JPS6312279A - Novel aldehyde dehydrogenase complex and production thereof - Google Patents

Novel aldehyde dehydrogenase complex and production thereof

Info

Publication number
JPS6312279A
JPS6312279A JP15614386A JP15614386A JPS6312279A JP S6312279 A JPS6312279 A JP S6312279A JP 15614386 A JP15614386 A JP 15614386A JP 15614386 A JP15614386 A JP 15614386A JP S6312279 A JPS6312279 A JP S6312279A
Authority
JP
Japan
Prior art keywords
enzyme
aldehyde dehydrogenase
aldehyde
complex
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15614386A
Other languages
Japanese (ja)
Other versions
JPH0665299B2 (en
Inventor
Kenji Tayama
多山 賢二
Masahiro Fukaya
深谷 正裕
Atsuko Tagami
田上 暖子
Hajime Okumura
奥村 一
Kichiya Kawamura
川村 ▲吉▼也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakano Vinegar Co Ltd
Original Assignee
Nakano Vinegar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakano Vinegar Co Ltd filed Critical Nakano Vinegar Co Ltd
Priority to JP15614386A priority Critical patent/JPH0665299B2/en
Publication of JPS6312279A publication Critical patent/JPS6312279A/en
Publication of JPH0665299B2 publication Critical patent/JPH0665299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

NEW MATERIAL:An aldehyde dehydrogenase complex having the following characteristics. (A) An enzyme complex containing proteins having molecular weights of about 75,000 and about 20,000 determined by SDS-polyacrylamide electrophoresis, (B) containing 4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3- f]quinoline-2,7,9-tricarboxylic acid (C) capable of oxidizing >=2C aldehyde as substrate, (D) solubilizable from cytoplasm membrane with a surfactant and (E) exhibiting residual activity of >=80% even after being left for 1 week at 3-10pH and 4 deg.C. USE:Determination of aldehyde in brewed food or during fermentation of Japanese rice wine. PREPARATION:A microbial strain belonging to Acetobacter genus such as Acetobacter altoacetigenes MH-24 (FERM BP-491) is cultured and the objective substance is separated from the cultured product.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は4,5−ジヒドロ−4,5−ジオキソ−1H−
ピロロ[2,3−flキノリン−2,7,9−)リカル
ポンm(以下PQQと略す)を含有し、炭素数2以上の
アルデヒドを酸化することができ、広範囲のpHで安定
な新規アルデヒドデヒドロゲナーゼ複合体およびその製
造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to 4,5-dihydro-4,5-dioxo-1H-
A novel aldehyde dehydrogenase containing pyrrolo[2,3-fl quinoline-2,7,9-)licarpon m (hereinafter abbreviated as PQQ), capable of oxidizing aldehydes having 2 or more carbon atoms, and stable over a wide range of pH. The present invention relates to a composite and a method for producing the same.

[従来技術とその問題点] アルデヒド、特にアセトアルデヒドは動物体内のエタノ
ール代謝の中間代謝産物として知られ、二日酔などの原
因物質として注目されているほか、各種醸造物の発酵中
にも発生する有毒物質である0本物質はアルデヒドデヒ
ドロゲナーゼを用いた酵素定驕法で比較的簡便に測定で
きるものの、反応の最適pHが中性付近であることや、
高濃度の酢酸が共存すると反応が可逆的であるが故に、
大きな誤差を生ずるなどの点で酸性域に強い緩衝能を有
する醸造食品中や清酒発酵中のアルデヒドの定量には適
していない。
[Prior art and its problems] Aldehydes, especially acetaldehyde, are known as intermediate metabolites of ethanol metabolism in animal bodies, and are attracting attention as a causative agent of hangovers, etc., and are also generated during the fermentation of various brews. Although this substance, which is a toxic substance, can be measured relatively easily by the enzymatic determination method using aldehyde dehydrogenase, the optimum pH for the reaction is around neutrality,
Since the reaction is reversible when a high concentration of acetic acid coexists,
It is not suitable for quantifying aldehydes in brewed foods or during sake fermentation, which have a strong buffering capacity in acidic regions, as large errors occur.

上述のアルデヒドデヒドロゲナーゼはニコチンアミドア
デニンジヌクレオチド(MAD)もしくはニコチンアミ
ドアデニンジヌクレオチドリン酸(NADP)を補酵素
とする酵素であるが、これとは異なる看しいタイプのア
ルデヒドデヒドロゲナーゼが近年酢酸菌(Acetob
acter属およびGluconobacter属)よ
り得られている( Agric。
The above-mentioned aldehyde dehydrogenase is an enzyme that uses nicotinamide adenine dinucleotide (MAD) or nicotinamide adenine dinucleotide phosphate (NADP) as a coenzyme, but in recent years, a different and beautiful type of aldehyde dehydrogenase has been developed in Acetobacter bacterium.
Acter spp. and Gluconobacter spp.) (Agric.

Bio’1. Chem、*す、 503〜515 (
1980);同45.1889〜1890 (1981
))、この酵素は酸性域でのみ活性を示し、反応がアル
デヒドの酸化方向のみで共存する酸による阻害を受けな
いなど定量用酵素として多くの利点を有しているものの
、各pHでの酵素の安定性に問題が残っている。#にP
H3において5°C,4日放置後、残存活性は約30%
まで低下する。その上、通常酵素が安定なpH7におい
てさえもpH3と同レベルにまで失活する。
Bio'1. Chem, *su, 503-515 (
1980); 45.1889-1890 (1981
)) Although this enzyme has many advantages as a quantitative enzyme, such as being active only in the acidic range and not being inhibited by coexisting acids, the reaction only occurs in the direction of oxidation of aldehydes. There are still problems with the stability of # to P
After being left at 5°C for 4 days in H3, residual activity is approximately 30%.
decreases to Moreover, even at pH 7, where enzymes are normally stable, they are inactivated to the same level as at pH 3.

本発明者らは上述のアルデヒドデヒドロゲナーゼが実際
の食酢醸造には用いられていない酢酸菌から得られてい
る事実に注目し、高濃度の酢酸存在下でも高い酢酸発酵
能を示す酢酸菌であるならば、従来の酵素よりもはるか
に耐酸性に優れたアルデヒドデヒドロゲナーゼを生産す
るものと考えた。そこで、強い酸性域でも活性を示すア
ルデヒドデヒドロゲナーゼの探索を目的として、比較的
高濃度の酢酸存在下でも良好な生育を示し、しかも高い
アルデヒド酸化活性を有する酢酸菌のアルデヒドデヒド
ロゲナーゼについて検討した。その結果、アセトバクタ
ー・アルトアセチゲネス(Acetobacter a
ltoacetigenes)MH−24(FERMB
P−491)に代表されるアセトバクター属に属する一
群の酢酸菌がpH3のみならずアルカリ域においても安
定な新規なアルデヒドデヒドロゲナーゼを生成する事実
を見出した。
The present inventors focused on the fact that the above-mentioned aldehyde dehydrogenase is obtained from acetic acid bacteria that are not used in actual vinegar brewing, and found that if the aldehyde dehydrogenase is an acetic acid bacterium that exhibits high acetic acid fermentation ability even in the presence of high concentrations of acetic acid. For example, they thought that they could produce aldehyde dehydrogenase, which is far more acid-resistant than conventional enzymes. Therefore, with the aim of searching for aldehyde dehydrogenases that are active even in strongly acidic regions, we investigated aldehyde dehydrogenases of Acetobacter aldehyde bacteria, which grow well even in the presence of relatively high concentrations of acetic acid and have high aldehyde oxidation activity. As a result, Acetobacter altoacetigenes (Acetobacter a
ltoacetigenes) MH-24 (FERMB
We have discovered that a group of acetic acid bacteria belonging to the genus Acetobacter, represented by P-491), produce a novel aldehyde dehydrogenase that is stable not only at pH 3 but also in an alkaline range.

また、従来脱酵素を細胞質膜より可溶化すると失活し易
くなり、精製を行っても活性の回収率が低いという問題
があった0本発明者らは従来の酵素の可溶化が界面活性
剤を1種類のみ用いた例が多いことに着目し、2種以上
の界面活性剤を併用することによってアルデヒドデヒド
ロゲナーゼを細胞質膜より効率良く、かつ安定化した状
態で可溶化すべく検討した。
In addition, conventionally, when enzymes are solubilized from the cytoplasmic membrane, they are easily deactivated, and even when purified, the recovery rate of activity is low. Noting that there were many cases in which only one type of surfactant was used, we investigated the possibility of solubilizing aldehyde dehydrogenase in a more efficient and stable state than in the cytoplasmic membrane by using two or more types of surfactants in combination.

その結果、トリトンX−100とN−ラウロイルサルコ
シン酸ナトリウムを併用することによって本発明のアル
デヒドデヒドロゲナーゼを効率良く、かつ安定化した状
態で可溶化できる事実を見出した0本発明はこれらの知
見に基いて完成されたものである。
As a result, it was discovered that the aldehyde dehydrogenase of the present invention can be solubilized efficiently and in a stable state by using Triton X-100 and sodium N-lauroyl sarcosinate in combination.The present invention is based on these findings. It has been completed.

[問題点を解決するための手段] 本発明は、以下の性質を有する新規アルデヒドデヒドロ
ゲナーゼ複合体、 (1) 5OS−ポリアクリルアミド電気泳動法により
測定した分子量が約75,000および約20,000
の蛋白質を含む酵素複合体であり、 (2) 4.5−ジヒドロ−4,5−ジオキソ−1H−
ピロロ[2,3−flキノリン−2,7,9−トリカル
ボン酸を含有し、 (3)炭素数2以上のアルデヒドを基質として酸化し、 (4)界面活性剤により細胞質膜より可溶化され、(5
) p)13からp)+10までの範囲において4℃、
1週間放置後も80%以上の残存活性を示す。
[Means for Solving the Problems] The present invention provides a novel aldehyde dehydrogenase complex having the following properties: (1) The molecular weight measured by 5OS-polyacrylamide electrophoresis is about 75,000 and about 20,000.
(2) 4,5-dihydro-4,5-dioxo-1H-
Contains pyrrolo[2,3-flquinoline-2,7,9-tricarboxylic acid, (3) oxidizes using an aldehyde having 2 or more carbon atoms as a substrate, (4) solubilizes from the cytoplasmic membrane with a surfactant, (5
) 4°C in the range from p) 13 to p) +10,
It shows residual activity of 80% or more even after being left for one week.

を提供し、さらにアセトバクター属に属し、上記酵素複
合体を生産する能力を有する微生物を培養し、培養物か
ら該複合体を採取することを特徴とする上記酵素複合体
の製造法を提供するものである。
and further provides a method for producing the enzyme complex, which comprises culturing a microorganism belonging to the genus Acetobacter and having the ability to produce the enzyme complex, and collecting the complex from the culture. It is something.

次に、本発明のアルデヒドデヒドロゲナーゼ複合体の性
質を示す。
Next, the properties of the aldehyde dehydrogenase complex of the present invention will be shown.

(1)作用 本酵素は炭素数2以上のアルデヒドに作用して相当する
カルボン酸に酸化する。
(1) Action This enzyme acts on aldehydes having two or more carbon atoms and oxidizes them to the corresponding carboxylic acids.

(2)ノ^質特異性 本酵素のノ、(質性異性の例を第1表に示す。本酵素は
直鎖の1級アルデヒド、すなわちアセトアルデヒド、プ
ロピオンアルデヒド、n−ブチルアルデヒドなどを良好
な基質として作用する。しかし、グリセルアルデヒド、
グリオキサール、ベンズアルデヒドには作用せず、アル
コール類、糖類、有機酸類にも作用しない。
(2) Qualitative specificity of this enzyme (Examples of qualitative isomerism are shown in Table 1). Acts as a substrate.However, glyceraldehyde,
It does not act on glyoxal or benzaldehyde, nor does it act on alcohols, sugars, or organic acids.

第  1  表 (3)至適p。Table 1 (3) Optimal p.

本酵素の至適pHはアセトアルデヒドを基質とした場合
、第1図に示すようにpH7,0付近にある。
The optimum pH of this enzyme is around pH 7.0, as shown in FIG. 1, when acetaldehyde is used as a substrate.

(4)安定pH範囲 第2図に示すように、本酵素はpH3からIOで5℃、
4日間放置後、はとんどすべての活性を有している。5
℃、7日間放置後でもp)+3から10で80%以上の
活性を有するきわめて安定な酵素である。なお、第2図
の安定PH曲線は各PHに放置後の残存活性をpne、
oで測定したものである。
(4) Stable pH range As shown in Figure 2, this enzyme is stable at pH 3 to IO at 5°C.
After standing for 4 days, it has almost all its activity. 5
It is an extremely stable enzyme with an activity of more than 80% at p)+3 to 10 even after being left at 7 days at ℃. In addition, the stable PH curve in Figure 2 shows the residual activity after being left at each PH as pne,
It was measured at o.

既知の酵素の例としてはアセトバクター・アセチ(ト社
eti) IFO3284およびグルコノバクタ−9サ
ブオキシダンス(Gluconobacter 5ub
oxydans)IFO12528から得られたアルデ
ヒドデヒドロゲナーゼを挙げることができるが(Agr
ic、 Rial。
Examples of known enzymes include Acetobacter aceti (ETI) IFO3284 and Gluconobacter-9 suboxidans (Gluconobacter 5ub).
Aldehyde dehydrogenase obtained from IFO12528 (Agr oxydans) can be mentioned.
ic, Rial.

Cbem、、 44.503〜515 (1980);
同45.1889〜1890(1981)) 、 この
アルデヒドデヒドロゲナーゼはpH3,0において5℃
、4日間放置後、残存活性は約30%であり、中性下(
pH7,0)でも同様な結果が得られている。
Cbem, 44.503-515 (1980);
45.1889-1890 (1981)), this aldehyde dehydrogenase reacts at 5°C at pH 3.0.
After standing for 4 days, the residual activity was about 30%, and under neutral conditions (
Similar results were obtained at pH 7.0).

したがって、本酵素はこれら従来の酢酸菌のアルデヒド
デヒドロゲナーゼよりもpH安定性が顕著に優れている
Therefore, this enzyme has significantly better pH stability than these conventional aldehyde dehydrogenases of acetic acid bacteria.

(5)作用適温の範囲 第3図に示すように、作用温度範囲は20〜80℃であ
り、特に55°C付近に最適温度を有する。
(5) Range of suitable operating temperature As shown in FIG. 3, the operating temperature range is 20 to 80°C, with the optimum temperature particularly around 55°C.

(6) pH,温度による失活の条件 第4図に示すように、pH[i、0で各温度10分間処
理すると、60°Cまで失活せず、65℃で約50%失
活する。
(6) Conditions for deactivation by pH and temperature As shown in Figure 4, when treated at pH [i, 0 for 10 minutes at each temperature, it does not deactivate up to 60°C, and about 50% deactivates at 65°C. .

(7)阻害、活性化および安定化 1a+M濃度の水銀、銅、カドミウムなどの重金属イオ
ンにより阻害される。一方、アジ化ナトリウム、亜ヒ酸
ナトリウム、エチレンジアミン四酢酸によっては阻害さ
れない。
(7) Inhibition, activation and stabilization Inhibited by heavy metal ions such as mercury, copper and cadmium at 1a+M concentrations. On the other hand, it is not inhibited by sodium azide, sodium arsenite, and ethylenediaminetetraacetic acid.

(8)分子量 0.1%Triton X−100存在下、七フアクリ
ルS−300によるゲル濾過法から推定されるアルデヒ
ドデヒドロゲナーゼ複合体の分子量は約95,000で
ある。
(8) Molecular weight The molecular weight of the aldehyde dehydrogenase complex estimated from the gel filtration method using heptaphryl S-300 in the presence of 0.1% Triton X-100 is about 95,000.

(9)サブユニット 本市2打はディスクゲル電気泳動により単一バンドとな
る0本酵素はドデシル硫酸ナトリウム(以下、SOSと
略称する)処理によって2成分に分けられる。 5O9
−ポリアクリルアミド電気泳動法で分子量標準蛋白質と
してホスホリラーゼb(分子量94.000)  、ア
ルブミン(分子量Ei7,000)  、オブアルブミ
ン(分子i43,000)  、カルボニックアンヒド
ラーゼ(分子130,000)  、 )リプシンイン
ヒビター(分子1420,100)およびα−ラクトア
ルブミン(分子ff114.400)を含むファルマシ
ア製のキャリブレーションキットを用いた場合に、本酵
素の2成分の分子量は約75,000および約20,0
00であった。本酵素はチトクロームに特有な吸収スペ
クトルを示さないため、チトクロームは構成成分として
含まれていない。
(9) The subunit Motoichi 2-stroke yields a single band by disk gel electrophoresis. The enzyme is separated into two components by treatment with sodium dodecyl sulfate (hereinafter abbreviated as SOS). 5O9
- Phosphorylase B (molecular weight 94,000), albumin (molecular weight Ei 7,000), ovalbumin (molecular i 43,000), carbonic anhydrase (molecular weight 130,000), )lipsin as molecular weight standard proteins in polyacrylamide electrophoresis When using a Pharmacia calibration kit containing the inhibitor (molecule 1420,100) and α-lactalbumin (molecule ff 114.400), the molecular weights of the two components of this enzyme were approximately 75,000 and approximately 20,000.
It was 00. Since this enzyme does not exhibit an absorption spectrum specific to cytochrome, cytochrome is not included as a component.

上述したように、本発明のtfI素は分子量約75 、
000および約20,000の2種類のサブユニットか
ら構成されているため、本酵素は複合酵素と見なされる
。したがって、本酵素はアルデヒドデヒドロゲナーゼ複
合体と呼ぶのがふされしい。
As mentioned above, the tfI element of the present invention has a molecular weight of about 75,
This enzyme is considered a complex enzyme because it is composed of two types of subunits: 1,000 and 20,000 subunits. Therefore, it is appropriate to call this enzyme an aldehyde dehydrogenase complex.

既知の酵素の例としてはアセトバクター・アセチIF0
32B4およびグルコノバクタ−・サブオキシダンスI
FO12528から得られたアルデヒドデヒドロゲナー
ゼを挙げることができるが(Agric。
Examples of known enzymes include Acetobacter acetiIF0
32B4 and Gluconobacter suboxidans I
Mention may be made of the aldehyde dehydrogenase obtained from FO 12528 (Agric.

Biol、 Cheta、、 44.503〜515 
(1980);同長。
Biol, Cheta, 44.503-515
(1980); Docho.

1889〜1HO(+980)、)、前者のアルデヒド
デヒドロゲナーゼは分子量78,000 、45,00
0および14,000の3種のサブユニットから構成さ
れており、後者のアルデヒドデヒドロゲナーゼは分子B
a6.oooおよび55,000の2種のサブユニット
から構成されている。以上の点から、本酵素は従来の酢
酸菌のアルデヒドデヒドロゲナーゼとは明らかに異なる
新規な酵素である。
1889-1HO (+980),), the former aldehyde dehydrogenase has a molecular weight of 78,000 and 45,00
It is composed of three subunits: 0 and 14,000, and the latter aldehyde dehydrogenase is composed of molecule B
a6. It is composed of two subunits: ooo and 55,000. From the above points, this enzyme is a novel enzyme that is clearly different from the conventional aldehyde dehydrogenase of acetic acid bacteria.

(10)色 本酵素溶液は薄いピンク色を呈する。(10) Color This enzyme solution exhibits a pale pink color.

(11)熱水抽出画分の蛍光スペクトル本酵素の熱水抽
出物の蛍光スペクトルを第5図に示す。本スペクトルお
よびバイオアッセイにより、熱水抽出物に4.5−ジヒ
ドロ−4,5−ジオキソ−1H−ピロロ[2,3−月キ
ノリンー2.7.9−トリカルボン# (PQQ)が含
まれていることが示された。
(11) Fluorescence spectrum of hot water extract fraction The fluorescence spectrum of the hot water extract of the present enzyme is shown in FIG. This spectrum and bioassay show that the hot water extract contains 4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-moquinoline-2.7.9-tricarvone # (PQQ). It was shown that

(12)Km値 本酵素の反応速度定数に厘はエタノールを基質とした場
合、約1.2 Xl0−2Mであった。
(12) Km value The reaction rate constant of this enzyme was approximately 1.2 Xl0-2M when ethanol was used as a substrate.

(13)電子受容体 フェナジンメソサルフエイト(PMS)  、 2.G
−ジクロロフェノールインドフェノール(DCIP) 
、ニトロブルーテトラゾリウムクロライド(NBT) 
 、フェリシアン化カリウムなどが本酵素の電子受容体
となりうるが、HA口、 NADP 、分子状酸素は電
子受容体と成りえない。
(13) Electron acceptor phenazine mesosulfate (PMS), 2. G
-dichlorophenolindophenol (DCIP)
, nitro blue tetrazolium chloride (NBT)
, potassium ferricyanide, etc. can serve as electron acceptors for this enzyme, but HA, NADP, and molecular oxygen cannot serve as electron acceptors.

以上の性質から、本発明のアルデヒドデヒドロゲナーゼ
複合体は今までに知られているいずれのアルデヒドデヒ
ドロゲナーゼとも異なる新規な酵素である。
Based on the above properties, the aldehyde dehydrogenase complex of the present invention is a novel enzyme different from any aldehyde dehydrogenases known so far.

(15)精製方法 精製方法は製造方法に記載した。(15) Purification method The purification method is described in the manufacturing method.

次に、本酵素の製造方法について説明する。Next, the method for producing this enzyme will be explained.

本発明のアルデヒドデヒドロゲナーゼ複合体の製造に使
用する細菌は、本酵素を産生ずるものであればいずれで
もよく、例えばアセトバクター(Acetobacte
r)属細菌を挙げることができる。具体例としてアセト
バクター・アルトアセチゲネス(Acetobacte
r altoacetigenes) MH−24(F
ERN BP−491)を挙げることができる。
The bacteria used in the production of the aldehyde dehydrogenase complex of the present invention may be any species as long as it produces the present enzyme, such as Acetobacter
r) genus Bacteria. A specific example is Acetobacter altoacetigenes (Acetobacter altoacetigenes).
r altoacetigenes) MH-24 (F
ERN BP-491).

本発明のアルデヒドデヒドロゲナーゼ複合体の製造に際
して使用する培地は前記の細菌が生育して、本酵素を生
産するものであればどのようなものでもよい。炭素源と
しては、例えばグルコース、グリセロール、フラクトー
ス、マンニトール、酢酸等を使用することができ、窒素
源としては、例えば酵ffJエキス、カゼイン加水分解
物。
The medium used for producing the aldehyde dehydrogenase complex of the present invention may be any medium as long as the above-mentioned bacteria can grow and produce the present enzyme. As a carbon source, for example, glucose, glycerol, fructose, mannitol, acetic acid, etc. can be used, and as a nitrogen source, for example, yeast FFJ extract, casein hydrolyzate.

コーンステイープリカー、ペプトンなどの天然物やアン
モニウム塩などが使用できる。必要に応じて無機塩や各
種の有機物、ビタミン類、核酸関連化合物等を添加する
ことができる。好ましくは培地にさらにエタノールを添
加して酢酸発酵を行わせしめれば、酵素の含量が増大し
、容易に大量の酵素を得ることができる。
Natural products such as cornstarch liquor, peptone, and ammonium salts can be used. Inorganic salts, various organic substances, vitamins, nucleic acid-related compounds, etc. can be added as necessary. Preferably, if ethanol is further added to the medium and acetic acid fermentation is performed, the content of the enzyme increases and a large amount of enzyme can be easily obtained.

18養に当っては固体培地を使用することもできるが、
多ら2の菌体を得るには液体培地を用いて通気攪拌培養
または振どう培養を行うのが好ましい、液体培養に当っ
ては添加したエタノールが消費しつくされないようにコ
ントロールすること、1li1i素の供給を上方に行う
ことが本酵素を効率よく;)′:枯するのに効果的な場
合がある。培養においては、はじめから本培養を行うこ
ともできるが、大量培養を行う場合には、まず小規模な
前培養を行い、得られた培養物を本培地に接種するのが
好ましい、培養温度、培養期間、培地の液性等は本発明
の酵素の生産量が最大になるように適当に選択、調節す
ればよいが、通常は好気的条件下で25〜35℃におい
て1〜3日培養するのが好ましい。
18 Although solid media can be used for cultivation,
In order to obtain a large number of bacterial cells, it is preferable to perform aeration agitation culture or shaking culture using a liquid medium.When performing liquid culture, it is necessary to control the added ethanol so that it is not consumed completely. Supplying this enzyme upwards may be effective in killing this enzyme efficiently;)': In culture, main culture can be performed from the beginning, but when performing large-scale culture, it is preferable to first perform small-scale pre-culture and inoculate the obtained culture into the main medium.Culture temperature, The culture period, liquid properties of the medium, etc. may be appropriately selected and adjusted to maximize the production amount of the enzyme of the present invention, but usually culture is carried out for 1 to 3 days at 25 to 35°C under aerobic conditions. It is preferable to do so.

本発明のアルデヒドデヒドロゲナーゼ複合体は細菌菌体
内に蓄積されるため、本酵素の回収、精製のためにはま
ず菌体を集めて破砕する。本酵素は細胞質膜両分に局在
するため、適当濃度の界面活性剤1例えば非イオン性界
面活性剤を加えることにより可溶化する。好ましくはト
リトン(Tr 1ton)X−100とN−ラウロイル
サルコシン酸ナトリウム(Sodium N−Laur
oyl 5arcosinate)を併用する。この併
用により本酵素を効率良く安定化して可溶化することが
できる。可溶化された本酵素は界面活性剤存在下でジエ
チルアミノエチル−セファロース(以下、DEAE−セ
ファロースと云う、)などの各種イオン交換剤によるク
ロマトグラフィー、ハイドロキシアパタイト等の吸着ク
ロマトグラフィーあるいはセファデックスなどを用いた
ゲル濾過法に代表される通常の酵素精製手段を単独もし
くは適宜組合せて適用し、任意に精製された本発明の酵
素を得ることができる。
Since the aldehyde dehydrogenase complex of the present invention is accumulated within bacterial cells, in order to recover and purify the enzyme, the cells are first collected and disrupted. Since this enzyme is localized in both cytoplasmic membranes, it can be solubilized by adding an appropriate concentration of surfactant 1, such as a nonionic surfactant. Preferably Triton X-100 and Sodium N-Laur sarcosinate.
oil 5arcosinate). This combination allows the enzyme to be efficiently stabilized and solubilized. The solubilized enzyme is subjected to chromatography using various ion exchange agents such as diethylaminoethyl-Sepharose (hereinafter referred to as DEAE-Sepharose), adsorption chromatography using hydroxyapatite, or Sephadex in the presence of a surfactant. The enzyme of the present invention purified as desired can be obtained by applying conventional enzyme purification methods such as gel filtration methods alone or in appropriate combinations.

次に、本発明の酵素の酵素活性測定方法について説明す
る。
Next, the method for measuring enzyme activity of the enzyme of the present invention will be explained.

本酵素の活性の測定は、前記の電子受容体のいずれを用
いても可能であるが、以下にそのうちの1例を示す、 
0.1 Mのフェリシアン化カリウム溶液0.1ral
!、 NcIlマaine氏緩衝液(PH8,0)0.
7mj7および適当量の本酵素を加え、水で0.9tj
)とする。さらに、1Mアセトアルデヒド溶液を0.1
閣!加えて反応を開始させ30’Cにて5〜15分後、
Ferric 5ulfate−Dupanol試薬(
W、A、Wood他。
The activity of this enzyme can be measured using any of the electron acceptors mentioned above; one example is shown below.
0.1M potassium ferricyanide solution 0.1ral
! , NcIl MAINE buffer (PH8,0) 0.
Add 7mj7 and an appropriate amount of this enzyme, and dilute with water to 0.9tj.
). Furthermore, add 1M acetaldehyde solution to 0.1
Cabinet! In addition, start the reaction and after 5 to 15 minutes at 30'C,
Ferric 5ulfate-Dupanol reagent (
W., A., Wood et al.

”Method in enzyso1ogy″Va1
.V、287(19ft2)参照) 0.5mA+を加
え反応を停止させた後、直ちに水を加えて5talとす
る。37℃、30分放置後、880nmの吸光度を測定
する。基質であるアセトアルデヒドを加えないで上記と
同様に反応せしめたサンプルとの吸光度の差が酵素の活
性を意味する。lJLmoleのアセトアルデヒドを1
分間に酸化する酵素州を1屯位とする。
“Method in enzyso1ogy”Va1
.. V, 287 (19 ft2)) After adding 0.5 mA+ to stop the reaction, immediately add water to make 5 tal. After standing at 37°C for 30 minutes, absorbance at 880 nm is measured. The difference in absorbance from a sample reacted in the same manner as above without adding the substrate acetaldehyde indicates the activity of the enzyme. 1 JLmole of acetaldehyde
One ton of enzyme is oxidized per minute.

[実施例] 次に、本発明を実施例により詳しく説明する。[Example] Next, the present invention will be explained in detail with reference to examples.

実施例1 グルコース3%、酵母エキス0.5%およびポリペプト
ン0.2%の液体培地を500+sI!容の振どうフラ
スコに100mfずつ分注し、オートクレーブ中で12
0℃、 15分間殺菌した。冷却後、エタノールと酢酸
をエタノールは5%、酢酸は6%になるように添加した
。この培地にアセトバクター・アルトアセチゲネスMH
−24(FERN BP−491)を5白金耳接種し、
往復振とう機上で30°Cにて4日間培養した。同じ組
成の培地205を30βのジャーファーメンタ−で作製
し、前記の培養液2I2を接種して2Of!/分で通気
し、攪拌しながら30℃にて2日間培養した。培養終了
後、培養液を5℃にて遠心分離することにより湿重量約
2gの菌体を得た。
Example 1 A liquid medium containing 3% glucose, 0.5% yeast extract, and 0.2% polypeptone at 500+sI! Dispense 100mf into each volume shaker flask and place in an autoclave for 12
Sterilized at 0°C for 15 minutes. After cooling, ethanol and acetic acid were added such that ethanol was 5% and acetic acid was 6%. Acetobacter altoacetigenes MH was added to this medium.
-24 (FERN BP-491) was inoculated into 5 platinum loops,
Cultures were incubated for 4 days at 30°C on a reciprocating shaker. A medium 205 with the same composition was prepared using a 30β jar fermenter, inoculated with the above culture solution 2I2, and 2Of! The cells were cultured at 30° C. for 2 days with aeration and stirring at a rate of 1/min. After the culture was completed, the culture solution was centrifuged at 5°C to obtain bacterial cells with a wet weight of about 2 g.

この菌体を0.01Mリン酸カリウム緩衝液(pH6,
0)に懸濁し、20,000psi でフレンチプレス
を通し菌体を破砕した後、88,0OOX gで60分
間超遠心分離し、膜画分を沈殿として得た。この沈殿を
0.01Mリン酸カリウム緩衝液(pH6,0)に懸濁
した後、20%丁riton X−100およびlO%
N−ラウロイルサルコシン酸ナトリウムを最終濃度が各
々1.5%および1%になるように加え、3時間攪拌し
た。この液を再度68,0OOX gで60分間遠心分
離を行い、本酵素が可溶化された上清を得た。この上清
に硫酸アンモニウムを60%飽和になるように加え完全
に溶解後、10,0OOX gで10分間遠心分離を行
った。得られた沈殿に0.6%丁ritonX−100
.20mMベンズアルデヒド、0.1%セチルピリジニ
ウムクロライドを含む0.01Mリン酸カリウム緩衝液
(p)+6)を加え溶解後、同じ緩衝液に対して透析し
た。この透析液をea、ooox gで60分間超遠心
分離を行い、不溶性物質を沈殿として除去した。
The bacterial cells were dissolved in 0.01M potassium phosphate buffer (pH 6,
0), the cells were crushed by passing through a French press at 20,000 psi, and then ultracentrifuged at 88,0 OOX g for 60 minutes to obtain a membrane fraction as a precipitate. After suspending this precipitate in 0.01M potassium phosphate buffer (pH 6,0), 20% triton X-100 and 1O%
Sodium N-lauroyl sarcosinate was added to final concentrations of 1.5% and 1%, respectively, and stirred for 3 hours. This solution was centrifuged again at 68.0 OOX g for 60 minutes to obtain a supernatant in which the enzyme was solubilized. Ammonium sulfate was added to the supernatant to achieve 60% saturation and after complete dissolution, centrifugation was performed at 10,000X g for 10 minutes. Add 0.6% triton X-100 to the resulting precipitate.
.. A 0.01M potassium phosphate buffer (p)+6) containing 20mM benzaldehyde and 0.1% cetylpyridinium chloride was added and dissolved, followed by dialysis against the same buffer. This dialysate was subjected to ultracentrifugation for 60 minutes at ea, ooox g, and insoluble substances were removed as precipitates.

可溶化された本酵素を含む上清は0.6%Triton
 X−100を含む0.01Mリン酸カリウム緩衝液(
pH6ンで平衡化したl1EAE−セファロースCL−
6Bを充てんしたカラムに注入し、本酵素を吸着後、0
.01Mから0.1Mまでのリン酸カリウム緩衝液で傾
斜溶出した。 0.05M付近のリン酸カリウム緩衝液
で溶出する活性画分を集め、0.1%Triton X
−100を含む0.01Mリン酸カリウム緩衝液(pH
6)に対して透析した。この透析液を0.2%Trit
on X−100、5mMベンズアルデヒドを含む0.
01Mリン酸カリウム緩衝液(pH6)で平衡化した/
\イドロキシアパタイトを充てんしたカラムに注入し1
本酵素を吸着させた0次いで、0.OIMから0.1M
までのリン酸カリウム緩衝液で傾斜溶出した。0.05
M付近の活性画分を集めてeml、、本酵素の精製標品
1.2sgを収率50%で得た。なお、木精製酵素標品
の力価は800単位/mg蛋白質であった。また、本酵
素は前記性質を有していた。
The supernatant containing the solubilized enzyme was 0.6% Triton.
0.01M potassium phosphate buffer containing X-100 (
l1EAE-Sepharose CL- equilibrated at pH 6
After injecting into a column filled with 6B and adsorbing this enzyme, 0
.. Gradient elution was performed with potassium phosphate buffer from 0.1M to 0.1M. The active fraction eluted with around 0.05M potassium phosphate buffer was collected and added with 0.1% Triton
-0.01M potassium phosphate buffer (pH
6). This dialysate was treated with 0.2% Trit.
on X-100, 0.0.
Equilibrated with 01M potassium phosphate buffer (pH 6)/
\Inject into a column filled with hydroxyapatite 1
0 to which this enzyme was adsorbed, then 0. 0.1M from OIM
gradient elution with potassium phosphate buffer up to 0.05
The active fractions near M were collected to obtain 1.2 sg of purified sample of this enzyme in eml with a yield of 50%. The titer of the wood purified enzyme preparation was 800 units/mg protein. Moreover, this enzyme had the above-mentioned properties.

実施例2 実施例1と同様の条件でアセトバクター・アルトアセチ
ゲネスMH−24(FERN BP−491)を培養し
て湿重量約2gの菌体を得た。この菌体を実施例1と同
様にして破砕、超遠心分離し、膜画分を得た。膜画分を
0.01Mリン酸カリウム緩衝液(pH6,0)に懸濁
した後、20%Triton X−100を最終e度が
1.5%になるように加え3時間攪拌した。
Example 2 Acetobacter altoacetigenes MH-24 (FERN BP-491) was cultured under the same conditions as in Example 1 to obtain bacterial cells with a wet weight of about 2 g. This bacterial cell was crushed and ultracentrifuged in the same manner as in Example 1 to obtain a membrane fraction. After suspending the membrane fraction in 0.01M potassium phosphate buffer (pH 6.0), 20% Triton

この液を再度ee、ooox gで60分間超遠心分離
を行い本発明の酵素が可溶化された上清を得た。
This solution was again subjected to ultracentrifugation for 60 minutes at ee and ooox g to obtain a supernatant in which the enzyme of the present invention was solubilized.

0.6%Triton X−100,20mMベンズア
ルデヒド。
0.6% Triton X-100, 20mM benzaldehyde.

0.1%セチルピリジニウムクロライドを含む0.01
Mリン酸カリウム緩衝液(pH6)で平衡化したDEA
E−セファロースCL−8Bを充てんしたカラムに、上
記の上清を注入し、本酵素を吸着せしめた。以下、実施
例1と同様な操作で本酵素を精製し、精製酵素標品Q、
15mgを収率7%で得た。なお、木精製酵素標品の力
価は750屯位/mg蛋白質であった。また、本酵素は
前記性質を有していた。
0.01 containing 0.1% cetylpyridinium chloride
DEA equilibrated with M potassium phosphate buffer (pH 6)
The above supernatant was injected into a column filled with E-Sepharose CL-8B to adsorb the enzyme. Hereinafter, the present enzyme was purified in the same manner as in Example 1, purified enzyme preparation Q,
15 mg was obtained with a yield of 7%. The titer of the wood-purified enzyme preparation was 750 tons/mg protein. Moreover, this enzyme had the above-mentioned properties.

〔発明の効果〕〔Effect of the invention〕

本発明のアルデヒドデヒドロゲナーゼ複合体はpH3か
らpH10までの広範囲の望域で活性を安定に保持でき
る点で従来のアルデヒドデヒドロゲナーゼより優れてお
り、臨床診断用試薬としてより優位に用いられる。また
、安定性の高いものが強く要求される酵素センサーにも
従来のアルデヒドデヒドロゲナーゼよりも優位に使用す
ることができる。さらに、細胞質膜より酵素を可溶化す
るにあたり、界面活性剤としてTriton X−10
0およびN−ラウロイルサルコシン酸ナトリウムを併用
することにより、本酵素を効率良く、かつ安定化して可
溶化できる。この方法はTriton X−100を単
独で使用した場合よりも精製酵素標品の活性回収率が顕
著に高く、本酵素の精製においてきわめて優れた方法で
ある。
The aldehyde dehydrogenase complex of the present invention is superior to conventional aldehyde dehydrogenases in that it can stably maintain its activity over a wide desired range of pH 3 to pH 10, and is more advantageously used as a clinical diagnostic reagent. Furthermore, it can be used more advantageously than conventional aldehyde dehydrogenases for enzyme sensors that strongly require high stability. Furthermore, Triton X-10 was used as a surfactant to solubilize the enzyme from the cytoplasmic membrane.
By using sodium 0 and N-lauroyl sarcosinate in combination, the present enzyme can be efficiently and stably solubilized. This method has a significantly higher activity recovery rate for the purified enzyme preparation than when Triton X-100 is used alone, and is an extremely excellent method for purifying the present enzyme.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応PHと本発明酵素の相対活性との関係を示
すグラフであり、第2図は本発明酵素のpH安定性を示
すグラフであり、第3図は反応温度と本発明酵素の相対
活性との関係を示すグラフであり、第4図は本発明酵素
の温度安定性を示すグラフであり、第5図は本発明酵素
の熱水抽出物の蛍光スペクトルを示す図である。 第1図 pH 第2図 pH 第3図 第4図 堪−r/’Cノ 第5図 2υ     Xυ     4oo5oo     
 αυjl 長  (nm)
FIG. 1 is a graph showing the relationship between the reaction pH and the relative activity of the enzyme of the present invention, FIG. 2 is a graph showing the pH stability of the enzyme of the present invention, and FIG. 3 is a graph showing the relationship between the reaction temperature and the relative activity of the enzyme of the present invention. FIG. 4 is a graph showing the temperature stability of the enzyme of the present invention, and FIG. 5 is a graph showing the fluorescence spectrum of a hot water extract of the enzyme of the present invention. Figure 1 pH Figure 2 pH Figure 3 Figure 4 Kan-r/'Cノ Figure 5 2υ Xυ 4oo5oo
αυjl length (nm)

Claims (1)

【特許請求の範囲】 1、以下の性質を有する新規アルデヒドデヒドロゲナー
ゼ複合体。 (1)SDS−ポリアクリルアミド電気泳動法により測
定した分子量が約75,000および約20,000の
蛋白質を含む酵素複合体であり、 (2)4,5−ジヒドロ−4,5−ジオキソ−1H−ピ
ロロ[2,3−f]キノリン−2,7,9−トリカルボ
ン酸を含有し、 (3)炭素数2以上のアルデヒドを基質として酸化し、 (4)界面活性剤により細胞質膜より可溶化され、 (5)pH3からpH10までの範囲において4℃、1
週間放置後も80%以上の残存活性を示す。 2、アセトバクター属に属し、以下の性質を有する新規
アルデヒドデヒドロゲナーゼ複合体、(1)SDS−ポ
リアクリルアミド電気泳動法により測定した分子量が約
75,000および約20,000の蛋白質を含む酵素
複合体であり、 (2)4,5−ジヒドロ−4,5−ジオキソ−1H−ピ
ロロ[2,3−f]キノリン−2,7,9−トリカルボ
ン酸を含有し、 (3)炭素数2以上のアルデヒドを基質として酸化し、 (4)界面活性剤により細胞質膜より可溶化され、 (5)pH3からpH10までの範囲において4℃、1
週間放置後も80%以上の残存活性を示す、を生産する
能力を有する微生物を培養し、培養物から該複合体を採
取することを特徴とする新規アルテヒドデヒドロゲナー
ゼ複合体の製造法。 3、アセトバクター属に属する新規アルデヒドデヒドロ
ゲナーゼ複合体生産菌がアセトバクター・アルトアセチ
ゲネスMH−24(FERMBP−491)である特許
請求の範囲第2項記載の方法。 4、培養物からの新規アルデヒドデヒドロゲナーゼ複合
体の採取を、培養物から分離した菌体を破砕し、界面活
性剤を加えて可溶化したのち通常の酵素精製手段を適用
して行う特許請求の範囲第2項記載の方法。 5、界面活性剤がトリトンX−100およびN−ラウロ
イルサルコシン酸ナトリウムの組合せである特許請求の
範囲第4項記載の方法。
[Claims] 1. A novel aldehyde dehydrogenase complex having the following properties. (1) It is an enzyme complex containing proteins with molecular weights of about 75,000 and about 20,000 as measured by SDS-polyacrylamide electrophoresis, (2) 4,5-dihydro-4,5-dioxo-1H - Contains pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid, (3) oxidizes using an aldehyde with 2 or more carbon atoms as a substrate, (4) solubilizes from the cytoplasmic membrane with a surfactant. (5) 4°C, 1°C in the range from pH 3 to pH 10.
It shows residual activity of 80% or more even after being left for a week. 2. A novel aldehyde dehydrogenase complex belonging to the genus Acetobacter and having the following properties: (1) An enzyme complex containing proteins with molecular weights of about 75,000 and about 20,000 as measured by SDS-polyacrylamide electrophoresis. (2) contains 4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid, and (3) has 2 or more carbon atoms. oxidizes aldehyde as a substrate, (4) is solubilized from the cytoplasmic membrane by a surfactant, and (5) is oxidized at 4°C in the pH range of 3 to 10.
1. A method for producing a novel altehyde dehydrogenase complex, which comprises culturing a microorganism capable of producing an altehyde dehydrogenase that exhibits residual activity of 80% or more even after being left for a week, and collecting the complex from the culture. 3. The method according to claim 2, wherein the novel aldehyde dehydrogenase complex-producing bacterium belonging to the genus Acetobacter is Acetobacter altoacetigenes MH-24 (FERMBP-491). 4. Claims in which the novel aldehyde dehydrogenase complex is collected from the culture by crushing the bacterial cells isolated from the culture, solubilizing them by adding a surfactant, and then applying ordinary enzyme purification means. The method described in Section 2. 5. The method according to claim 4, wherein the surfactant is a combination of Triton X-100 and sodium N-lauroylsarcosinate.
JP15614386A 1986-07-04 1986-07-04 Novel aldehyde dehydrogenase complex and method for producing the same Expired - Lifetime JPH0665299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15614386A JPH0665299B2 (en) 1986-07-04 1986-07-04 Novel aldehyde dehydrogenase complex and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15614386A JPH0665299B2 (en) 1986-07-04 1986-07-04 Novel aldehyde dehydrogenase complex and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6312279A true JPS6312279A (en) 1988-01-19
JPH0665299B2 JPH0665299B2 (en) 1994-08-24

Family

ID=15621265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15614386A Expired - Lifetime JPH0665299B2 (en) 1986-07-04 1986-07-04 Novel aldehyde dehydrogenase complex and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0665299B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437989A (en) * 1992-12-30 1995-08-01 Hoffmann-La Roche Inc. Alcohol/aldehyde dehydrogenase from Gluconobacter oxydans DSM 4025 FERM BP-3812
KR20160136331A (en) * 2014-03-31 2016-11-29 큐피가부시키가이샤 Enzyme agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437989A (en) * 1992-12-30 1995-08-01 Hoffmann-La Roche Inc. Alcohol/aldehyde dehydrogenase from Gluconobacter oxydans DSM 4025 FERM BP-3812
KR20160136331A (en) * 2014-03-31 2016-11-29 큐피가부시키가이샤 Enzyme agent

Also Published As

Publication number Publication date
JPH0665299B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
JP3590647B2 (en) Alcohol / aldehyde dehydrogenase
JPH031949B2 (en)
KR100701819B1 (en) Aldehyde dehydrogenase
JP3086301B2 (en) L-Glono-gamma-lactone dehydrogenase
JPS6312279A (en) Novel aldehyde dehydrogenase complex and production thereof
Chiyonobu et al. Purification, crystallization and properties of 2-ketogluconate reductase from Acetobacter rancens
JPS5910190B2 (en) Novel method for producing lactate oxidase
Adachi et al. Crystalline 2-ketogluconate reductase from Acetobacter ascendens, the second instance of crystalline enzyme in genus Acetobacter
WO2019208308A1 (en) Flavin-binding glucose dehydrogenase
JPS6312278A (en) Novel alcohol dehydrogenase complex and production thereof
JPH09224660A (en) Aldehyde dehydrogenase
JPH01202282A (en) Enzyme and its production
Nakamura et al. Alteration of thermal stability of glucose oxidase associated with the redox states
JPS6033472B2 (en) D-fructose; ferritytochrome oxidoreductase and its production method
JP2801694B2 (en) New enzyme
JPH0568542A (en) Alcohol dehydrogenase and its production
JPH07108219B2 (en) Method for producing NADH oxidase
JP3150868B2 (en) 6-Phosphogluconate dehydrogenase and its production
JPH0234598B2 (en)
JPS6317432B2 (en)
JPH0319695A (en) Preparation of trans-4-cyanocyclohexane carboxylic amide and enzyme used therefor
Islami et al. Purification and characterization of alcohol dehydrogenase from Gluconobacter suboxydans
SU785318A1 (en) Method of preparing bacterial lucipherase preparate
JPS6128386A (en) Novel lactate oxidase, analytical method using it, and kit for analysis
JPH0239237B2 (en) SHUSANOKISHIDAAZENOSEIZOHO

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term