilizing of the residual current quickly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固定化酵素電極(以下酵素電極と略す)を用
いた測定方法に関し、特に反復測定により起こる酵素電
極の感度低下を回復させる方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a measurement method using an immobilized enzyme electrode (hereinafter abbreviated as enzyme electrode), and in particular a method for recovering the sensitivity loss of an enzyme electrode caused by repeated measurements. Regarding.

〔従来の技術〕[Conventional technology]

酵素反応を生体物質や食品等に含まれる測定目的物質の
定量に用いることは、その反応速度の速さ及び基質特異
性を有する等の利点から広く行われている。特に酵素電
極を用いた測定方法は、微量の酵素を反復利用する可能
性を開き、その応用範囲を医療、食品、薬品分析等に広
げつつある。
Enzyme reactions are widely used to quantify target substances contained in biological substances, foods, etc. due to their advantages such as high reaction rate and substrate specificity. In particular, measurement methods using enzyme electrodes open up the possibility of repeatedly using trace amounts of enzymes, and their range of applications is expanding to medical, food, drug analysis, etc.

しかし、酵素電極は測定を繰り返すにつれ、その感度が
徐々に低下する欠点がある。かかる感度低下をもたらす
要因には、 (a)固定化された酵素自体の変性及び失活。
However, enzyme electrodes have the disadvantage that their sensitivity gradually decreases as measurements are repeated. Factors causing such a decrease in sensitivity include (a) denaturation and inactivation of the immobilized enzyme itself;

(b)試料中の不純物が固定化酵素層へ吸着することに
より、測定目的物質が固定化酵素層に拡散する過程が妨
害される。
(b) Impurities in the sample are adsorbed onto the immobilized enzyme layer, thereby interfering with the process of diffusion of the substance to be measured into the immobilized enzyme layer.

(C)酵素電極の導電体表面の変質。(C) Alteration of the conductor surface of the enzyme electrode.

などがある。これらのうち(a)の要因については、酵
素固定化技術そのものの改善が必要である。
and so on. Regarding factor (a) among these, it is necessary to improve the enzyme immobilization technology itself.

ただし、この要因による感度低下は強酸、強塩基試料等
の測定を行わない限り比較的ゆるやかに進行することか
ら、時々標準液で校正を行えば、測定誤差を実用上問題
のない程度におさえることが可能である。一方、(b)
(c)の要因の対策としては測定時に印加する電圧とは
逆電圧を酵素電極に短時間印加する方法が提案されてい
る(特開昭57−60255号、特開昭60−1559
59号)。しかし、急激に逆電圧を印加するこれらの方
法では電極に大きな電流が流れ、白金等5導電体表面に
損傷を起こす可能性があること、また電位の復帰に伴う
残余電流の変動により測定が長時間にわたり困難になる
こと、また白金等の上に酵素を固定化した酵素電極を作
用極とし、酵素反応で生じた過酸化水素が酸化されると
き生ずる電流を検出する測定方法において、通常印加さ
れている+0.6〜+〇、8V(対飽和カロメル電極、
以下SCEと略す)と逆電圧(−0,6〜−0,8v対
5CE)を印加すると、水の安定領域を越え、酵素電極
表面に水素の気泡が付着することによって以後の測定に
おいて電極の安定性が阻害される欠点がある。ここで水
の安定領域とは水分子の電気分解や緩衝液、支持電解質
の酸化還元反応が起こらず、試料溶液中の測定目的物質
を酵素電極に流れる電流より測定出来る領域のことであ
る。
However, the decrease in sensitivity due to this factor progresses relatively slowly unless strong acid or strong base samples are measured, so if you occasionally calibrate with a standard solution, it is possible to keep the measurement error to a level that does not pose a practical problem. is possible. On the other hand, (b)
As a countermeasure for factor (c), a method has been proposed in which a voltage opposite to the voltage applied during measurement is applied to the enzyme electrode for a short period of time (JP-A-57-60255, JP-A-60-1559).
No. 59). However, these methods, which apply a sudden reverse voltage, cause a large current to flow through the electrode, potentially damaging the surface of the 5-conductor such as platinum, and also making measurements take a long time due to fluctuations in the residual current as the potential returns. In addition, in the measurement method that uses an enzyme electrode with an enzyme immobilized on platinum or the like as a working electrode and detects the current generated when hydrogen peroxide produced in an enzyme reaction is oxidized, +0.6 to +〇, 8V (vs. saturated calomel electrode,
When a reverse voltage (-0.6 to -0.8v vs. 5CE) is applied, the stable region of water is exceeded and hydrogen bubbles adhere to the surface of the enzyme electrode, causing the electrode to become unstable in subsequent measurements. There is a drawback that stability is hindered. Here, the stable region of water is a region where electrolysis of water molecules and redox reactions of buffer solutions and supporting electrolytes do not occur, and the substance to be measured in the sample solution can be measured from the current flowing through the enzyme electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かかる現状に鑑み本発明者等は、前述の問題を解消し、
酵素電極の感度低下を効果的に回復させる方法に関し鋭
意研究の結果、特に三角波電位走査を酵素電極に行うこ
とにより、このような目的が達せられることを見出し本
発明を完成するに至った。
In view of the current situation, the present inventors solved the above-mentioned problem, and
As a result of intensive research into a method for effectively restoring the reduced sensitivity of enzyme electrodes, the present inventors discovered that this objective could be achieved by applying triangular wave potential scanning to enzyme electrodes, leading to the completion of the present invention.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、酸化還元酵素を導電体上に固定化した酵素電
極を用い、測定目的物質を検出する測定方法において、
測定後に該酵素電極に三角波電位走査を行うことを特徴
とする酵素電極の活性化方法である。
The present invention provides a measurement method for detecting a substance to be measured using an enzyme electrode in which an oxidoreductase is immobilized on a conductor.
This is a method for activating an enzyme electrode, which is characterized in that a triangular wave potential scan is applied to the enzyme electrode after measurement.

〔作用〕[Effect]

図面に基づいて更に具体的に説明する。第1図に本発明
にかかるフロー型測定装置を示す。緩衝液リザーバー(
1)中の緩衝液は、定流量ポンプ(2)で図中の矢印の
方向へ送液される。測定試料は試料注入口(3)よりマ
イクロシリンジにより注入され、測定電極系(4)、排
液リザーバー(5)へと導かれる、測定中はポテンシオ
スタット(6)により測定電極系(4)に一定電圧を印
加し、測定電極系(4)の電流を記録することにより目
的物質の定量を行う。このような測定を繰り返し行うと
、試料に含まれる測定目的物質以外の比較的高分子量の
成分、つまり蛋白質等は酵素電極(8)の酵素層表面に
、また比較的低分子の成分、つまり低分子アミンや有機
酸等は酵素層の内部にある白金等導電体表面に徐々に浸
透して吸着し、あるいは白金等導電体が、徐々に酸化被
膜等を形成し感度低下の原因となる。この現象は長期間
使用した酵素電極に最終的な電極反応に関与する過酸化
水素等を作用させた場合の応答の低下や、サイクリック
ボルタンダラムのピークの歪、残余電流の上昇等により
確認できる。
This will be explained in more detail based on the drawings. FIG. 1 shows a flow type measuring device according to the present invention. buffer reservoir (
The buffer solution in 1) is pumped in the direction of the arrow in the figure by a constant flow pump (2). The measurement sample is injected with a microsyringe through the sample injection port (3) and guided to the measurement electrode system (4) and the drainage reservoir (5). During the measurement, the measurement electrode system (4) is controlled by the potentiostat (6). The target substance is quantified by applying a constant voltage to and recording the current of the measurement electrode system (4). When such measurements are repeated, relatively high molecular weight components other than the target substance contained in the sample, such as proteins, are deposited on the surface of the enzyme layer of the enzyme electrode (8), and relatively low molecular weight components, such as proteins, are deposited on the surface of the enzyme layer of the enzyme electrode (8). Molecular amines, organic acids, etc. gradually permeate and adsorb onto the surface of a conductor such as platinum inside the enzyme layer, or the conductor such as platinum gradually forms an oxide film, etc., causing a decrease in sensitivity. This phenomenon is confirmed by a decrease in response when hydrogen peroxide, etc. involved in the final electrode reaction is applied to an enzyme electrode that has been used for a long period of time, as well as distortion of the peak of the cyclic voltammeter and an increase in residual current. can.

本発明の測定方法においては、このような反復測定によ
り徐々に感度が低下した酵素電極に感度を回復させる目
的でポテンシオスタット(6)に付設した直線電位走査
ユニット(7)により三角波電位走査を行うことを特徴
とするが、かかる電位走査は水の安定領域内で行われ、
その範囲は電極の材質、緩衝液、支持電解質の種類によ
って最適範囲が異なる。中性付近の緩衝液中にあっては
、酵素電極に用いる導電体がグラファイト極である場合
は−1、0〜+1.5v、またそれが金権である場合は
−0.4〜+1,5V、更にそれが白金極である場合に
は−0,5〜+1.3V(いずれも対5CE)が好まし
い範囲である。走査速度は、はぼ0.1〜IV/sec
で行う。かかる走査は必ずしも各測定終了毎に行う必要
はないが、測定目的物質以外の蛋白質等を多く含む試料
の場合では試料注入10数回毎に行う必要がある。三角
波走査を行う場合の方法としては、特に電位を濃度測定
中の一定値から正方向に直線的に走査した後、走査方向
を逆転して下限電位まで走査し、元の測定状態の一定電
位へ戻すと(第2図)、残余電流を速やかに安定させる
ことが出来るため特に好ましい。三角波電位走査を10
秒〜10分間くり返すことにより、静電的に吸着した成
分は、反発力を受けて流去せられ、また白金等導電体表
面の酸化被膜等が除去される結果、酵素電極の感度を良
好な状態にもどし、その寿命を延ばす効果が得られる。
In the measurement method of the present invention, triangular wave potential scanning is performed by a linear potential scanning unit (7) attached to a potentiostat (6) in order to restore the sensitivity of the enzyme electrode whose sensitivity has gradually decreased due to such repeated measurements. the potential scanning is performed within a stable region of water;
The optimum range varies depending on the electrode material, buffer solution, and supporting electrolyte type. In a buffer solution near neutrality, if the conductor used for the enzyme electrode is a graphite electrode, the voltage is -1, 0 to +1.5V, and if it is gold, it is -0.4 to +1, The preferred range is 5V, and if it is a platinum electrode, -0.5 to +1.3V (both relative to 5CE). Scanning speed is approximately 0.1~IV/sec
Do it with Such scanning does not necessarily need to be performed every time a measurement is completed, but in the case of a sample containing a large amount of proteins other than the substance to be measured, it is necessary to perform it every 10 or so times the sample is injected. The method for performing triangular wave scanning is to linearly scan the potential in the positive direction from a constant value during concentration measurement, then reverse the scanning direction and scan to the lower limit potential, returning to the constant potential of the original measurement state. Returning it (FIG. 2) is particularly preferable because the residual current can be quickly stabilized. 10 triangular wave potential scans
By repeating this process for seconds to 10 minutes, the electrostatically adsorbed components are washed away by the repulsive force, and the oxide film on the surface of the conductor such as platinum is removed, improving the sensitivity of the enzyme electrode. This has the effect of restoring it to its original condition and extending its lifespan.

本発明においては、三角波電位走査を行うため白金等の
導電体表面の損傷が起こらず、さらに残余電流値が速や
かに安定するため直ちに測定を行え、しかも走査後の感
度が効果的に初期の値に復する。
In the present invention, since triangular wave potential scanning is performed, damage to the surface of the conductor such as platinum does not occur, and the residual current value quickly stabilizes, allowing for immediate measurement.Moreover, the sensitivity after scanning is effectively reduced to the initial value. to return to.

第1図に示す測定電極系(4)は白金等導電体に酵素を
固定した酵素電極(8)と白金等の対極(9)で構成さ
れるが、参照電極を加えた3電極系を用いても良い。ま
た本発明は酵素電極がフロー型測定装置に組込まれた場
合のみならず勿論バッチ型測定装置の場合にも同様に応
用出来る。
The measurement electrode system (4) shown in Figure 1 consists of an enzyme electrode (8) in which an enzyme is immobilized on a conductor such as platinum and a counter electrode (9) such as platinum, but a three-electrode system including a reference electrode is used. It's okay. Furthermore, the present invention can be applied not only to the case where the enzyme electrode is incorporated into a flow-type measuring device, but also to the case of a batch-type measuring device.

〔実施例〕〔Example〕

以下に実施例を示すが、本発明はこれに限定されるもの
ではない。
Examples are shown below, but the present invention is not limited thereto.

去旌斑上 第1図に示す測定装置において酵素電極として白金線上
にグルコースオキシダーゼTypelI (シグマ社製
)とウシ血清アルブミンの1:1混合物をグルタルアル
デヒドで固定化したものを用いた。対極としては白金線
を用い、H,0□を検出することによりグルコースの定
量を行った。
In the measuring apparatus shown in FIG. 1, a 1:1 mixture of glucose oxidase Type I (manufactured by Sigma) and bovine serum albumin was immobilized on a platinum wire with glutaraldehyde and used as an enzyme electrode. A platinum wire was used as a counter electrode, and glucose was quantified by detecting H,0□.

まず、緩衝液としてP H7,0の0.1Mリン酸ナト
リウム緩衝液を1.0ml/minで流し、測定電極系
に+0.6vの電圧を印加した。最初に10mMグルコ
ース水溶液を20μm注入し、そのときに得られた電流
値を初期値として記録した。試料として缶ジュースを用
い1分おきに試料を注入し、電流値を計測した。そして
50回に1回10mMグルコース水溶液を20μl注入
し、その時点の電流値を初期値と比較した。100回注
入した後、−0,5〜+ 1.3 Vの範囲をIV/s
ecで10分間三角波電位走査を行い10mMグルコー
ス水溶液20μlを注入し、相対感度を調べた。100
回注入毎にこの操作を行い、計500回まで注入した。
First, a 0.1 M sodium phosphate buffer with a pH of 7.0 was flowed as a buffer solution at a rate of 1.0 ml/min, and a voltage of +0.6 V was applied to the measurement electrode system. First, 20 μm of a 10 mM glucose aqueous solution was injected, and the current value obtained at that time was recorded as an initial value. Using canned juice as a sample, the sample was injected every minute and the current value was measured. Then, 20 μl of a 10 mM glucose aqueous solution was injected once every 50 times, and the current value at that time was compared with the initial value. After 100 injections, -0.5 to +1.3 V range IV/s
Triangular wave potential scanning was performed using EC for 10 minutes, 20 μl of a 10 mM glucose aqueous solution was injected, and the relative sensitivity was examined. 100
This operation was performed for each injection, up to a total of 500 injections.

第3図に示す如く、試料注入により起きる感度の低下は
100回注入毎に行われた三角波電位走査により回復し
、500回目においても初期感゛度のレベルを保つこと
がわかった。
As shown in FIG. 3, it was found that the decrease in sensitivity caused by sample injection was recovered by triangular wave potential scanning performed every 100 injections, and that the initial sensitivity level was maintained even at the 500th injection.

ル較■工 三角波電位走査を行わなかった以外は実施例1と同様に
測定した。この場合、100回目には初期値と比べて相
対感度は96%になり、500回目には84%まで低下
した(第3図)。
Measurement was carried out in the same manner as in Example 1 except that triangular wave potential scanning was not performed. In this case, the relative sensitivity was 96% compared to the initial value at the 100th time, and decreased to 84% at the 500th time (Figure 3).

ル較勇1 三角波電位走査を行わず、100回試料を注入後、酵素
電極に−0,6■を30秒間印加した以外は実施例1と
同様に測定した。
Measurement was carried out in the same manner as in Example 1, except that triangular wave potential scanning was not performed, and -0.6 cm was applied to the enzyme electrode for 30 seconds after injecting the sample 100 times.

−0,6Vを30秒間印加した結果、酵素電極表面に気
泡が発生し相対感度は初期値の60%まで低下した。
As a result of applying −0.6 V for 30 seconds, bubbles were generated on the surface of the enzyme electrode, and the relative sensitivity decreased to 60% of the initial value.

〔効果〕〔effect〕

第3図に示す如く、本発明では三角波電位走査を行うこ
とにより酵素電極の感度低下を効果的に回復させること
が出来、安定した測定が可能となる。またかかる走査に
より酵素電極の寿命を長(することができる。
As shown in FIG. 3, in the present invention, by performing triangular wave potential scanning, the decrease in sensitivity of the enzyme electrode can be effectively recovered, making stable measurement possible. Furthermore, such scanning can extend the life of the enzyme electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる酵素電極活性化方法の実施例を
示す。第2図は本発明で酵素電極に行う三角波電位走査
の例を示し、第3図は実施例1、比較例1における測定
結果を示す。 (1)・・・緩衝液リザーバー (2)・・・定流量ポ
ンプ(3)・・・試料注入口    (4)・・・測定
電極系(5)・・・排液リザーバー (6)・・・ポテンシオスタット (7)・・・電位走査ユニット(8)・・・酵素電極(
9)・・・対極
FIG. 1 shows an example of the enzyme electrode activation method according to the present invention. FIG. 2 shows an example of triangular wave potential scanning performed on the enzyme electrode according to the present invention, and FIG. 3 shows the measurement results in Example 1 and Comparative Example 1. (1)...Buffer reservoir (2)...Constant flow pump (3)...Sample injection port (4)...Measurement electrode system (5)...Drainage reservoir (6)...・Potentiostat (7)...Potential scanning unit (8)...Enzyme electrode (
9)...Opposite

Claims (1)

【特許請求の範囲】[Claims] 酸化還元酵素を導電体上に固定化した酵素電極を用い、
測定目的物質を検出する測定方法において、測定後に該
酵素電極に三角波電位走査を行うことを特徴とする酵素
電極の活性化方法。
Using an enzyme electrode with oxidoreductase immobilized on a conductor,
1. A method for activating an enzyme electrode, which comprises performing triangular wave potential scanning on the enzyme electrode after measurement, in a method for detecting a substance to be measured.
JP61269189A 1986-11-12 1986-11-12 Activation of enzyme electrode Granted JPS63122942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269189A JPS63122942A (en) 1986-11-12 1986-11-12 Activation of enzyme electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269189A JPS63122942A (en) 1986-11-12 1986-11-12 Activation of enzyme electrode

Publications (2)

Publication Number Publication Date
JPS63122942A true JPS63122942A (en) 1988-05-26
JPH0454175B2 JPH0454175B2 (en) 1992-08-28

Family

ID=17468916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269189A Granted JPS63122942A (en) 1986-11-12 1986-11-12 Activation of enzyme electrode

Country Status (1)

Country Link
JP (1) JPS63122942A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309022A1 (en) * 2003-03-01 2004-09-09 Dr. A. Kuntze Gmbh Process for cleaning electrode surfaces and device for carrying out the process
US7641784B2 (en) 2003-01-30 2010-01-05 Tanita Corporation Method for measuring by means of chemical sensor, and chemical sensor type measuring apparatus
JP2018154900A (en) * 2017-03-21 2018-10-04 株式会社東芝 Electrochemical reaction apparatus and electrochemical reaction method
US11473118B2 (en) 2014-08-25 2022-10-18 Roche Diagnostics Operations, Inc. Interference compensating two electrodes test strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641784B2 (en) 2003-01-30 2010-01-05 Tanita Corporation Method for measuring by means of chemical sensor, and chemical sensor type measuring apparatus
DE10309022A1 (en) * 2003-03-01 2004-09-09 Dr. A. Kuntze Gmbh Process for cleaning electrode surfaces and device for carrying out the process
US11473118B2 (en) 2014-08-25 2022-10-18 Roche Diagnostics Operations, Inc. Interference compensating two electrodes test strip
JP2018154900A (en) * 2017-03-21 2018-10-04 株式会社東芝 Electrochemical reaction apparatus and electrochemical reaction method

Also Published As

Publication number Publication date
JPH0454175B2 (en) 1992-08-28

Similar Documents

Publication Publication Date Title
Geise et al. Electropolymerized 1, 3-diaminobenzene for the construction of a 1, 1′-dimethylferrocene mediated glucose biosensor
Turner [7] Amperometric biosensors based on mediator-modified electrodes
Karyakin et al. Electroreduction of NAD+ to enzymatically active NADH at poly (neutral red) modified electrodes
Yabuki et al. Electrical activity controlling system for a mediator-coexisting alcohol dehydrogenase-NAD conductive membrane
Brahim et al. Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery
Blaedel et al. Study of a reagentless lactate electrode
Bourdillon et al. Covalent linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena
Wring et al. Chemically modified, screen-printed carbon electrodes
Wang et al. Improved performance of carbon paste amperometric biosensors through the incorporation of fumed silica
Kuhr et al. Dehydrogenase-modified carbon-fiber microelectrodes for the measurement of neurotransmitter dynamics. 1. NADH voltammetry
Navera et al. Development of acetylcholine sensor using carbon fiber (amperometric determination)
JPH0235933B2 (en)
Trettnak et al. Cholesterol biosensors prepared by electropolymerization of pyrrole
Nagy et al. Effect of surface-active agents on amperometric NADH measurements with chemically modified electrodes
Pandey et al. Amperometric enzyme sensor for glucose based on graphite paste-modified electrodes
US5378332A (en) Amperometric flow injection analysis biosensor for glucose based on graphite paste modified with tetracyanoquinodimethane
Kulys et al. Amperometric methylene green-mediated pyruvate electrode based on pyruvate oxidase entrapped in carbon paste
Ferri et al. A Glucose Biosensor Based on Electro‐Enzyme Catalyzed Oxidation of Glucose Using a HRP‐GOD Layered Assembly
JPS63122942A (en) Activation of enzyme electrode
Godet et al. Direct electron transfer involving a large protein: glucose oxidase
Thévenot Problems in adapting a glucose-oxidase electrochemical sensor into an implantable glucose-sensing device
Wang et al. Lactate biosensor based on a lactate dehydrogenase/nicotinamide adenine dinucleotide biocomposite
EP0416419B1 (en) Immobilized alcohol oxidase, method for its preparation and measuring apparatus
Sansen et al. Anaerobic operation of a glucose sensor by use of pulse techniques
Okawa et al. Glucose sensor carrying monomolecular layer of glucose oxidase covalently bound to tin (IV) oxide electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees