JPS6312153B2 - - Google Patents

Info

Publication number
JPS6312153B2
JPS6312153B2 JP9036984A JP9036984A JPS6312153B2 JP S6312153 B2 JPS6312153 B2 JP S6312153B2 JP 9036984 A JP9036984 A JP 9036984A JP 9036984 A JP9036984 A JP 9036984A JP S6312153 B2 JPS6312153 B2 JP S6312153B2
Authority
JP
Japan
Prior art keywords
tank
electrodeposition
electrode
metal
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9036984A
Other languages
Japanese (ja)
Other versions
JPS60234989A (en
Inventor
Tatsuya Uchida
Juji Shinoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9036984A priority Critical patent/JPS60234989A/en
Publication of JPS60234989A publication Critical patent/JPS60234989A/en
Publication of JPS6312153B2 publication Critical patent/JPS6312153B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は産業廃液特にメツキ工業廃液等に高濃
度に含有される銅、鉛、ニツケル、クロム等の金
属イオンを電気的に除去する電解析出槽(以下電
析槽という)に関する。 〔従来技術〕 従来、メツキ工場等から排出される廃液に含ま
れる前記金属イオンの除去装置や回収装置として
純度の高い金属粉や金属箔が回収できる電析槽が
多く用いられてきた。この方式を用いて、大量の
廃液を短時間で経済的に処理するには電極数を多
数密に配設し更に電極間キヨリを極少に抑えるこ
とが必要であり、電力効率を増加させるための電
析液の撹拌方式をも考慮した電析槽構造及び電極
板配設法に格段の工夫を必要とした。又、電析に
付随して発生する酸素、水素ガスの可燃、爆発性
ガスや廃液中に塩素イオン有機物が含まれる場合
に発生する腐食性の塩素ガス、悪臭ガスに対する
人的、機械的安全性の確保の問題も考慮しなけれ
ばならない。 撹拌方式としては、従来より電極群の下部を撹
拌翼により撹拌する方法やポンプによる液循環及
び曝気による撹拌法等があつた。最も経済的な撹
拌方式は、空気による曝気撹拌方式といわれるが
狭い電極間を気泡が上昇するため極間電圧が上昇
し電力費の増加につながる欠点があつた。また危
険で不快な発生ガス処理には、電析槽を略密閉式
としてフアン等で吸引しガス処理を行つているが
処理に用いられる機器の防爆性、耐食性に必要以
上の設備を設けなければならなかつた。 〔発明の目的〕 本発明は電析槽内液の撹拌と電極群配設の改良
を行い電力効率と安全性を高めることができる電
析槽を提供することを目的とする。 〔発明の構成〕 本発明は上端部に越流堰を備えた隔壁により槽
を底部を連通させて分画し、一槽を電析液循環用
のエアーリスト用散気管を設けた揚水槽となし、
他槽を複数の電析用電極板が越流堰に垂直かつ鉛
直に配設され、揚水された電析液が電極板間を流
下する電極群設槽となし、槽底部に析出金属の集
積部を設けたことを特徴とする金属イオン含有廃
液の電析槽に関する。 以下本発明を図面に基いて説明する。第1図は
電析槽の側面断面図であり第2図は平面図であ
る。傾斜底部をもつ電析槽1は底部を連通させて
上端部に越流堰を備えた隔壁2で分画されてい
る。分画した一槽はエアーリフト用散気管3を設
けた揚水槽4とする。エアーリフト用気体は一般
的には空気、特殊な場合には不活性ガスを用い
る。 分画した他槽には、第2図に示すように越流堰
に対し垂直にかつ鉛直に電析用電極板5a,5b
を複数配設し電極群配設槽6となす。即ち揚水槽
4で揚水された電析液は越流堰を越流し電極槽6
の電極群間を平行にかつ均等に電極槽底部に向か
つて流下した後再び隔壁2の下端の連通部から揚
水槽4へ上昇し、循環を繰り返すうちに電析によ
り金属イオンは陰極5b上に金属として析出し処
理されるものである。この時、揚水に用いられた
空気や不活性ガスは、揚水槽の水面から放出され
るため電極群間へ混入することはなく、又電析に
よる発生ガスも揚水量を増すことにより極間を上
昇するよりも流れに乗つて揚水槽へ回遊し、揚水
槽から飛散するため電極間に存在する気体は微か
となり極間電圧抵抗も最小となり電力費の低減に
つながる。エアーリフト用気体を増加すること
で、槽内循環回数が増加し電析効果ひいては電力
効率の上昇と発生ガスの放散、希釈、ガス処理装
置への圧送に有効となる。しかし循環回数の増加
は、理論的に限界があるので更に電析効果を増加
させるためには電極板間を流下する電解液に更に
強い撹拌を与えるため、電極形状を金網状、パン
チングメタル状、エキスパンダメタル状の多孔板
とするのが望ましい。一方、このことは、陰極板
5b上に析出する金属形状が箔状ではなく粒状若
しくは樹枝状となる効果をもち、循環電析液によ
り極板上から容易に剥離し沈降する。電析槽底部
には傾斜した側面を持つ析出金属集積部7が設け
られており、析出金属の濃縮、引き抜きが容易と
なる。 更に電析槽構造としては第3図の如く第1図の
電析槽を2槽組み合せかつ中央隔壁の下部を連通
して電析金属の集積部を兼用した構造や第4図の
如くエアーリフト揚水部を槽の中央部に設ける構
造にしたものが実用的である。第5図は本発明と
の比較のため用いた矩形電析槽で内部の配設電極
群は第1図と全く同様で電極群下部より電極群配
設方向に散気管が設けたものである。 以下本発明を実施例比較例に基いて説明する。 〔実施例、比較例〕 第1図と第5図の電解槽を用いて散気空気量を
同一にし、電流密度、電流濃度、電流量等電析条
件を全く同一にして表―1の硫酸銅を含むメツキ
廃液の表―2の電析条件で電析処理を行つた結果
を第6図、表―3に示す。
[Industrial Application Field] The present invention is an electrolytic deposition tank (hereinafter referred to as an electrodeposition tank) that electrically removes metal ions such as copper, lead, nickel, and chromium that are contained in high concentrations in industrial waste liquids, particularly in industrial waste liquids. related to). [Prior Art] Conventionally, electrodeposition tanks capable of recovering highly pure metal powder and metal foil have often been used as removal and recovery devices for the metal ions contained in waste liquid discharged from the Metsuki factory and the like. In order to economically process a large amount of waste liquid in a short time using this method, it is necessary to arrange a large number of electrodes closely together and to minimize the gap between the electrodes. It was necessary to make significant improvements to the structure of the electrodeposition tank and the method of arranging the electrode plates, taking into account the stirring method of the electrodeposition solution. In addition, human and mechanical safety is ensured against flammable and explosive gases such as oxygen and hydrogen gases generated during electrodeposition, and corrosive chlorine gas and foul-smelling gases generated when chlorine ion organic substances are contained in the waste liquid. We must also consider the issue of securing security. Conventional stirring methods include a method of stirring the lower part of the electrode group using a stirring blade, and a method of stirring using liquid circulation using a pump and aeration. The most economical stirring method is said to be the aeration stirring method using air, but it has the disadvantage that air bubbles rise between the narrow electrodes, which increases the voltage between the electrodes and increases electricity costs. In addition, to treat dangerous and unpleasant generated gases, the electrolytic deposition tank is used as a nearly sealed type, and the gas is sucked in using a fan, etc., but more equipment than necessary must be installed to ensure the explosion-proof and corrosion-resistant properties of the equipment used for treatment. It didn't happen. [Object of the Invention] An object of the present invention is to provide an electrodeposition tank that can improve power efficiency and safety by improving the stirring of the solution in the electrodeposition tank and the arrangement of electrode groups. [Structure of the Invention] The present invention is characterized in that the tanks are separated by communicating with each other at the bottom by a partition wall equipped with an overflow weir at the upper end, and one tank is used as a pumping tank equipped with an air list diffuser pipe for circulating the electrolyte solution. none,
The other tank is an electrode group tank in which multiple electrode plates for electrodeposition are arranged vertically and perpendicularly to an overflow weir, and the pumped electrodepositing solution flows down between the electrode plates, and the deposited metal accumulates at the bottom of the tank. The present invention relates to an electrodeposition tank for metal ion-containing waste liquid, characterized in that it is provided with a section. The present invention will be explained below based on the drawings. FIG. 1 is a side sectional view of the electrodeposition tank, and FIG. 2 is a plan view. An electrodeposition tank 1 having a sloping bottom is separated by a partition wall 2 which communicates the bottom and has an overflow weir at the upper end. One separated tank is used as a water pumping tank 4 equipped with a diffuser pipe 3 for air lift. Air lift gas is generally air, and in special cases inert gas is used. As shown in FIG.
A plurality of these are arranged to form an electrode group arrangement tank 6. That is, the electrodeposited solution pumped in the water pumping tank 4 overflows the overflow weir and reaches the electrode tank 6.
After flowing down toward the bottom of the electrode tank in parallel and evenly between the electrode groups, it rises again from the communication part at the lower end of the partition wall 2 to the pumping tank 4, and as the circulation is repeated, metal ions are deposited on the cathode 5b by electrodeposition. It is deposited as a metal and processed. At this time, the air and inert gas used for pumping water is released from the water surface of the pumping tank, so it does not mix between the electrode groups, and the gas generated by electrodeposition also increases the amount of water pumped. Rather than rising, the gas migrates to the pumping tank along with the flow and scatters from the pumping tank, so the gas existing between the electrodes is small and the interelectrode voltage resistance is minimized, leading to a reduction in power costs. By increasing the amount of gas for air lift, the number of times of circulation within the tank increases, which is effective in increasing the electrodeposition effect and power efficiency as well as dissipating, diluting, and pumping the generated gas to the gas processing equipment. However, there is a theoretical limit to increasing the number of circulations, so in order to further increase the electrodeposition effect, the electrode shape may be changed to a wire mesh shape, punched metal shape, etc. in order to give stronger agitation to the electrolyte flowing between the electrode plates. It is preferable to use a perforated plate in the form of expander metal. On the other hand, this has the effect that the shape of the metal deposited on the cathode plate 5b is not foil-like but granular or dendritic, and is easily peeled off from the electrode plate and sedimented by the circulating electrodeposition solution. A precipitated metal accumulating section 7 having an inclined side surface is provided at the bottom of the electrodeposition tank, making it easy to concentrate and draw out the deposited metal. Furthermore, as for the electrodeposition tank structure, as shown in Fig. 3, two of the electrodeposition tanks shown in Fig. 1 are combined and the lower part of the central partition wall is connected to serve as an accumulation part for the deposited metal, or as shown in Fig. 4, an air lift is used. A structure in which the pumping part is provided in the center of the tank is practical. Figure 5 shows a rectangular electrodeposition tank used for comparison with the present invention, and the electrode group arranged inside is exactly the same as in Figure 1, with an aeration pipe provided from the bottom of the electrode group in the direction in which the electrode group is arranged. . The present invention will be explained below based on Examples and Comparative Examples. [Example, Comparative Example] Using the electrolytic cells shown in Figures 1 and 5, the amount of aeration air is the same, and the electrodeposition conditions such as current density, current concentration, and amount of current are completely the same, and the sulfuric acid shown in Table 1 is used. Figure 6 and Table 3 show the results of electrodeposition treatment of plating waste liquid containing copper under the electrodeposition conditions shown in Table 2.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明では、電析槽の一部を
揚水槽一部を電極群配設槽としたことにより撹拌
のための電極群下部からの直接散気方式を避ける
ことが出来、また、電極群を越流堰に垂直かつ鉛
直に配設したので連続的にエアリフトで揚水され
た電析液は、均等に、幾度となく、電極板間を流
下、循環するので電極板と金属イオンの接触も十
分とれるので極めて大きな電力効率が得られる。
また発生する種々のガスの希釈、放散、圧送もエ
アーリフトで用いられる空気、不活性ガスで成し
得る。また電極も多孔性電極とすることにより、
電極間を流下、循環する電析液の撹拌効果が更に
強まり大幅な電力効率上昇が図れた。
As described above, in the present invention, by using a part of the electrodeposition tank as a pumping tank and a part as an electrode group arrangement tank, it is possible to avoid the direct aeration method from the bottom of the electrode group for stirring, and Since the electrode group is arranged perpendicularly and vertically to the overflow weir, the electrodeposited solution continuously pumped up by air lift flows down and circulates between the electrode plates evenly many times, so that the electrode plates and metal ions are Since sufficient contact can be made between the two, extremely high power efficiency can be obtained.
Dilution, dissipation, and pressure delivery of the various gases generated can also be accomplished using air or inert gas used in air lifts. In addition, by making the electrode a porous electrode,
The stirring effect of the electrolyte solution flowing down and circulating between the electrodes was further strengthened, resulting in a significant increase in power efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図は本発明の電析槽の断面図及び
平面図、第3図及び第4図は応用例の断面図、第
5図は本発明の比較例の断面図である。第6図は
本発明の実施例、比較例の処理結果を示すグラフ
である。 符号の説明、1…電析槽、2…隔壁、3…エア
ーリフト用散気管、4…揚水槽、5a…電析用陽
極板群、5b…電析用陰極抜群、6…電極群配設
槽、7…電析金属集積部、8…電析金属、9…循
環電析液水流、10…気泡。
1 and 2 are a cross-sectional view and a plan view of an electrodeposition bath according to the present invention, FIGS. 3 and 4 are cross-sectional views of applied examples, and FIG. 5 is a cross-sectional view of a comparative example of the present invention. FIG. 6 is a graph showing the processing results of an example of the present invention and a comparative example. Explanation of symbols, 1... Electrodeposition tank, 2... Partition wall, 3... Air lift diffuser, 4... Water pumping tank, 5a... Anode plate group for electrodeposition, 5b... Excellent cathode for electrodeposition, 6... Electrode group arrangement Tank, 7... Electrodeposited metal accumulating section, 8... Electrodeposited metal, 9... Circulating electrodeposition solution water flow, 10... Air bubbles.

Claims (1)

【特許請求の範囲】 1 上端部に越流堰を備えた隔壁により槽を底部
を連通させて分画し、一槽を電析液循環用のエア
ーリフト用散気管を設けた揚水槽となし、他槽を
複数の電析用電極板が越流堰に垂直かつ鉛直に配
設され、揚水された電析液が電極板間を流下する
電極群配設槽となし、槽底部に析出金属の集積部
を設けたことを特徴とする金属イオン含有廃液の
電析槽。 2 電析用電極板が多孔板であることを特徴とす
る金属イオン含有廃液の電析槽。
[Scope of Claims] 1. A partition wall equipped with an overflow weir at the upper end allows the tanks to be separated by communicating with each other at the bottom, and one tank is used as a water pumping tank equipped with an air lift diffuser pipe for circulating the electrolyte solution. The other tank is an electrode group arrangement tank in which multiple electrode plates for electrodeposition are arranged vertically and perpendicularly to the overflow weir, and the pumped electrodeposition solution flows down between the electrode plates, and the deposited metal is deposited at the bottom of the tank. An electrodeposition tank for metal ion-containing waste liquid, characterized in that it is provided with a collection section. 2. An electrodeposition tank for metal ion-containing waste liquid, characterized in that the electrode plate for electrodeposition is a porous plate.
JP9036984A 1984-05-07 1984-05-07 Electrodeposition cell of waste liquid containing metallic ion Granted JPS60234989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9036984A JPS60234989A (en) 1984-05-07 1984-05-07 Electrodeposition cell of waste liquid containing metallic ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9036984A JPS60234989A (en) 1984-05-07 1984-05-07 Electrodeposition cell of waste liquid containing metallic ion

Publications (2)

Publication Number Publication Date
JPS60234989A JPS60234989A (en) 1985-11-21
JPS6312153B2 true JPS6312153B2 (en) 1988-03-17

Family

ID=13996636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9036984A Granted JPS60234989A (en) 1984-05-07 1984-05-07 Electrodeposition cell of waste liquid containing metallic ion

Country Status (1)

Country Link
JP (1) JPS60234989A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932529B2 (en) * 2007-02-21 2012-05-16 三菱重工環境・化学エンジニアリング株式会社 Water treatment method

Also Published As

Publication number Publication date
JPS60234989A (en) 1985-11-21

Similar Documents

Publication Publication Date Title
US3977951A (en) Electrolytic cells and process for treating dilute waste solutions
JPS63137191A (en) Electrolytic cell for electrolytic precipitation of metal
US11976378B2 (en) Device and method for preventing copper plating of conductor roll
US4129494A (en) Electrolytic cell for electrowinning of metals
CA1140495A (en) Apparatus for the electrolytic recovery of metal
US6899803B2 (en) Method and device for the regulation of the concentration of metal ions in an electrolyte and use thereof
CN201534880U (en) Device for electrolyzing and recycling copper from low-concentration waste liquid with copper generated from microetching and pickling
US3915834A (en) Electrowinning cell having an anode with no more than one-half the active surface area of the cathode
JPS6312153B2 (en)
US4687565A (en) Electrolytic cell for producing periodates
US3751351A (en) Electrolytic cell for recovering metal from a solution containing ions thereof,and method for operating same
CN210657161U (en) Electrolysis recovery device
JP2012071232A (en) Etching liquid electrolysis regenerative apparatus
US5720867A (en) Process for the electrochemical recovery of the metals copper, zinc, lead, nickel or cobalt
CN212102131U (en) Electrolytic tank for treating waste sulfuric acid
CN112301376A (en) Metal purification device and method for producing 7N pure copper through secondary purification
US4597842A (en) Metal recovery process
US3806434A (en) Apparatus and method for electrolytic recovery of metals
RU2763699C1 (en) Electrolyzer for the extraction of metal from solution
EP0281531A1 (en) Method for electrolyzing zinc and apparatus therefor
CN217556342U (en) External metal ion electrolysis supplementary device
CN210506544U (en) Ionic membrane electrolysis equipment
CN217438303U (en) Circulation regeneration system
WO2013182755A1 (en) Bubble collector guide and use thereof
CN215251235U (en) Electrolytic gold extraction machine