JPS63121739A - Gas sensor for nox - Google Patents

Gas sensor for nox

Info

Publication number
JPS63121739A
JPS63121739A JP26673786A JP26673786A JPS63121739A JP S63121739 A JPS63121739 A JP S63121739A JP 26673786 A JP26673786 A JP 26673786A JP 26673786 A JP26673786 A JP 26673786A JP S63121739 A JPS63121739 A JP S63121739A
Authority
JP
Japan
Prior art keywords
film
nox
langmuir
gate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26673786A
Other languages
Japanese (ja)
Other versions
JPH0810200B2 (en
Inventor
Ichiro Takatsu
高津 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP61266737A priority Critical patent/JPH0810200B2/en
Publication of JPS63121739A publication Critical patent/JPS63121739A/en
Publication of JPH0810200B2 publication Critical patent/JPH0810200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a sensor for gaseous NOx which can be used at a room temp. as well by installing a Langmuir-Blodgett film for adsorbing the gaseous NOx between a gate insulating film and gate electrode of an insulated gate type FET. CONSTITUTION:The MOSFET is prepd. and the gate part is held formed with only the insulating film 1 consisting of an SiO2 film. A thin film of Si3N4 or org. high polymer is usable in place of SiO2. The Langmuir-Blodgett film is built-up on the film 1 and is rested in the flow of iodine vapor diluted by the gaseous nitrogen. This resting is executed dividedly several times for about several tens seconds until the film exhibits a prescribed resistance value to form the sensitive film 3. The gate electrode 2 is formed on the film 3. The gaseous NOx diffuses into the gate electrode 2 and is adsorbed in the sensitive film 3 when such gas sensor is rested in a gas contg. the NOx. The interfacial potential corresponding to the amt. of the gas adsorbed is generated between the insulating film 1 and the sensitive film 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、NOx用ガスセンサに関する。更に詳しくは
、NOxガス吸着性のラングミュア−ブロジェット膜を
ガス感応性物質として用いたNOx用ガスセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas sensor for NOx. More specifically, the present invention relates to a NOx gas sensor using a Langmuir-Blodgett film capable of adsorbing NOx gas as a gas-sensitive substance.

〔従来の技術〕[Conventional technology]

従来から、Noz用ガス感応性物質として、フタロシア
ニン系金属錯体が主として用いられているる。しかしな
がら、この金属錯体を感応性物質として用いた場合には
、NOxガスの吸着および脱着を促進させるために測定
温度を100〜300℃の範囲内に設定しなければなら
ず、従って高温であるため取扱いに格別の注意を必要と
するばかりではなく、高い消費電力を必要とするなどの
不利益がみられる。
Conventionally, phthalocyanine-based metal complexes have been mainly used as gas-sensitive substances for Noz. However, when this metal complex is used as a sensitive substance, the measurement temperature must be set within the range of 100 to 300°C in order to promote adsorption and desorption of NOx gas, and therefore the temperature is high. Not only does it require special care in handling, but it also has disadvantages such as high power consumption.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明者は、室温でも測定可能なNOx用ガスセ
ンサを求めて種々検討を行なった。そのために、N−ド
コシルピリジニウムおよびテトラシアノキノジメタンか
らラングミュア−ブロジェット法により形成された膜中
にヨウ素を拡散させたものが高い導電性を示し、かつ室
温でNOxガスを吸、脱着するという性質を有すること
(Proceedingsof the 2nd In
ternational Meeting on Ch
emical5ensors 7−06.1986)を
利用し、これを絶縁ゲート形FETのゲート絶縁膜とゲ
ート電極との間に設置することにより、上記課題の解決
を図った。
Therefore, the present inventor conducted various studies in search of a NOx gas sensor that can perform measurements even at room temperature. For this purpose, a film formed by diffusing iodine from N-docosylpyridinium and tetracyanoquinodimethane by the Langmuir-Blodgett method exhibits high conductivity and is capable of adsorbing and desorbing NOx gas at room temperature. (Proceedings of the 2nd In
International Meeting on Ch.
The above-mentioned problem was solved by using a 5-sensors 7-06.1986) and installing it between the gate insulating film and the gate electrode of an insulated gate type FET.

〔問題点を解決するための手段〕[Means for solving problems]

従って、本発明はNOx用ガスセンサに係り、こガスセ
ンサは、絶縁ゲート形FETのゲート絶縁膜とゲート電
極との間にNOxガス吸着性のラングミュア−プロジェ
ット膜を設置してなる このNOxガス吸着性のラングミュア−プロジェット膜
としては、N−ドコシルピリジニウム0(CH2)zt
C馬  [11 およびテトラシアノキノジメタン 淫x:X國   [■] からラングミュア−プロジェット法により形成された膜
中にヨウ素を拡散させたものが用いられる。
Therefore, the present invention relates to a NOx gas sensor, and this gas sensor has a NOx gas adsorbing property in which a NOx gas adsorbing Langmuir-Prodget film is installed between the gate insulating film and the gate electrode of an insulated gate type FET. As the Langmuir-Prodgett film, N-docosylpyridinium 0(CH2)zt
A film obtained by diffusing iodine into a film formed by the Langmuir-Prodgett method from C.[11] and tetracyanoquinodimethane x:X.[■] is used.

ラングミュア−プロジェット膜の形成は、次のようにし
て行なうことができる。上記化合物[■]および[■]
の混合溶液を、純水(導電率18mΩ・CII+)で満
たされているラングミュア−プロジェット水槽に展開し
、これを表面圧35Nm/m迄圧縮する。基質上へのラ
ングミュア−プロジェット膜の累積は、この表面圧で水
面上の膜中へ基質を垂直方向に降下させ、また引き上げ
るという操作をくり返すことにより行われる。このとき
の基質の往復速度は、降下時60cm/分、また上昇時
0 、5cm/分とし、上昇時の速度を遅らせることで
、各累積膜毎の乾燥を確実なものとさせる。このような
一連の累積工程は、室温条件下(21℃)、窒素雰囲気
中で行われ、約20〜30層の累積膜を基質上に形成さ
せる。
The Langmuir-Prodgett film can be formed as follows. The above compounds [■] and [■]
The mixed solution is developed in a Langmuir-Prodjet tank filled with pure water (conductivity: 18 mΩ·CII+), and compressed to a surface pressure of 35 Nm/m. The Langmuir-Prodgett film is accumulated on the substrate by repeatedly lowering the substrate vertically into the film above the water surface using this surface pressure and then lifting it up again. The reciprocating speed of the substrate at this time was 60 cm/min when descending and 0.5 cm/min when rising, and by slowing down the speed during rising, drying of each accumulated film was ensured. A series of such accumulation steps are performed under room temperature conditions (21° C.) in a nitrogen atmosphere to form a cumulative film of about 20-30 layers on the substrate.

このようにして形成されたラングミュア−プロジェット
膜中へのヨウ素の拡散は、後述の如く約40〜80pp
mの濃度に希釈されたヨウ素蒸気の流れの中に放置する
ことにより行われる。
The diffusion of iodine into the Langmuir-Prodgett film thus formed is approximately 40 to 80 pp as described below.
It is carried out by placing it in a stream of iodine vapor diluted to a concentration of m.

次に、図面を参照しながら、このようなNOxガス吸着
性のラングミュア−プロジェット膜を絶縁ゲート形FE
TであるMOS FETのゲート絶縁膜上に設置して構
成されるNOx用ガスガスセンサについて説明する。
Next, while referring to the drawings, we will introduce such a Langmuir-Prodgett film with NOx gas adsorption properties into an insulated gate type FE.
A NOx gas sensor configured by being installed on the gate insulating film of a MOS FET (T) will be described.

MOS FETでは、酸化膜ごしにゲート電圧を印加す
ると、ゲート電圧に応じてソース−ドレイン間を流−3
= れる電流が変化するので、この特性をガスセンサに利用
することができる。即ち、ゲート電極と酸化膜との間に
ガス感応性膜を設置し、感応性膜にNOxガスが吸着す
ると膜自身が正に帯電するのをソース−ドレイン間の電
流変化から計測し、これによってガス濃度を検出せんと
するものである。
In a MOS FET, when a gate voltage is applied through the oxide film, the current flows between the source and drain depending on the gate voltage.
= Since the current flowing through the sensor changes, this characteristic can be used in gas sensors. That is, a gas-sensitive film is installed between the gate electrode and the oxide film, and when NOx gas is adsorbed to the sensitive film, the film itself becomes positively charged, which is measured from the current change between the source and drain. The purpose is to detect gas concentration.

図面の第1図は、本発明に係るNoI用ガスセンサの基
本的な態様を示すそれの斜視図であり、通常のMOS 
FET構造において、ゲート絶縁膜lとゲート金属より
なるゲート電極2との間にNOxガス吸着性ラングミュ
ア−プロジェット膜3が設置されている。
FIG. 1 of the drawings is a perspective view showing the basic aspect of the NoI gas sensor according to the present invention, and is a typical MOS
In the FET structure, a Langmuir-Prodgett film 3 adsorbing NOx gas is provided between a gate insulating film 1 and a gate electrode 2 made of gate metal.

これの製作は、各工程で必要なマスキングを施した後、
次のようにして行われる。
To manufacture this, after applying the necessary masking in each step,
This is done as follows.

まず、従来工程によりMOS FETを製作し、この際
ゲート部はSun、膜よりなる絶縁膜1のみが形成され
た状態とする。5in2膜の形成は、シリコン基板を約
900〜1100℃に加熱された乾燥酸素または水蒸気
雰囲気に曝し、基板表面を酸化することにより行われ、
例えば1050℃に加熱された乾燥酸素中では約1“時
間の酸化処理が行われる。
First, a MOS FET is manufactured using a conventional process, with only the insulating film 1 made of Sun film being formed at the gate portion. The formation of the 5in2 film is performed by exposing the silicon substrate to a dry oxygen or water vapor atmosphere heated to about 900 to 1100°C to oxidize the substrate surface,
For example, the oxidation treatment is carried out in dry oxygen heated to 1050° C. for about 1 hour.

3in2膜でなくとも、厚さが約200〜2000人の
均質な絶縁膜であれば、Si3N4や有機高分子の薄膜
なども用いることは可能であるが、シリコン基板との密
着性、電気的親和性などといった点で、シリコン基板を
直接熱酸化して得られる酸化膜(Sin2膜)が最も安
定した絶縁膜を形成し、またそれの形成も高温で酸化雰
囲気中に曝すだけであるので非常に簡単である。
Even if it is not a 3in2 film, it is possible to use a thin film of Si3N4 or an organic polymer as long as it is a homogeneous insulating film with a thickness of about 200 to 2000, but it is difficult to adhere to the silicon substrate and have electrical affinity. In terms of properties, etc., the oxide film (Si2 film) obtained by direct thermal oxidation of a silicon substrate forms the most stable insulating film, and it is extremely difficult to form because it is simply exposed to an oxidizing atmosphere at high temperatures. It's easy.

次に、このゲート絶縁膜1上に前述の如くにラングミュ
ア−プロジェット膜を累積させ、これを窒素ガスで希釈
されたヨウ素蒸気の流れの中に放置する。この放置は、
数10秒間程度数回に分けて行われ、膜が例えば2.2
 X 10”Ω・Cmの抵抗率を示す進行われ、そこに
感応性膜3を形成させる。
Next, a Langmuir-Prodgett film is accumulated on this gate insulating film 1 as described above, and this is left in a flow of iodine vapor diluted with nitrogen gas. This neglect is
This is done several times for several tens of seconds, and the film is
A film having a resistivity of 10"Ω·Cm is formed thereon, and a sensitive film 3 is formed thereon.

その後、この感応性膜上にゲート電極2を形成させるが
、ゲート電極の形成はスパッタリング法、真空蒸着法な
どにより、約100〜500人の厚さに金、白金などの
薄膜を堆積させることにより行われる。
Thereafter, a gate electrode 2 is formed on this sensitive film, and the gate electrode is formed by depositing a thin film of gold, platinum, etc. to a thickness of about 100 to 500 mm using sputtering, vacuum evaporation, etc. It will be done.

この場合の電極厚さは、測定NOxガスが金属薄膜内を
拡散し、感応性膜に到達し易いようになるべく薄く形成
させることが好ましい。
In this case, the electrode thickness is preferably formed as thin as possible so that the measured NOx gas can diffuse within the metal thin film and easily reach the sensitive film.

ここで形成させるゲート電極は、第2図に示される如く
スリット状電極4,4′あるいは第3図に示される如く
ジグザグ状電極5であってもよい。これらの場合には、
電極パターン内の間隙部分からNOxガスが直接感応性
膜に到達するため、電極膜厚を厚くしたり、電極材料と
して廉価なアルミニウムが使用できるようになる。
The gate electrode formed here may be a slit-shaped electrode 4, 4' as shown in FIG. 2 or a zigzag-shaped electrode 5 as shown in FIG. In these cases,
Since NOx gas directly reaches the sensitive film through the gaps in the electrode pattern, it becomes possible to increase the thickness of the electrode film and to use inexpensive aluminum as the electrode material.

〔作用〕[Effect]

実際の測定に際しては、ソース6とドレイン7との間が
定電流となるようにバイアスし、そのバイアス電圧から
ゲート部8の界面電圧を直接読み取る方式が用いられる
In actual measurement, a method is used in which a bias is applied between the source 6 and the drain 7 to provide a constant current, and the interface voltage of the gate portion 8 is directly read from the bias voltage.

このガスセンサを、NOxを含むガス、例えば窒素ガス
中に放置すると、NOxガスがゲート電極を拡散して感
応性膜に吸着され、このときの吸着量に応じてゲート絶
縁膜と感応性膜との間に界面電位が発生する。
When this gas sensor is left in a gas containing NOx, such as nitrogen gas, the NOx gas diffuses through the gate electrode and is adsorbed on the sensitive film, and the amount of adsorption between the gate insulating film and the sensitive film varies depending on the amount of adsorption at this time. An interfacial potential is generated between the two.

〔発明の効果〕〔Effect of the invention〕

NOxガス濃度とこの界面電位出力との間には、室温条
件下でも比例関係のあることが確認された。
It was confirmed that there is a proportional relationship between the NOx gas concentration and this interfacial potential output even under room temperature conditions.

即ち、第1図に示される態様のガスセンサを次の条件下
で作製し、 酸化膜形成条件:乾燥酸素中1050℃、1時間ラング
ミュア−プロジェット膜=30層累積ヨウ素ガス濃度:
 60ppm ゲート電極:金、厚さ100人 測定温度21℃で測定すると、第4図のグラフに示され
るような結果が得られた。
That is, a gas sensor of the embodiment shown in FIG. 1 was produced under the following conditions: Oxide film formation conditions: 1050°C in dry oxygen for 1 hour Langmuir-Prodgett film = 30 layers Cumulative iodine gas concentration:
60 ppm Gate electrode: Gold, thickness Measured by 100 people Measured at a temperature of 21° C. The results shown in the graph of FIG. 4 were obtained.

このことから、感応性膜としてヨウ素拡散ラングミュア
−プロジェット膜を用いた本発明のガスセンサは室温に
おいてもNOxガスの吸着量が濃度依存性を示すため、
室温でも使用可能なNOxガス用センサを構成すること
が分る。
From this, the gas sensor of the present invention using an iodine-diffusing Langmuir-Progett film as a sensitive film shows that the adsorption amount of NOx gas is concentration dependent even at room temperature.
It can be seen that a NOx gas sensor that can be used even at room temperature is constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るNoz用ガスセンサの基本的な
態様の斜視図である。第2〜3図は、いずれも他の態様
の斜視図である。また、第4図は、NOxガス濃度−界
面電位出力特性を示すグラフである。 (符号の説明) 1・・・・・ゲート絶縁膜 2.4.5・・・・・ゲート電極 3・・・・・感応性膜 6・・・・・ソース 7・・・・・ドレイン 8・・・・・ゲート
FIG. 1 is a perspective view of a basic aspect of the Noz gas sensor according to the present invention. 2 and 3 are perspective views of other embodiments. Moreover, FIG. 4 is a graph showing the NOx gas concentration-interfacial potential output characteristic. (Explanation of symbols) 1... Gate insulating film 2.4.5... Gate electrode 3... Sensitive film 6... Source 7... Drain 8 ·····Gate

Claims (1)

【特許請求の範囲】 1、絶縁ゲート形FETのゲート絶縁膜とゲート電極と
の間にNOxガス吸着性のラングミュアーブロジェット
膜を設置してなるNOx用ガスセンサ。 2、絶縁ゲート形FETがMOS FETである特許請
求の範囲第1項記載のNOx用ガスセンサ。 3、NOxガス吸着性のラングミュアーブロジェット膜
がN−ドコシルピリジニウムおよびテトラシアノキノジ
メタンからラングミュアーブロジェット法により形成さ
れた膜中にヨウ素を拡散させたものである特許請求の範
囲第1項記載のNOx用ガスセンサ。
[Claims] 1. A NOx gas sensor comprising a Langmuir-Blodgett film adsorbing NOx gas between the gate insulating film and gate electrode of an insulated gate FET. 2. The NOx gas sensor according to claim 1, wherein the insulated gate FET is a MOS FET. 3. The Langmuir-Blodgett film capable of adsorbing NOx gas is formed by diffusing iodine into a film formed from N-docosylpyridinium and tetracyanoquinodimethane by the Langmuir-Blodgett method. The NOx gas sensor according to item 1.
JP61266737A 1986-11-11 1986-11-11 Gas sensor for NOx Expired - Lifetime JPH0810200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266737A JPH0810200B2 (en) 1986-11-11 1986-11-11 Gas sensor for NOx

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266737A JPH0810200B2 (en) 1986-11-11 1986-11-11 Gas sensor for NOx

Publications (2)

Publication Number Publication Date
JPS63121739A true JPS63121739A (en) 1988-05-25
JPH0810200B2 JPH0810200B2 (en) 1996-01-31

Family

ID=17434995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266737A Expired - Lifetime JPH0810200B2 (en) 1986-11-11 1986-11-11 Gas sensor for NOx

Country Status (1)

Country Link
JP (1) JPH0810200B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823585A (en) * 1981-08-04 1983-02-12 Furukawa Electric Co Ltd:The Production for metallic composite wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823585A (en) * 1981-08-04 1983-02-12 Furukawa Electric Co Ltd:The Production for metallic composite wire

Also Published As

Publication number Publication date
JPH0810200B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US5431883A (en) Detector for the detection of chemical species or photons using a field effect transistor
Barsan et al. Conduction model of metal oxide gas sensors
Law et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature
Baratto et al. A novel porous silicon sensor for detection of sub-ppm NO2 concentrations
Ho et al. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films
Srivastava et al. Sensing mechanism in tin oxide-based thick-film gas sensors
Li et al. Chemical gating of In 2 O 3 nanowires by organic and biomolecules
Gardner et al. Integrated tin oxide odour sensors
Kanungo et al. Effect of porosity on the performance of surface modified porous silicon hydrogen sensors
Zhou et al. High performance gas sensors with dual response based on organic ambipolar transistors
JP2002328109A (en) Element for detecting hydrogen gas, and method of manufacturing the same
Barillaro et al. Low-concentration NO 2 detection with an adsorption porous silicon FET
Braik et al. Development of a capacitive chemical sensor based on Co (II)-phthalocyanine acrylate-polymer/HfO 2/SiO 2/Si for detection of perchlorate
US11867657B2 (en) InGaZnO (IGZO) based system for gas detection at room temperature
JPS63121739A (en) Gas sensor for nox
Fomenko et al. The influence of technological factors on the hydrogen sensitivity of MOSFET sensors
Liangyan et al. A gas sensor fabricated with field-effect transistors and Langmuir-Blodgett film of porphyrin
Lee et al. High sensitivity of HCl gas sensor based on pentacene organic field-effect transistor
JPS6312252B2 (en)
Li et al. Amorphous boron carbon nitride as ap H sensor
Jelley et al. A dual-mechanism solid-state carbon-monoxide and hydrogen sensor utilizing an ultrathin layer of palladium
JPH0210146A (en) Humidity sensing element and its operating circuit
Li et al. Low Concentration CO Gas Sensor Based on Pulsed-Heating and Wafer-Level Fabricated MEMS Hotplate
Cretu et al. Acetone sensing properties of nanostructured copper oxide films on glass substrate
Kumar et al. Effect of RF plasma on gridded gate Pt/SiO 2/Si MOS sensor for detection of hydrogen