JPS63122291A - Light output stabilizing circuit - Google Patents

Light output stabilizing circuit

Info

Publication number
JPS63122291A
JPS63122291A JP61267659A JP26765986A JPS63122291A JP S63122291 A JPS63122291 A JP S63122291A JP 61267659 A JP61267659 A JP 61267659A JP 26765986 A JP26765986 A JP 26765986A JP S63122291 A JPS63122291 A JP S63122291A
Authority
JP
Japan
Prior art keywords
voltage
current
circuit
transistor
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61267659A
Other languages
Japanese (ja)
Inventor
Yasuo Minae
薬袋 康雄
Hideo Uehara
上原 英雄
Hideyuki Nebiya
英之 根日屋
Yoshihiro Kudo
工藤 善宏
Koichiro Azuma
東 幸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information Systems Ltd
Hitachi Shonan Denshi Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Information Systems Ltd
Hitachi Shonan Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Information Systems Ltd, Hitachi Shonan Denshi Co Ltd filed Critical Hitachi Ltd
Priority to JP61267659A priority Critical patent/JPS63122291A/en
Publication of JPS63122291A publication Critical patent/JPS63122291A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06832Stabilising during amplitude modulation

Abstract

PURPOSE:To obtain a light output which is stable to dispersion of elements and a characteristic change to temperatures, by dividing this circuit into a high-speed differential amplification circuit for signal current amplification and an emitter follower circuit for supplying a bias current and a signal current and performing feedback control of a collector potential in the differential amplification circuit. CONSTITUTION:Assuming that light output of semiconductor laser 11 has increased, a current flowing across a light detecting element 12 is increased and also a voltage generated across a resistor 13 is raised. However, because a d-c polarity is inverted in an inversion d-c amplifier 15, an output voltage of a d-c adder 17 is decreased in comparison with the voltage which is obtained before the light output increases. Noises are removed from this voltage through an integrator 18 and this voltage is applied to a base of a transistor 19. This operation corresponds to the lowering of a transistor 19's emitter voltage VE. When the emitter voltage VE is lowered, an emitter current 16 is also decreased and so the light output is suppressed. The light signal of a constant output generated by this control is sent outside through an optical fiber 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光出力安定化回路に係り、更に詳述すれば半導
体レーザを光源とする光送信器の特に高周波にて動作せ
しめるのに好適な光出力安定化回路に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical output stabilizing circuit, and more specifically, to an optical output stabilizing circuit suitable for operating an optical transmitter using a semiconductor laser as a light source, particularly at high frequencies. This invention relates to an optical output stabilization circuit.

〔従来の技術〕[Conventional technology]

半導体レーザを用いた光通信が既に実用段階に入#)L
 A N (Local Area Network 
)の高速パス、元コンピータと多方面で実用化されてい
る光信号を伝送するための半導体レーザの電流−光出力
(ニーL)特性は、第2図に示す如く発光閾電流が存在
し、かつこの閾電流値は温度によりT1−T3と図の如
く大きく変化する。このため、従来から、半導体レーザ
の光出力を安定化させる回路の検討がなされてきた。例
えば、特開昭60−25335号公報に記載された方式
がある。これは、第3図に示す如く、信号電流増幅のた
めトランジスタ21.22.抵抗23および半導体レー
ザ20を含めて差動増幅器を構成し、半導体レーザ20
の出力は光検出器262反転、非反転直流増幅器27.
積分器29および信号電流制御回路24、抵抗器30と
、半導体レーザ20のレーザ光出力の一部を前記光検出
素子26にてモニタし、モニタ出力を反転、非反転直流
増幅器27.積分器28を介してトランジスタ25のベ
ースに印加し、該ベースの電位を変化させる安定化回路
を設けることによシ、半導体レーザ20に流すバイアス
電流を制御し、安定な光出力を得よ5上記した従来技術
は、信号電流増幅用のトランジスタ22の負荷として、
半導体レーザ20と共にバイアス電流制御用トランジス
タ25のコレクタ負荷が加わっており一般に、スイッチ
ング速度の速い(利得帯域幅積f!の高い)トランジス
タはど流せる電流値が低くなり、このために大きな負荷
(特に容量性負荷)を高速に駆動することができなくな
る。したがって、差動増幅を行う上記トランジスタ22
を高速(IGb/S以上の高速)に動作させようとする
場合に支障をきたしていた。
Optical communication using semiconductor lasers has already entered the practical stage #)L
A N (Local Area Network
) The current-optical output (knee L) characteristics of semiconductor lasers for transmitting optical signals, which have been put into practical use in many fields such as high-speed paths and ex-computers, have a light emission threshold current as shown in Figure 2. Moreover, this threshold current value varies greatly depending on the temperature from T1 to T3 as shown in the figure. For this reason, circuits that stabilize the optical output of semiconductor lasers have been studied. For example, there is a method described in Japanese Patent Application Laid-Open No. 60-25335. As shown in FIG. 3, transistors 21, 22, . A differential amplifier is configured including the resistor 23 and the semiconductor laser 20, and the semiconductor laser 20
The output of photodetector 262 is inverted and non-inverted DC amplifier 27.
An integrator 29, a signal current control circuit 24, a resistor 30, and a part of the laser light output of the semiconductor laser 20 is monitored by the photodetector element 26, and the monitored output is inverted and non-inverted DC amplifier 27. By providing a stabilizing circuit that applies the voltage to the base of the transistor 25 via the integrator 28 and changes the potential of the base, the bias current flowing to the semiconductor laser 20 can be controlled and a stable optical output can be obtained. In the above-mentioned conventional technology, as a load of the transistor 22 for signal current amplification,
The collector load of the bias current control transistor 25 is added together with the semiconductor laser 20, and in general, a transistor with a fast switching speed (high gain bandwidth product f!) has a low current value that can be passed through it, and for this reason, a large load (especially (capacitive load) cannot be driven at high speed. Therefore, the transistor 22 that performs differential amplification
This poses a problem when attempting to operate at high speed (higher speed than IGb/S).

本発明の目的は、半導体レーザの素子のばらつき、温度
に、対する特性変化に対して、安定な光出力を得ること
ができ、かつ半導体レーザを高速に駆動し、超高速ディ
ジタル光伝送を可能にする光出力安定化回路を提供する
ことにある。
The purpose of the present invention is to be able to obtain stable optical output despite variations in semiconductor laser elements and changes in characteristics due to temperature, drive the semiconductor laser at high speed, and enable ultra-high-speed digital optical transmission. An object of the present invention is to provide an optical output stabilizing circuit that achieves the following.

〔問題点を解決するための手段〕 上記目的は、信号電流増幅用の高速差動増幅回路と、バ
イアス電流供給および信号電流を供給するエミッタフォ
ロア回路に分離し、かつ半導体レーザに流すバイアス電
流を上記差動増幅回路のコレクタ電位をフィードバック
制御することにより達成される。
[Means for solving the problem] The above object is to separate a high-speed differential amplifier circuit for signal current amplification into a bias current supply and an emitter follower circuit for supplying a signal current, and to separate the bias current flowing into the semiconductor laser into This is achieved by feedback controlling the collector potential of the differential amplifier circuit.

(作用〕 上記高速差動増幅回路のコレクタ側負荷は、負荷抵抗と
次段エミッタフォロア回路のベース容量のみとなる。一
般に、ベース容量はコレクタ容量よシも小さく、また比
較的大きな容量をもつ半導体レーザは、エミッタフォロ
ア回路を介するために、直接上記差動増幅回路のコレク
タ負荷とならない。このため、高速のスイッチング特性
を実現することができる。
(Function) The collector side load of the above-mentioned high-speed differential amplifier circuit is only the load resistance and the base capacitance of the next-stage emitter follower circuit.Generally, the base capacitance is smaller than the collector capacitance, and semiconductors with relatively large capacitance Since the laser passes through the emitter follower circuit, it does not directly serve as the collector load of the differential amplifier circuit.Therefore, high-speed switching characteristics can be achieved.

また、上記差動増幅回路のコレクタ電位を、半導体レー
ザの光出力に応じて制御することによりこれと直結する
エミッタフォロア回路のベース電位が変化し、ためにレ
ーザに流すバイアス電流が制御され、半導体レーザの光
出力安定化が図れる。
Furthermore, by controlling the collector potential of the differential amplifier circuit according to the optical output of the semiconductor laser, the base potential of the emitter follower circuit that is directly connected to it changes, and therefore the bias current flowing through the laser is controlled. The optical output of the laser can be stabilized.

〔実施例] 以下1本発明の一実施例を第1図により説明する。本光
出力安定化回路は、抵抗1,2,4jpよび5.バイパ
スコンデン?5、l’?ンジスリス。
[Example] An example of the present invention will be described below with reference to FIG. This optical output stabilizing circuit includes resistors 1, 2, 4jp and 5. Bypass condenser? 5.l'? Nzislis.

7、電流源8より成る信号電流増幅用の高速差動増幅器
およびトランジスタ7に直流的に直結したトランジスタ
9、抵抗10よ構成る半導体レーザ11のバイアス電流
供給および信号電流重畳用エミッタフォロアー回路と、
光検出素子12.抵抗13で検出された光信号を反転直
流増幅器15.可変直流電圧源16および直流加算器1
7で雑音を除去し積分器1日を介して直流的に前記差動
増幅器と接続するトランジスタ19のベースに加えて半
導体レーザ11のバイアスを可変する安定化回路とで構
成されている0 今、超高速ディジタル信号が前記高速差動増幅器を経て
エミッタフォロアー回路に入力されて訃り、トランジス
タ19のエミッタ電圧をv!11電流源8を流れる電流
を工、トランジスタ7を流れる信号電流変化幅を士でと
する。トランジスタ9のベース電圧をvBとし、抵抗2
の抵抗値をR2とするとvBは(1)式のように表わさ
れる。
7. A high-speed differential amplifier for signal current amplification consisting of a current source 8, and an emitter follower circuit for bias current supply and signal current superimposition of the semiconductor laser 11 consisting of a transistor 9 directly connected to the transistor 7 and a resistor 10;
Photodetection element 12. The optical signal detected by the resistor 13 is converted into an inverting DC amplifier 15. Variable DC voltage source 16 and DC adder 1
In addition to the base of a transistor 19 which removes noise in step 7 and is connected to the differential amplifier in a direct current manner through an integrator 1, it also consists of a stabilizing circuit that changes the bias of the semiconductor laser 11. The ultra-high-speed digital signal is input to the emitter follower circuit via the high-speed differential amplifier, and the emitter voltage of the transistor 19 becomes v! 11, the current flowing through the current source 8 is expressed as x, and the width of change in the signal current flowing through the transistor 7 is expressed as x. Let the base voltage of transistor 9 be vB, and resistor 2
When the resistance value of is R2, vB is expressed as in equation (1).

vB=vII!−R,X (−±/L ン・・・・・・
・・・・・・・・・(1)トランジスタは一般に、ベー
ス、エミッタ間の電位差が一定電圧となっておシ、この
電位差はシリコントランジスタの場合、約1.6vであ
る。
vB=vII! -R,X (-±/L)
(1) Generally, the potential difference between the base and emitter of a transistor is a constant voltage, and this potential difference is about 1.6 V in the case of a silicon transistor.

トランジスタ9のエミッタ電圧をVB  とするとVj
=VB −R2X (−:h  L  )  −0,6
”・・”・・・(2)となる。
If the emitter voltage of transistor 9 is VB, then Vj
=VB -R2X (-:h L ) -0,6
"..."...(2).

ここで、半導体レーザー1を流れる電流は、トランジス
タ9のエミッタから流れ出す電流にほぼ等しい。このエ
ミッタから流れ出す電流を工E、抵抗10の抵抗値をR
IOとすると、工■は下記の(3)式によって表わされ
る。但し、この回路系への供給電源をVOOおよびvz
zとする。
Here, the current flowing through the semiconductor laser 1 is approximately equal to the current flowing out from the emitter of the transistor 9. The current flowing from this emitter is E, and the resistance value of resistor 10 is R.
When IO is assumed, work (2) is expressed by the following equation (3). However, the power supply to this circuit system is VOO and vz
Let it be z.

コノエミッタ電流l1が半導体レーザー1のバイアス電
流となシ、第2図に示す半導体レーザバイアス電流−光
出力特性かられかるように、光出力が決定される。
Since the cono emitter current l1 is the bias current of the semiconductor laser 1, the optical output is determined as shown in the semiconductor laser bias current-optical output characteristic shown in FIG.

光検出素子12を流れる電流は、半導体レーザ11の光
出力に比例し、その電流情報(光出力情報)は、抵抗1
3によ)電圧情報に変換され、反転直流増幅器15によ
シ直流増幅され、直流加算器17にて、ノミナル光出力
調整用の可変直流電圧源16の電圧が加えられ、雑音除
去用の積分器18を通過し、トランジスタ190ベース
に加えられる。前述の如くトランジスタのベース、エミ
ッタ間は定電圧であるので、トランジスタ19のエミッ
タ電圧vEは、半導体レーザ11を流れるバイアス電流
すなわち半導体レーザ11の光出力に支配されている。
The current flowing through the photodetector element 12 is proportional to the optical output of the semiconductor laser 11, and the current information (optical output information) is transmitted through the resistor 1.
3) is converted into voltage information, DC amplified by the inverting DC amplifier 15, applied with the voltage of the variable DC voltage source 16 for adjusting the nominal optical output in the DC adder 17, and integrated for noise removal. 18 and is applied to the base of transistor 190. As described above, since there is a constant voltage between the base and emitter of the transistor, the emitter voltage vE of the transistor 19 is controlled by the bias current flowing through the semiconductor laser 11, that is, the optical output of the semiconductor laser 11.

前述した(5)式は、 とな)、この(4)式の前半である 前記(5)式は半導体レーザの平均光出力を決定する時
のバイアス電流 ふ Ro  ・・・・・・・・・・・・・・・・・・・・・
(句は信号電流変化幅である。
The above equation (5) is as follows.The first half of equation (4), equation (5), is the bias current fRo when determining the average optical output of the semiconductor laser.・・・・・・・・・・・・・・・
(The phrase is the signal current change width.

ここで今生導体レーザー1の光出力が大きくなったと仮
定すると、光検出素子12を流れる電流は増加し、抵抗
13に発生している電圧も上昇する。しかし、反転直流
増幅器15にて直流的視性が反転しているので、直流加
算器17の出力は、光出力が大きくなる以前に比べて電
圧は減少する。この電圧は、積分器18を通過すること
により雑音が除かれてトランジスター9のペースに印加
される。この動作はトランジスター9のエミッタ電圧v
!Oを下げることに相当する。前記エミッタ電圧VBが
下がると随(4)式よりエミッタ電流工xfb減少し、
前述した第2図からもわかるように光出力は抑えられる
。半導体レーザー1の光出力が低下した時も、同様な動
作によシ、光出力は増す方向に動作する。この制御によ
り一定出力となった光信号は、光ファイバー4を介し、
外部へ送出される。以上が、レーザの光出力を安定化す
るための回路動作の概要である。
Assuming that the optical output of the current conductor laser 1 increases, the current flowing through the photodetecting element 12 increases and the voltage generated in the resistor 13 also increases. However, since the DC visibility is inverted in the inverting DC amplifier 15, the voltage of the output of the DC adder 17 is reduced compared to before the optical output became large. This voltage is passed through an integrator 18 to remove noise and is applied to the transistor 9. This operation causes the emitter voltage of transistor 9 to be
! This corresponds to lowering O. When the emitter voltage VB decreases, the emitter current xfb decreases from equation (4),
As can be seen from FIG. 2 mentioned above, the optical output can be suppressed. Even when the optical output of the semiconductor laser 1 decreases, a similar operation is performed to increase the optical output. The optical signal, which has a constant output through this control, is transmitted through the optical fiber 4,
Sent to the outside. The above is an outline of the circuit operation for stabilizing the optical output of the laser.

また、本回路構成によれば、信号電流増幅部はトランジ
スタ6.7等による高速差動増幅回路でアシ、半導体レ
ーザ11のバイアス電流供給お〜よび信号電流重畳はト
ランジスタ9によるエミッタフォロアにより行なう。エ
ミッタフォロア回路は電圧利得が1ゆえ、比較的大きな
容量をもつ半導体レーザなどの重い負荷を駆動すること
ができる。
Further, according to this circuit configuration, the signal current amplification section is a high-speed differential amplification circuit including transistors 6 and 7, and bias current supply to the semiconductor laser 11 and signal current superimposition are performed by an emitter follower including transistor 9. Since the emitter follower circuit has a voltage gain of 1, it can drive a heavy load such as a semiconductor laser having a relatively large capacity.

差動増幅器を構成する一方のトランジスタ70コレクタ
には、抵抗2およびトランジスタ9のベース容量が負荷
となるだけで、第5図に示す従来の構成のように高速差
動増幅器のトランジスタ22・に、容量の大きな半導体
レーザ20やトランジスタ25のコレクタ容量(一般に
ベース容量よシ大きh)が負荷となる回路に比べ、スイ
ッチング特性の高速性に対しては有利である。以上によ
り、本回路構成では高速ディジタル伝送に適した光出力
安定化回路が実現できる。
The collector of one transistor 70 constituting the differential amplifier is loaded only by the resistor 2 and the base capacitance of the transistor 9, and as in the conventional configuration shown in FIG. This is advantageous in terms of high-speed switching characteristics, compared to a circuit in which the load is a large-capacitance semiconductor laser 20 or a collector capacitance (generally larger than the base capacitance h) of the transistor 25. As described above, with this circuit configuration, an optical output stabilization circuit suitable for high-speed digital transmission can be realized.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によれば、半導体レーザ
の素子のバラツキや、周囲温度変化にかかわらず、安定
した光出力を得ることができ、また、従来の回路形式に
比べ、信号電流増幅用の差動増幅器に対する容量負荷が
小さくなるため、超高速ディジタル伝送に適した光送信
器が実現できると云う効果を有する。
As explained above, according to the present invention, stable optical output can be obtained regardless of variations in semiconductor laser elements and changes in ambient temperature, and signal current amplification is more efficient than in conventional circuit formats. Since the capacitive load on the differential amplifier for use in the present invention is reduced, an optical transmitter suitable for ultra-high-speed digital transmission can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すもので、超高速光送信
器の光出力安定化回路の構成図、第2図は半導体レーザ
のバイアス電流−光出力特性を示。 ナ電流−光特性図、第3図は従来の光出力安定化回路の
構成図である。 1.2,4,5,10,13・・・抵抗、3・・・バイ
パスコンデンテ、 6 、7 、9 、19・・・トランジスタ、8・・・
電流源。 11・・・半導体レーザ、 12・・・光検出素子、 14・・・光ファイバ、     15・・・反転直流
増幅訊16・・・可変直流電圧源、 17・・・直流加算器、 18・・・積分器。 蔦1 周 ViEVEt;−
FIG. 1 shows an embodiment of the present invention, and is a block diagram of an optical output stabilizing circuit for an ultrahigh-speed optical transmitter, and FIG. 2 shows bias current-optical output characteristics of a semiconductor laser. FIG. 3 is a block diagram of a conventional optical output stabilizing circuit. 1.2, 4, 5, 10, 13...resistance, 3...bypass capacitor, 6, 7, 9, 19...transistor, 8...
current source. DESCRIPTION OF SYMBOLS 11... Semiconductor laser, 12... Photodetection element, 14... Optical fiber, 15... Inverted DC amplifier 16... Variable DC voltage source, 17... DC adder, 18...・Integrator. Tsuta 1 Shu ViEVEt;-

Claims (1)

【特許請求の範囲】[Claims] 1、バイアス電流に信号電流を重畳して半導体レーザを
駆動するに当り、信号電流増幅用の差動増幅回路と、バ
イアス電流供給および信号電流重畳用のエミッタフォロ
ア回路を有し、前記半導体レーザの光出力の一部を検出
し、この検出された光出力情報により、上記差動増幅回
路のコレクタ電圧をフィードバック制御することを特徴
とする光出力安定化回路。
1. In driving a semiconductor laser by superimposing a signal current on a bias current, the semiconductor laser has a differential amplifier circuit for amplifying the signal current and an emitter follower circuit for supplying the bias current and superimposing the signal current. An optical output stabilizing circuit characterized in that a part of the optical output is detected, and the collector voltage of the differential amplifier circuit is feedback-controlled based on the detected optical output information.
JP61267659A 1986-11-12 1986-11-12 Light output stabilizing circuit Pending JPS63122291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61267659A JPS63122291A (en) 1986-11-12 1986-11-12 Light output stabilizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61267659A JPS63122291A (en) 1986-11-12 1986-11-12 Light output stabilizing circuit

Publications (1)

Publication Number Publication Date
JPS63122291A true JPS63122291A (en) 1988-05-26

Family

ID=17447748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61267659A Pending JPS63122291A (en) 1986-11-12 1986-11-12 Light output stabilizing circuit

Country Status (1)

Country Link
JP (1) JPS63122291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377948A2 (en) * 1989-01-12 1990-07-18 Kabushiki Kaisha Toshiba An optical amplifying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0377948A2 (en) * 1989-01-12 1990-07-18 Kabushiki Kaisha Toshiba An optical amplifying device

Similar Documents

Publication Publication Date Title
US7265631B2 (en) Transimpedance amplifier with signal amplification circuit that performs power signal regulation
US6114913A (en) Transimpedance amplifiers with improved gain-bandwidth product
US5844445A (en) Feedback type pre-amplifier
EP0370608A1 (en) Thermally stabilized optical preamplifier
US5708392A (en) Method and apparatus for providing limiting transimpedance amplification
US6879217B2 (en) Triode region MOSFET current source to bias a transimpedance amplifier
US3959733A (en) Differential amplifier
JP2591760B2 (en) Amplifier circuit
JPH08237054A (en) Gain variable circuit
KR101113970B1 (en) Amplifier circuit
US4709163A (en) Current-discrimination arrangement
JPS63122291A (en) Light output stabilizing circuit
US4142110A (en) Circuit to eliminate DC bias
US7126425B2 (en) Voltage control circuit for common mode voltage and method for controlling the same
US4510459A (en) Wideband record amplifier
JPH077204A (en) Semiconductor-laser-element driving circuit
JP3318118B2 (en) Semiconductor laser controller
US5440273A (en) Rail-to-rail gain stage of an amplifier
JPH05175747A (en) High output fet amplifier
US5311147A (en) High impedance output driver stage and method therefor
JPH0379123A (en) Constant current source circuit
JPS6139880A (en) Speed controller of dc motor
JPH051649B2 (en)
JPH06303048A (en) Optical signal amplifier circuit
JP4639269B2 (en) Image display device and integrated circuit