JPS6312271B2 - - Google Patents

Info

Publication number
JPS6312271B2
JPS6312271B2 JP55083272A JP8327280A JPS6312271B2 JP S6312271 B2 JPS6312271 B2 JP S6312271B2 JP 55083272 A JP55083272 A JP 55083272A JP 8327280 A JP8327280 A JP 8327280A JP S6312271 B2 JPS6312271 B2 JP S6312271B2
Authority
JP
Japan
Prior art keywords
cycle
fuel assembly
enrichment
fuel
assemblies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55083272A
Other languages
Japanese (ja)
Other versions
JPS578486A (en
Inventor
Jiro Ootsuji
Yasukuni Oiyake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP8327280A priority Critical patent/JPS578486A/en
Publication of JPS578486A publication Critical patent/JPS578486A/en
Publication of JPS6312271B2 publication Critical patent/JPS6312271B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、沸騰水型原子炉用組燃料集合体に関
し、特に1サイクル毎に燃料集合体を部分的に新
燃料と交換しつつ運転を継続する組燃料集合体で
あつて、単位燃料集合体間の濃縮度を限定するこ
とにより平衡サイクルへの移行を速やかにし且つ
移行期間中の熱特性を安定かつ良好なものとした
組燃料集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel assembly for a boiling water reactor, and particularly to a fuel assembly that continues to operate while partially replacing the fuel assembly with new fuel every cycle. The present invention relates to a fuel assembly in which the enrichment between unit fuel assemblies is limited so that the transition to an equilibrium cycle is made quick and the thermal characteristics during the transition period are stable and good.

沸騰水型原子炉において、異なる濃縮度を有す
る4体の燃料集合体を組合せて組燃料集合体を構
成し、1サイクル毎に反応度が最も低下した燃料
集合体を新らしい燃料集合体と交換しつつ運転を
継続することにより平衡サイクルへの移行を速や
かにせんとする試みがなされている。ここで平衡
サイクルとは、燃料を部分的に交換しつつ運転を
継続し、初期装荷組燃料集合体を用いる運転サイ
クル(以下「第1サイクル」と称し、それ以後に
部分的に燃料を交換しつつ行う引き続くサイクル
を「第2サイクル」、「第3サイクル」…と称す
る)から相当期間経たのちに炉内全体の燃料成分
がほとんど一定の状態に達したサイクルで、その
前のサイクルおよび次のサイクルと熱特性が変ら
ず安定したサイクルをいう。
In a boiling water reactor, four fuel assemblies with different enrichments are combined to form a set fuel assembly, and the fuel assembly with the lowest reactivity is replaced with a new fuel assembly every cycle. Attempts have been made to rapidly transition to an equilibrium cycle by continuing operation while maintaining the balance. The equilibrium cycle here refers to an operation cycle (hereinafter referred to as the "first cycle") in which operation continues while partially exchanging fuel and using an initially loaded fuel assembly (hereinafter referred to as the "first cycle", after which the fuel is partially exchanged). This is a cycle in which the fuel components in the entire reactor have reached a nearly constant state after a considerable period of time has passed since the previous cycle and the next cycle. A stable cycle with no change in thermal characteristics.

このような組燃料集合体を用いる原子炉では、
1サイクル終了毎に、炉を停止して最も反応度の
低下した単位燃料集合体を新らしい燃料集合体と
交換しつつ原子炉の運転が継続されるわけである
が、サイクル毎の熱特性が悪かつたり、あるいは
目標とする燃焼度が達成されなかつたりすれば、
原子炉の安全上も好ましくなく、また経済的にも
性能の悪い原子炉となつてしまう。即ち目標とす
る原子炉は、第1サイクルから平衡サイクルへ移
行する過程での中間サイクル(以後「移行サイク
ル」という)での熱特性およびサイクル取得燃焼
度が平衡サイクルのそれらと同程度に良好且つ安
定であるかあるいは速やかにそれらに収束するも
のであるのが好ましい。しかしながら、従来の組
燃料集合体では、このような条件を与えるに必要
な単位燃料集合体間の相関関係が充分に理解され
ていなかつたため、平衡サイクルへの移行も長く
かかり、移行サイクル中の出力安定性も満足なも
のではなかつた。
In a nuclear reactor using such a fuel assembly,
At the end of each cycle, the reactor is stopped and the unit fuel assembly with the lowest reactivity is replaced with a new fuel assembly, and the reactor continues to operate, but the thermal characteristics of each cycle If the burn-up is not achieved or the target burn-up is not achieved,
This is not desirable from the safety point of view of the reactor, and also results in a reactor with poor performance economically. In other words, the target reactor must have thermal characteristics and cycle burnup obtained in the intermediate cycle (hereinafter referred to as the "transition cycle") during the transition from the first cycle to the equilibrium cycle that are as good as those in the equilibrium cycle. Preferably, it is stable or quickly converges to these values. However, in conventional fuel assemblies, the correlation between unit fuel assemblies necessary to provide such conditions was not fully understood, so the transition to the equilibrium cycle took a long time, and the output during the transition cycle decreased. The stability was also not satisfactory.

本発明は、移行サイクル中の熱特性およびサイ
クル取得燃焼度に関してサイクル毎の変動の少い
安定した特性を与えることのできる組燃料集合体
を与えることを目的とする。
It is an object of the present invention to provide a fuel assembly capable of providing stable characteristics with little cycle-to-cycle variation in terms of thermal properties during the transition cycle and cycle-acquired burn-up.

本発明者らの研究によれば、このような目的
は、初期に装荷すべき組燃料集合体中の単位燃料
体(以下、濃縮度の低い順に第1〜第4燃料集合
体と称する)の濃縮度に関して特定の条件を満足
せしめることにより達成されることが見出され
た。すなわち本発明の組燃料集合体は、それぞれ
濃縮度の異なる4種類の燃料集合体(すなわち濃
縮度の低い順に第1〜第4燃料集合体)を格子状
に配列した組燃料集合体であつて、第1燃料集合
体のウラン濃縮度が0.71〜1.0%(重量%。以下
特に断らない限り同様とする)であり、第2燃料
集合体と第3燃料集合体の濃縮度の比が0.65〜
0.72の範囲とし、第4燃料集合体の濃縮度を上記
組燃料集合体を装荷する運転サイクルの次のサイ
クル以降に使用する燃料集合体の濃縮度と同一と
することを特徴とするものである。
According to the research conducted by the present inventors, this purpose is to increase the number of unit fuel assemblies (hereinafter referred to as the first to fourth fuel assemblies in descending order of enrichment) in the assembled fuel assemblies to be initially loaded. It has been found that this can be achieved by satisfying specific conditions regarding the degree of enrichment. That is, the fuel assembly of the present invention is a fuel assembly in which four types of fuel assemblies having different enrichments (i.e., first to fourth fuel assemblies in descending order of enrichment) are arranged in a lattice pattern. , the uranium enrichment of the first fuel assembly is 0.71 to 1.0% (wt%; the same shall apply hereinafter unless otherwise specified), and the ratio of the enrichment of the second fuel assembly to the third fuel assembly is 0.65 to 1.0%.
0.72 range, and is characterized in that the enrichment of the fourth fuel assembly is the same as the enrichment of the fuel assemblies to be used after the cycle following the operation cycle in which the above set of fuel assemblies is loaded. .

以下、本発明を必要に応じて図面を参照しつつ
更に詳細に説明する。
Hereinafter, the present invention will be explained in more detail with reference to the drawings as necessary.

第1図は、本発明の一実施例にかかる組燃料集
合体を長さ方向に直角に取つた断面図である。
FIG. 1 is a cross-sectional view of a fuel assembly according to an embodiment of the present invention, taken at right angles to the longitudinal direction.

すなわち第1図において組燃料集合体10は、
濃縮度が次第に高くなる第1燃料集合体11、第
2燃料集合体12、第3燃料集合体13、第4燃
料集合体14を図示のように格子状に組合せ、そ
れらの間に制御棒15を挿入した構造をしてい
る。
That is, in FIG. 1, the assembled fuel assembly 10 is
A first fuel assembly 11, a second fuel assembly 12, a third fuel assembly 13, and a fourth fuel assembly 14 whose enrichment levels gradually increase are combined in a lattice shape as shown in the figure, and a control rod 15 is inserted between them. It has a structure in which .

第1燃料集合体11の濃縮度(同位元素U−
235の重量パーセント)は、0.71%以上、すなわ
ち天然ウラン中のU−235濃度以上で1.0%以下で
ある。ここで0.71%以上とする理由は、0.71%未
満のU−235重量パーセントのものを使用するに
は、減損ウランを使用することとなり、これまで
商用炉であまり例がないこと、及びこの第1燃料
集合体の出力が低すぎて、他の燃料集合体12,
13,14の出力が高くなりすぎる傾向があるこ
とによる。また1.0%を超える場合、第1サイク
ルでの第1燃料集合体の出力が0.71%〜1.0%で
の出力に比べて、相対的に急上昇する傾向にある
ことによる。(第8図参照) また第2燃料集合体と第3燃料集合体の濃縮度
比は0.65〜0.72の範囲とする。この比が0.65未満
であると、第1及び第2燃料集合体と、第3及び
第4燃料集合体の濃縮度の差が大きくなることを
意味し、そのことによつて、移行各サイクルでの
サイクル取得燃焼度のバラツキが大きくなる傾向
が強くなる(第3図、第5図)。
Enrichment of the first fuel assembly 11 (isotope U-
235 weight percent) is greater than or equal to 0.71%, i.e., greater than or equal to the U-235 concentration in natural uranium and less than or equal to 1.0%. The reason why the value is set at 0.71% or more is that to use U-235 weight percent less than 0.71%, depleted uranium would be used, which has rarely been used in commercial reactors, and that this first Since the output of the fuel assembly is too low, other fuel assemblies 12,
This is because the outputs of 13 and 14 tend to become too high. Moreover, when it exceeds 1.0%, this is because the output of the first fuel assembly in the first cycle tends to increase relatively rapidly compared to the output at 0.71% to 1.0%. (See FIG. 8) Furthermore, the enrichment ratio of the second fuel assembly and the third fuel assembly is in the range of 0.65 to 0.72. If this ratio is less than 0.65, it means that the difference in enrichment between the first and second fuel assemblies and the third and fourth fuel assemblies is large, thereby causing There is a strong tendency for the variation in the cycle-obtained burnup to increase (Figures 3 and 5).

また0.72を超えると、第4図にみられるように
移行サイクル中の熱特性が不安定となる傾向が強
くなる。
If it exceeds 0.72, the thermal characteristics during the transition cycle tend to become unstable as shown in FIG.

更に、第4燃料集合体の濃縮度は、第2サイク
ル以降に使用される燃料集合体の濃縮度と同一と
する。本実施例では、第4燃料集合体をその後の
取替燃料集合体として濃縮度以外の設計パラメー
タ(濃縮度の分布地)も同一としている。
Furthermore, the enrichment of the fourth fuel assembly is the same as that of the fuel assemblies used from the second cycle onwards. In this embodiment, the fourth fuel assembly is used as a subsequent replacement fuel assembly, and the design parameters other than the enrichment (the distribution area of the enrichment) are also the same.

以下上記条件の本質性を第2図〜第9図に示す
設計データを用いて説明する。なお、これら図面
の結果を得るに当つて上記組燃料集合体の平均濃
縮度は約2.0%、第4燃料集合体(新燃料)の濃
縮度は約3.0%とし、第2燃料集合体と第3燃料
集合体の濃縮度比をパラメーターxで表わす。
The essential nature of the above conditions will be explained below using design data shown in FIGS. 2 to 9. In obtaining the results shown in these drawings, the average enrichment of the above-mentioned fuel assemblies was assumed to be approximately 2.0%, the enrichment of the fourth fuel assembly (new fuel) was approximately 3.0%, and the The enrichment ratio of the three fuel assemblies is represented by the parameter x.

第2図は、第1燃料集合体の濃縮度を0.71%と
したとき、xを横軸にとり、第1サイクルおよび
移行サイクル末期の最大線出力密度(単位:
KW/ft=キロワツト/30cm)を縦軸にとつたも
のである。また、第3図は同一条件で、xを横軸
に移行サイクルの各サイクルで取得される燃焼度
(取得燃焼度)(単位:MWD/ST=メガワツ
ト・日/米トン)を縦軸にとつたものである。第
2図および第3図から、移行サイクルの熱特性の
収束が良好で、サイクル取得燃焼度の安定してい
るxの範囲は0.65〜0.70の範囲であることがわか
る。
Figure 2 shows the maximum linear power density (unit:
KW/ft = kilowatt/30cm) is taken on the vertical axis. In addition, Figure 3 shows the burnup obtained in each cycle of the transition cycle (unit: MWD/ST = megawatt/day/US ton) under the same conditions, with x on the horizontal axis and the vertical axis. It is ivy. From FIG. 2 and FIG. 3, it can be seen that the range of x in which the thermal characteristics of the transition cycle converge well and the burnup obtained in the cycle is stable is in the range of 0.65 to 0.70.

同様に第4図および第5図は、第1燃料集合体
の濃縮度が0.92%のときにxを横軸にとり、縦軸
に各サイクル末期の最大線出力密度およびサイク
ル取得燃焼度を表わしたものであり、ここでもx
の範囲が0.65〜0.72であるときに良好な熱特性の
収束性とサイクル取得燃焼度の安定性が得られて
いる。
Similarly, in Figures 4 and 5, when the enrichment of the first fuel assembly is 0.92%, x is taken on the horizontal axis, and the vertical axis represents the maximum linear power density and the cycle acquired burnup at the end of each cycle. , and here also x
Good convergence of thermal properties and stability of cycle-acquired burn-up are obtained when the range is 0.65 to 0.72.

次に第1燃料集合体の濃縮度を1.10%として、
同様にxと、最大線出力密度およびサイクル取得
燃焼度との関係を表わしたのが第6図および第7
図である。第6図および第7図を見ると、移行サ
イクル中の最大線出力密度およびサイクル取得燃
焼度のサイクル毎の変動が大きく不安定であり、
良好なxの範囲は見当らない。
Next, assuming that the enrichment level of the first fuel assembly is 1.10%,
Similarly, Figures 6 and 7 show the relationship between x, maximum linear power density, and cycle burnup.
It is a diagram. Looking at Figures 6 and 7, it can be seen that the cycle-to-cycle fluctuations in the maximum linear power density and cycle-acquired burnup during the transition cycle are large and unstable;
I can't find a good range for x.

更に第8図は、xを0.68としたときに第1燃料
集合体の濃縮度を横軸にとり、移行サイクル中で
最大線出力密度が最も大きくなるサイクルでの最
大線出力密度をプロツトしたものであり、移行サ
イクル中の最大線出力密度を良好な値に保つのに
第1燃料集合体の濃縮度が0.71〜1.0%の範囲が
好ましいことがわかる。
Furthermore, Fig. 8 plots the maximum linear power density in the cycle where the maximum linear power density is the largest in the transition cycle, with x being 0.68 and the enrichment of the first fuel assembly being plotted on the horizontal axis. It can be seen that the enrichment of the first fuel assembly is preferably in the range of 0.71 to 1.0% in order to maintain the maximum linear power density at a good value during the transition cycle.

したがつて上述の第2図ないし第8図の結果よ
り、第1燃料集合体の濃縮度が0.71〜1.0%であ
り、第2燃料集合体と第3燃料集合体の濃縮度比
xが0.65〜0.72の範囲が移行サイクル中の最大線
出力密度およびサイクル取得燃焼度を安定化する
ために本質的な効果を有することがわかる。
Therefore, from the results shown in Figures 2 to 8 above, the enrichment of the first fuel assembly is 0.71 to 1.0%, and the enrichment ratio x of the second and third fuel assemblies is 0.65. It can be seen that the range of ~0.72 has an essential effect for stabilizing the maximum linear power density and cycle acquired burnup during the transition cycle.

次に、本発明の範囲内の値である、第1燃料集
合体濃縮度0.92%およびx=0.705の条件での平
衡サイクルへの収束状況を第9図に示す。すなわ
ち、第9図は上記条件でサイクル取得燃焼度を横
軸に、最大線出力密度を縦軸に取つて表わしたも
のである。第9図に示す各サイクルの最大線出力
密度の変化を見れば、第2サイクル、第3サイク
ルを経るにつれてすみやかに平衡サイクルに収束
していくことがわかる。特に第4サイクルでほと
んど平衡サイクルに近く収束しており、第5サイ
クルで充分平衡サイクルに達していることがわか
る。
Next, FIG. 9 shows the state of convergence to the equilibrium cycle under the conditions of the first fuel assembly enrichment of 0.92% and x=0.705, which are values within the range of the present invention. That is, FIG. 9 shows the cycle acquisition burnup on the horizontal axis and the maximum linear power density on the vertical axis under the above conditions. If we look at the change in the maximum linear power density for each cycle shown in FIG. 9, we can see that it quickly converges to an equilibrium cycle as it passes through the second and third cycles. In particular, it can be seen that the cycle has almost converged to an equilibrium cycle in the fourth cycle, and that the equilibrium cycle has been sufficiently reached in the fifth cycle.

本発明の組燃料集合体中の各単位燃料集合体の
濃度を確定するにあたつては、次のように行うこ
とが好ましい。
In determining the concentration of each unit fuel assembly in the fuel assembly of the present invention, it is preferable to do so as follows.

まず、取替炉心及び初装荷炉心の年間の発生熱
量の要求量より、取替平衡炉心の燃料を約1/4ず
つとりかえるとしたときの取替燃料の濃縮度、及
び初装荷炉心の平均濃縮度が決定される。
First, based on the annual heat generation requirement of the replacement core and the initial loading core, we will calculate the enrichment of the replacement fuel and the average of the initial loading core when the fuel in the replacement equilibrium core is replaced by approximately 1/4. The degree of enrichment is determined.

これによつて、第4燃料集合体の燃料集合体を
決定し、次に取替炉心での発生熱量の要求に応じ
て、第1燃料集合体の濃縮度を概算する。初装荷
炉心の発生熱量の要求量が非常に大きいときは
1.0重量%に近くし、発生熱量の要求量が取替炉
心の要求量に比してあまり大きくないときは0.71
重量%に近い濃縮度を選択する。その後、第2、
第3濃縮度の割りふりを初装荷炉心の平均濃縮度
及び第1、第4燃料集合体の濃縮度及び0.65x
0.72の条件よりいくつかを選定して、集合体設
計を行い、更には炉心特性をみて決定する。この
ようにして決定された炉心特性をみて、更に若干
の修正を施して最終決定する。
Thereby, the fuel assembly of the fourth fuel assembly is determined, and then the enrichment level of the first fuel assembly is approximately estimated in accordance with the request for the amount of heat generated in the replacement core. When the required amount of heat generated by the initial loading core is extremely large,
Close to 1.0% by weight, and 0.71 when the required amount of heat generated is not too large compared to the required amount of replacement core.
Choose a concentration close to % by weight. After that, the second
The third enrichment is divided into the average enrichment of the initially loaded core, the enrichment of the first and fourth fuel assemblies, and 0.65x
Select some of the 0.72 conditions, perform the assembly design, and then decide based on the core characteristics. After looking at the core characteristics determined in this way, we make some further modifications and make a final decision.

上述したように本発明の組燃料集合体によれ
ば、第1燃料集合体の濃縮度ならびに第2燃料集
合体と第3燃料集合体の濃縮度比を一定の範囲に
抑えることにより、第1サイクルから擬似平衡サ
イクルを現出させ、平衡サイクルへの収束を速く
し、且つ移行サイクル中の最大線出力密度および
サイクル取得燃焼度を安定且つ良好な範囲に保つ
ことが可能となる。また炉心特性が各サイクルで
安定しているので運用計画がたてやすいという利
点もある。
As described above, according to the fuel assembly of the present invention, by suppressing the enrichment of the first fuel assembly and the enrichment ratio of the second fuel assembly and the third fuel assembly within a certain range, It is possible to cause a pseudo-equilibrium cycle to appear from the cycle, to speed up the convergence to the equilibrium cycle, and to keep the maximum linear power density and cycle-acquired burnup during the transition cycle in a stable and favorable range. Another advantage is that the core characteristics are stable during each cycle, making it easier to plan operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の組燃料集合体の一実施例の断
面図であり、第2図〜第8図は燃料集合体の濃縮
度に関する本発明の制限条件の根拠を説明するた
めのグラフ、第9図は本発明の制限条件の範囲内
での最大線出力密度の収束状況を示すグラフであ
る。 1〜5……それぞれ第1〜第5サイクル末期の
最大線出力密度、10……組燃料集合体、11〜
14……それぞれ第1〜第4燃料集合体、a,b
……最大線出力密度の上下限、c,d……サイク
ル取得燃焼度の上下限、,……最適な熱特性
とサイクル取得燃焼度を与えるxの範囲、(x=
0.65〜0.72)、,……安定な熱特性を与える
第1燃料集合体の濃縮度の範囲(0.71〜1.0%)。
FIG. 1 is a cross-sectional view of one embodiment of the fuel assembly of the present invention, and FIGS. 2 to 8 are graphs for explaining the basis of the limiting conditions of the present invention regarding the enrichment of the fuel assembly. FIG. 9 is a graph showing the state of convergence of the maximum linear power density within the limit conditions of the present invention. 1 to 5... Maximum linear power density at the end of the first to fifth cycles, respectively, 10... Group fuel assembly, 11 to
14...first to fourth fuel assemblies, a, b, respectively
...the upper and lower limits of the maximum linear power density, c, d...the upper and lower limits of the cycle-obtained burn-up, , ...the range of x that provides the optimal thermal characteristics and the cycle-obtainable burn-up, (x=
0.65 to 0.72),... Range of enrichment of the first fuel assembly that provides stable thermal properties (0.71 to 1.0%).

Claims (1)

【特許請求の範囲】[Claims] 1 それぞれ濃縮度の異なる4種類の燃料集合体
を格子状に配列した組燃料集合体であつて、最も
濃縮度の低い燃料集合体中のウラン濃縮度が0.71
〜1.0重量%であり、濃縮度が低い順に2番目と
3番目に位置する燃料集合体の濃縮度の比を0.65
〜0.72の範囲とし、第4燃料集合体の濃縮度を、
上記組燃料集合体を装荷する運転サイクルの次の
サイクル以降に使用する燃料集合体の濃縮度と同
一とすることを特徴とする、沸騰水型原子炉用組
燃料集合体。
1 A fuel assembly consisting of four types of fuel assemblies each having different enrichment levels arranged in a lattice pattern, where the uranium enrichment level in the fuel assembly with the lowest enrichment level is 0.71.
~1.0% by weight, and the enrichment ratio of the second and third fuel assemblies in descending order of enrichment is set to 0.65.
~0.72, and the enrichment of the fourth fuel assembly is
A assembled fuel assembly for a boiling water reactor, characterized in that the enrichment level is the same as that of a fuel assembly used after the cycle following the operation cycle in which the assembled fuel assembly is loaded.
JP8327280A 1980-06-19 1980-06-19 Nuclear fuel assembly Granted JPS578486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8327280A JPS578486A (en) 1980-06-19 1980-06-19 Nuclear fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8327280A JPS578486A (en) 1980-06-19 1980-06-19 Nuclear fuel assembly

Publications (2)

Publication Number Publication Date
JPS578486A JPS578486A (en) 1982-01-16
JPS6312271B2 true JPS6312271B2 (en) 1988-03-18

Family

ID=13797709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8327280A Granted JPS578486A (en) 1980-06-19 1980-06-19 Nuclear fuel assembly

Country Status (1)

Country Link
JP (1) JPS578486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665980U (en) * 1992-04-01 1994-09-16 株式会社セガ・エンタープライゼス Coin payout device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223092A (en) * 1982-06-22 1983-12-24 株式会社東芝 Bwr type reactor core
JPS5913982A (en) * 1982-07-15 1984-01-24 株式会社東芝 Reactor core structure
US5631939A (en) * 1994-09-09 1997-05-20 Hitachi, Ltd. Initial core of nuclear power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665980U (en) * 1992-04-01 1994-09-16 株式会社セガ・エンタープライゼス Coin payout device

Also Published As

Publication number Publication date
JPS578486A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
JPS5829878B2 (en) fuel assembly
JPS6231316B2 (en)
JPS6312271B2 (en)
JPS6129478B2 (en)
US6005905A (en) Initial core
US4292128A (en) Boiling water type nuclear reactor
JP4526076B2 (en) Light water reactor fuel assemblies and cores loaded with them
US5440598A (en) Fuel bundle design for enhanced usage of plutonium fuel
JP5693209B2 (en) Operation method of the first loaded core
Ramirez et al. Assessment of a MOX fuel assembly design for a BWR mixed reload
JPH10288688A (en) Control rod for reactor
Kurihara et al. Power-flattening method for boiling water reactor
JP6588155B2 (en) Fuel assemblies and reactor cores loaded with them
JPS6228437B2 (en)
Worrall Effect of plutonium vector on core wide nuclear design parameters
JP3093289B2 (en) Fuel assembly for boiling water reactor
JPH0555836B2 (en)
Lindley et al. Analysis of advanced PWR loading schemes for transuranic incineration in thorium
JP2656279B2 (en) Fuel assembly for boiling water reactor
Farha et al. Analysis of the Effect of Central Gap Size on the Temperature Profile and Fissile Content in the Annular Nuclear Fuel Rod
JPH0222916B2 (en)
Kumar Vectorized quadrant model simulation and spatial control of Advanced Heavy Water Reactor (AHWR)
JPS5816711B2 (en) boiling water reactor
JPS6044637B2 (en) fuel assembly
CA1100649A (en) Method for savings in nuclear reactors by using beryllium embedded fuels