JPS63122167A - Manufacturing method of solid-state image sensor - Google Patents

Manufacturing method of solid-state image sensor

Info

Publication number
JPS63122167A
JPS63122167A JP61266537A JP26653786A JPS63122167A JP S63122167 A JPS63122167 A JP S63122167A JP 61266537 A JP61266537 A JP 61266537A JP 26653786 A JP26653786 A JP 26653786A JP S63122167 A JPS63122167 A JP S63122167A
Authority
JP
Japan
Prior art keywords
transparent glass
color
glass substrate
solid
filters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61266537A
Other languages
Japanese (ja)
Inventor
Toshio Yokota
横田 利雄
Hajime Yamamoto
肇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP61266537A priority Critical patent/JPS63122167A/en
Publication of JPS63122167A publication Critical patent/JPS63122167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/011Manufacture or treatment of image sensors covered by group H10F39/12
    • H10F39/026Wafer-level processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/331Coatings for devices having potential barriers for filtering or shielding light, e.g. multicolour filters for photodetectors

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To enhance the accuracy of bonding alignment and, at the same time, to make the distribution of a bonded layer uniform by a method wherein a protective film layer is formed on a transparent glass substrate where monochromatic filters or color-separating filters are formed at prescribed intervals and light-receiving parts at a wafer for a solid-state image pickup device are bonded and fixed through a bonded resin layer in such a way that the light-receiving parts are aligned with the respective monochromatic filters or the color- separating filters. CONSTITUTION:Chip-like color-separating filters 2 are formed on the surface of a transparent glass substrate 1 at prescribed intervals; in addition, a protective film layer 3 is formed on the transparent glass substrate 1 and the color-separating filters 2. Then, grooves 1 ' are made between the color-separating tilters 2 by making use of a dicing saw in such a way that the grooves do not touch bonding pad parts 8. Then, the respective light-receiving parts 6 at a water 5 for a solid-state imaging device are bonded and fixed to the transparent glass plate 1 and the protective film layer 3 by means of an aligner through a bonded resin material 4' which is transformed into a bonded resin layer 4 in such a way that the light- receiving parts 6 are aligned with the color-separating filters 2. Then, one face is polished by using cerium so as to obtain an optical mirror-plane. Then, the protective layer 3 and the bonded resin layer 4 are removed by using an O2 plasma solvent; after that, the assembly is cut by means of the dicing saw and is processed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固体カメラおよびファクシミリ用の2次元
および1次元の固体撮像素子の製造方法に関するもであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing two-dimensional and one-dimensional solid-state image sensors for solid-state cameras and facsimiles.

〔従来の技術〕[Conventional technology]

現在、固体カメラは小型化、高解像度化に対する開発が
急速に検討され、撮像素子およびカラーフィルタともに
画素サイズの微細化が進められているが、感度低下を防
ぐため、撮像素子の受光ダイオード部の面精をできるだ
け減少させないことが必要となる。
Currently, solid-state cameras are being rapidly developed to be smaller and have higher resolution, and the pixel sizes of both image sensors and color filters are becoming smaller. It is necessary to minimize the loss of face.

したがって、受光部外の配線部の寸法が微細化し、撮像
素子およびカラーフィルタの各々のトータルピッチおよ
び接着精度の向上が必要となる。
Therefore, the dimensions of the wiring section outside the light-receiving section become finer, and it becomes necessary to improve the total pitch and adhesion accuracy of each of the image sensor and the color filter.

このため、両者の誤差は合計して±0.5〜±11Lm
以下のレベルが必要とされている。
Therefore, the total error of both is ±0.5 to ±11Lm.
The following levels are required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、・従来の固体撮像素子の製造方法は、接着精
度が現在一般的に撮像素子、カラーフィルタともに切断
チップ化された状態で接着されているため、接着アライ
メントのずれおよび接着層の厚みのチップ内ばらつきに
よる撮像特性上、フリッカ、シェーディングが発生し、
また、チップ状態での取り扱いによるごみ、異物等の混
入による不良が発生し、このような接着工程では、作業
性9歩留りの点、高解像度へのきわめて大きな障害とな
ってきているという問題点があった。
By the way, in the conventional manufacturing method of solid-state image sensors, the adhesion accuracy is generally reduced because both the image sensor and the color filter are cut into chips and then glued. Due to the imaging characteristics due to internal variations, flickering and shading may occur.
In addition, defects occur due to the contamination of dust and foreign matter when handling chips in the chip state, and this type of bonding process has become an extremely serious problem in terms of workability9 yield and high resolution. there were.

一方、現状のカラーフィルタは厚さ約0.5mm〜1.
0mmのガラス基板上に形成されているが、撮像時に固
体撮像素子面での反射光がカラーフィルタの反射面のガ
ラス面で反射するため、フレア現象が発生し、高品質化
上問題がある。
On the other hand, current color filters have a thickness of about 0.5 mm to 1.5 mm.
Although it is formed on a 0 mm glass substrate, during imaging, the light reflected from the solid-state image sensor surface is reflected by the glass surface of the reflective surface of the color filter, which causes a flare phenomenon, which poses a problem in terms of high quality.

このため、現在、撮像素子上に直接カラーフィルタ形成
を行うオンチップ化の検討も進められているが、撮像素
子とカラーフィルタの両者の歩留りの点、従来のカラー
フィルタではクロム膜等で形成した光学濃度4.0以上
のオプティカルブラック形成寸法に対する検討課題、染
色加工上での色特性の管理面の問題、また、カラーフィ
ルタ形成時の撮像素子へのダメージ等、種々の問題点が
あった。
For this reason, on-chip technology that forms color filters directly on the image sensor is currently being considered, but in terms of yields for both the image sensor and the color filter, conventional color filters are difficult to form using chrome films, etc. There were various problems, such as consideration of dimensions for forming optical black with an optical density of 4.0 or higher, problems in managing color characteristics during dyeing, and damage to image pickup elements during color filter formation.

この発明は、上記問題点を解決するためになされたもの
で、接着アライメントの精度を向上させるとともに接着
層分布を均一化した固体撮像素子の製造方法を得ること
を目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a method for manufacturing a solid-state image sensor that improves the accuracy of adhesive alignment and makes the adhesive layer distribution uniform.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる固体撮像素子の製造方法は、モノクロ
フィルタあるいは色分離フィルタを所定ピッチで形成し
た透明ガラス基板上に保護膜層を形成し、次いで、接着
樹脂層を介して固体撮像素子ウェハをその各受光部をそ
れぞれモノクロフィルタあるいは色分離フィルタに一致
させて接着固定し、次いで、透明ガラス基板を薄板化し
た後、切断加工を施して固体撮像素子を得るものである
The method for manufacturing a solid-state image sensor according to the present invention includes forming a protective film layer on a transparent glass substrate on which monochrome filters or color separation filters are formed at a predetermined pitch, and then attaching a solid-state image sensor wafer to the transparent glass substrate through an adhesive resin layer. Each light-receiving section is aligned with a monochrome filter or a color separation filter and fixed with adhesive, and then the transparent glass substrate is thinned and then cut to obtain a solid-state image sensor.

〔作用〕[Effect]

この発明においては、モノクロフィルタあるいは色分離
フィルタを固体撮像素子に一致させて固定した後に、ガ
ラス裏面側を薄板化加工する事が可能となりオンチップ
状態とほぼ同じレベルになる。
In this invention, after the monochrome filter or color separation filter is fixed in alignment with the solid-state image pickup device, it is possible to process the back side of the glass into a thin plate, which is almost the same level as on-chip state.

〔実施例〕〔Example〕

第1図(a)〜(e)はこの発明の一実施例を示す製造
工程図である。第1図(a)において、1は例えば直径
3インチ(75mm)  +厚さ0.5mmのシート状
態の透明ガラス基板で、この透明ガラス基板]の表面上
にチップ状の色分離フィルタ2を所定のピッチで形成し
、さらに透明ガラス基板1と色分離フィルタ2上に保護
膜層3を形成する。
FIGS. 1(a) to 1(e) are manufacturing process diagrams showing one embodiment of the present invention. In FIG. 1(a), 1 is a sheet-like transparent glass substrate with a diameter of 3 inches (75 mm) and a thickness of 0.5 mm, and a chip-shaped color separation filter 2 is predetermined on the surface of this transparent glass substrate. Further, a protective film layer 3 is formed on the transparent glass substrate 1 and the color separation filter 2.

次いで、各色分離ブイルタ2の間にグイシングツ−を使
用して第1図(a)に二点鎖線で示すように深さO,1
mmで第1図(e)に示すポンディングパット部8を形
成する部分がかからないようにして溝1′の加工を行う
Next, using a guising tool between each color separating filter 2, a depth O, 1 is created as shown by the two-dot chain line in FIG. 1(a).
The groove 1' is machined in such a way that the part where the bonding pad part 8 shown in FIG. 1(e) is formed does not overlap.

次に、第1図(b)に示すように、透明ガラス基板1と
保護膜層3の上に接着樹脂層4となる接着樹脂材4′を
介し、直径3インチ(75IIIm)の固体撮像素子ウ
ェハ5の各受光部6をそれぞれ色分離フィルタ2に一致
させてアライナを用いて接着固定し、第1図(c)の状
態とする。次いで、第1図(C)の二点鎖線で示すよう
に透明ガラス基板1の裏面を平面研削盤でダイヤモンド
砥石を用い少−なくとも溝1′の底部に至るまで片面研
削を行って第1図(d)に示す形状とし、透明ガラス基
板1の厚さを801Lmにする。さらに透明ガラス基板
1の研削ひずみ層約301Lmを除去するため酸化セリ
ウムを使用して片面量50pmの片面研磨を行い光学的
鏡面状態にする。この研磨で透明ガラス基板1は厚さ約
30uLmとなる。
Next, as shown in FIG. 1(b), a solid-state image sensor with a diameter of 3 inches (75IIIm) is placed on the transparent glass substrate 1 and the protective film layer 3 via an adhesive resin material 4' which becomes an adhesive resin layer 4. Each light receiving section 6 of the wafer 5 is aligned with the color separation filter 2 and fixed by adhesive using an aligner, resulting in the state shown in FIG. 1(c). Next, as shown by the two-dot chain line in FIG. 1(C), the back surface of the transparent glass substrate 1 is ground on one side using a diamond grinding wheel with a surface grinder until it reaches at least the bottom of the groove 1'. The shape shown in Figure (d) is adopted, and the thickness of the transparent glass substrate 1 is 801 Lm. Further, in order to remove approximately 301 Lm of the grinding strain layer of the transparent glass substrate 1, one side is polished to an optical mirror surface using cerium oxide to a depth of 50 pm on each side. By this polishing, the transparent glass substrate 1 has a thickness of about 30 μLm.

次いで、保護膜層3および接着樹脂層4を02プラズマ
溶剤により除去し、第1図(e)に示す形状にする。
Next, the protective film layer 3 and the adhesive resin layer 4 are removed using 02 plasma solvent to obtain the shape shown in FIG. 1(e).

その後、第1図(e)に示す二点鎖線間の斜線で示す部
分をグイシングツ−で切断加工を施して個々の固体撮像
素子7を得る。
Thereafter, the diagonally shaded portion between the two-dot chain lines shown in FIG. 1(e) is cut using a cutting tool to obtain individual solid-state image sensors 7.

第2図は第1図(&)の溝加工部分と第1図(e)の切
断加工部分を平面で示す説明図で、第1図(a)〜(e
)と同一符号は同一部分を示し、斜線部分は切断加工を
施す部分である。色分離フィルタ2は、周囲がオプティ
カルブラックと称されるクロム蒸着膜等による遮光領域
2′が形成されている。この実施例では透明ガラス基板
1に溝1′を加工するだけで、あとは研削、切断加工等
で作製できる。
Figure 2 is an explanatory diagram showing the grooved part in Figure 1(&) and the cutting part in Figure 1(e) in plan view.
) The same symbols indicate the same parts, and the shaded parts are the parts to be cut. The color separation filter 2 is surrounded by a light-shielding region 2' made of a chromium-deposited film called optical black. In this embodiment, only the grooves 1' are formed in the transparent glass substrate 1, and the rest can be manufactured by grinding, cutting, etc.

第3図(a)〜(g)はこの発明の他の実施例を示す製
造工程図である。第3図(a)において、1は例えば直
径4インチ(100!1111)、厚さ1mmの透明ガ
ラス基板である。この透明ガラス基板1の表面上にチッ
プ状の色分離フィルタ2を所定のピッチで形成し、次い
で、第3図(b)に示すように保護膜層3を形成し、さ
らに接着樹脂層4を形成し、この接着樹脂層4の上に固
体撮像素子ウェハ5の各受光部6をそれぞれ色分離フィ
ルタ2上に一致させてアライナを用いて接着固定する。
FIGS. 3(a) to 3(g) are manufacturing process diagrams showing other embodiments of the present invention. In FIG. 3(a), 1 is a transparent glass substrate having a diameter of 4 inches (100!1111) and a thickness of 1 mm, for example. Chip-shaped color separation filters 2 are formed on the surface of this transparent glass substrate 1 at a predetermined pitch, and then, as shown in FIG. 3(b), a protective film layer 3 is formed, and an adhesive resin layer 4 is further formed. The light receiving portions 6 of the solid-state image sensing device wafer 5 are aligned with the color separation filters 2 on the adhesive resin layer 4, and are bonded and fixed using an aligner.

次いで、第3図(C)に示すように透明ガラス基板1の
裏面を研削して透明ガラス基板1の厚さを70μmにし
た後、さらに片面研磨を行って20μmの厚さの光学的
鏡面に仕上げる。
Next, as shown in FIG. 3(C), the back surface of the transparent glass substrate 1 was ground to make the thickness of the transparent glass substrate 1 70 μm, and then one side was further polished to an optical mirror surface with a thickness of 20 μm. Finish.

次に、透明ガラス基板1上に感光性樹脂を塗布した後、
パターン露光と現像を行い、第3図(d)に示すように
受光部6にポンディングバット部8を形成する部分を開
口できるようにした幅の保護膜9を形成する。
Next, after coating a photosensitive resin on the transparent glass substrate 1,
Pattern exposure and development are performed to form a protective film 9 having a width such that a portion of the light receiving portion 6 where a bonding butt portion 8 will be formed can be opened as shown in FIG. 3(d).

次いで、フッ酸等により保護膜9で被覆されていない部
分の透明ガラス基板1を第3図(e)に示すようにエツ
チングする。
Next, the portion of the transparent glass substrate 1 not covered with the protective film 9 is etched using hydrofluoric acid or the like as shown in FIG. 3(e).

次いで、第3図(f)に示すように保護膜3.接着樹脂
層4を02プラズマで除去し、受光部6のポンディング
バット部8を露出させ、透明ガラス基板1上の保護膜9
をトリクレン等の溶剤により洗浄を行って除去する。
Next, as shown in FIG. 3(f), a protective film 3. The adhesive resin layer 4 is removed with 02 plasma to expose the bonding butt part 8 of the light receiving part 6, and the protective film 9 on the transparent glass substrate 1 is removed.
is removed by cleaning with a solvent such as trichlene.

次いで、第3図(g)に示すように、二点鎖線間の斜線
で示す部分を切断加工してチップ状にして固体撮像素子
7を得る。
Next, as shown in FIG. 3(g), the solid-state imaging device 7 is obtained by cutting the diagonally shaded portion between the two-dot chain lines into a chip shape.

第4図は第3図(g)の切断加工部分を平面で示す説明
図で、第2図および第3図と同一符号は同一部分を示し
、斜線部分は切断加工を施す部分である。
FIG. 4 is an explanatory plan view showing the cutting portion of FIG. 3(g), where the same reference numerals as in FIGS. 2 and 3 indicate the same portions, and the diagonally shaded portions are the portions to be cut.

このように、この発明においては、多数の色分離フィル
タを形成した透明ガラス基板1と多数の固体撮像素子を
形成した固体撮像素子ウェハ5とを接着した後、透明ガ
ラス基板を研磨するので厚さ1101L以下、フラット
ネス1μmの以下の薄板化が可能となってオンチップ状
態とほぼ同じレベルになる。
As described above, in the present invention, after bonding the transparent glass substrate 1 on which a large number of color separation filters are formed and the solid-state image sensor wafer 5 on which a large number of solid-state image sensors are formed, the transparent glass substrate is polished. It is possible to make the plate thinner to 1101L or less, with a flatness of 1 μm or less, which is almost the same level as the on-chip state.

なお、上記各実施例ではフィルタとして色分離フィルタ
2を用いた場合を示したが、この他、モノクロフィルタ
の場合にもこの発明を適用できる。また、上記各実施例
にける数値は一例であって、他の数値であってもよいこ
とはいうまでもない。
In each of the above embodiments, the color separation filter 2 is used as the filter, but the present invention can also be applied to a monochrome filter. Further, the numerical values in each of the above embodiments are merely examples, and it goes without saying that other numerical values may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、モノクロフィルタある
いは色分離フィルタを所定のピッチで形成した透明ガラ
ス基板上に保護膜層を形成し、次いで、接着樹脂層を介
して固体撮像素子ウェハの各受光部をそれぞれモノクロ
フィルタあるいは色分離フィルタに一致させて接着固定
し、次いで、透明ガラス基板を薄板化した後、切断加工
を施して固体撮像素子を得るようにしたので、接着アラ
イメントの精度が向上し、接着分布が均一化される。ま
た、平板状態で接着された後、加工や切断が行われるた
め、従来のように個々のチップでの取り扱いと異なり、
加工や洗浄処理がきわめて容易となり、ごみ、異物の混
入、付着およびホトダイオード、カラーフィルタ層に対
するダメージの発生がない。さらに平板状態での処理の
ため接着工程の能率の向上がはかれる等の利点を有する
As explained above, in the present invention, a protective film layer is formed on a transparent glass substrate on which monochrome filters or color separation filters are formed at a predetermined pitch, and then each light receiving portion of a solid-state image sensor wafer is are bonded and fixed in alignment with the monochrome filter or color separation filter, and then the transparent glass substrate is thinned and then cut to obtain a solid-state image sensor, improving the accuracy of bonding alignment. Adhesion distribution becomes uniform. In addition, since processing and cutting are performed after bonding in a flat state, unlike the conventional handling of individual chips,
Processing and cleaning are extremely easy, and there is no possibility of contamination or adhesion of dust or foreign matter, and no damage to the photodiode or color filter layer. Furthermore, since the process is carried out in a flat state, it has the advantage that the efficiency of the bonding process can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す製造工程図、第2図
は第1図の溝加工部分と切断加工部分を平面で示す製造
工程図、第3図はこの発明の他の実施例を示す製造工程
図、第4図は第3図の切断加工部分を平面で示す説明図
である。 図中、1は透明ガラス基板、1′は溝、2は色分離フィ
ルタ、3は保護膜層、4は接着樹脂層、5は固体撮像素
子ウニハ、6は受光部、7は固体撮像素子、8はポンデ
ィングバット部である。 第1図 4s層#rIII1層 第2図 第4図
Fig. 1 is a manufacturing process diagram showing one embodiment of the present invention, Fig. 2 is a manufacturing process diagram showing the groove processing portion and cutting processing portion of Fig. 1 in plan view, and Fig. 3 is another embodiment of the invention. FIG. 4 is an explanatory plan view showing the cutting portion of FIG. 3. In the figure, 1 is a transparent glass substrate, 1' is a groove, 2 is a color separation filter, 3 is a protective film layer, 4 is an adhesive resin layer, 5 is a solid-state image sensor unit, 6 is a light receiving part, 7 is a solid-state image sensor, 8 is a pounding butt part. Fig. 1 4s layer #rIII 1 layer Fig. 2 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] モノクロフィルタあるいは色分離フィルタを所定のピッ
チで形成した透明ガラス基板上に保護膜層を形成し、次
いで、接着樹脂層を介して固体撮像素子ウェハをその各
受光部をそれぞれ前記モノクロフィルタあるいは色分離
フィルタに一致させて接着固定し、次いで、前記透明ガ
ラス基板を薄板化した後、切断加工を施して固体撮像素
子を得ることを特徴とする固体撮像素子の製造方法。
A protective film layer is formed on a transparent glass substrate on which monochrome filters or color separation filters are formed at a predetermined pitch, and then each of the light-receiving parts of the solid-state image sensor wafer is attached to the solid-state image sensor wafer via an adhesive resin layer. 1. A method for manufacturing a solid-state image sensor, which comprises bonding and fixing the transparent glass substrate in alignment with a filter, and then cutting the transparent glass substrate into a thin plate to obtain a solid-state image sensor.
JP61266537A 1986-11-11 1986-11-11 Manufacturing method of solid-state image sensor Pending JPS63122167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266537A JPS63122167A (en) 1986-11-11 1986-11-11 Manufacturing method of solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266537A JPS63122167A (en) 1986-11-11 1986-11-11 Manufacturing method of solid-state image sensor

Publications (1)

Publication Number Publication Date
JPS63122167A true JPS63122167A (en) 1988-05-26

Family

ID=17432241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266537A Pending JPS63122167A (en) 1986-11-11 1986-11-11 Manufacturing method of solid-state image sensor

Country Status (1)

Country Link
JP (1) JPS63122167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476558B1 (en) * 2002-05-27 2005-03-17 삼성전기주식회사 Image sensor module and construction method
US7615397B2 (en) 2006-03-08 2009-11-10 Samsung Electronics Co., Ltd. Micro-element package and manufacturing method thereof
CN104691123A (en) * 2015-03-18 2015-06-10 苏州五方光电科技有限公司 Processing technique for blue glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476558B1 (en) * 2002-05-27 2005-03-17 삼성전기주식회사 Image sensor module and construction method
US7615397B2 (en) 2006-03-08 2009-11-10 Samsung Electronics Co., Ltd. Micro-element package and manufacturing method thereof
CN104691123A (en) * 2015-03-18 2015-06-10 苏州五方光电科技有限公司 Processing technique for blue glass

Similar Documents

Publication Publication Date Title
JP3580600B2 (en) Method for manufacturing semiconductor device, semiconductor wafer used for the same, and method for manufacturing the same
US5604362A (en) Filter architecture for a photosensitive chip
JP4064347B2 (en) Color image sensor with improved colorimetry and manufacturing method thereof
US20040166654A1 (en) Panel, liquid crystal projector, image pickup device, and digital image recognition device
JPH01202989A (en) Solid-state image pickup device
JPS63122167A (en) Manufacturing method of solid-state image sensor
JP4147187B2 (en) Manufacturing method of color image sensor on transparent substrate
JPH01270362A (en) Solid-state image sensing device and manufacture thereof
JPS6130241B2 (en)
JPS63122168A (en) Manufacture of solid-state image pickup device
CN100389082C (en) Block cutting method, cover plate, liquid crystal plate, liquid crystal projector camera device and digital image recognition device
JPS6130740B2 (en)
US6998595B2 (en) Color filter configuration for a silicon wafer to be diced into photosensitive chips
JPH0653100A (en) Semiconductor wafer and its crystal orientation detection method
JP2004177832A (en) Optical filter
JP2547194B2 (en) Method for manufacturing color solid-state imaging device
JP2650364B2 (en) SOI substrate inspection method
JPS6310584B2 (en)
JPH0379681B2 (en)
JP2508176Y2 (en) Optical filter
KR100627671B1 (en) Camera module of mobile communication terminal and manufacturing method thereof
JPH07202149A (en) Solid-state image pickup device and manufacture thereof
JPS6041873B2 (en) Manufacturing method of color solid-state image sensor plate
KR200381637Y1 (en) Mobile Phone camera module
JPS6057175B2 (en) Manufacturing method for image pickup tube face plate