JPS63121409A - Gas insulated switchgear - Google Patents

Gas insulated switchgear

Info

Publication number
JPS63121409A
JPS63121409A JP61268091A JP26809186A JPS63121409A JP S63121409 A JPS63121409 A JP S63121409A JP 61268091 A JP61268091 A JP 61268091A JP 26809186 A JP26809186 A JP 26809186A JP S63121409 A JPS63121409 A JP S63121409A
Authority
JP
Japan
Prior art keywords
conductor
reciprocating
mof
insulating spacer
insulated switchgear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61268091A
Other languages
Japanese (ja)
Inventor
江口 正博
寺田 健次
脇田 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61268091A priority Critical patent/JPS63121409A/en
Publication of JPS63121409A publication Critical patent/JPS63121409A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は一般需要家の特高受変電設備fこ使用される
ガス絶縁開閉装置(以下GISという)の計器用変成器
(以下MOFという)接続用母線の配置構成に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to instrument transformers (hereinafter referred to as MOF) of gas insulated switchgear (hereinafter referred to as GIS) used in extra-high power receiving and substation equipment of general consumers. This relates to the arrangement and configuration of connection busbars.

〔従来の技術〕[Conventional technology]

第5図、第7図は例えば三菱電機技報(vog 52−
NO12,p 924.図7.1978)に示された従
来のガス°絶縁開閉装置(GIS)における特高受変電
設備の配置構成図であり、[気回路構成は第5図中に示
す。
Figures 5 and 7 are, for example, from Mitsubishi Electric Technical Report (vog 52-
NO12, p 924. Fig. 7 is a layout configuration diagram of extra-high power receiving and substation equipment in the conventional gas insulated switchgear (GIS) shown in 1978), and the air circuit configuration is shown in Fig. 5.

@5図、第7図において、(1)は電源引込部、(2)
は計器用変成器(MOF)の電源側母線、(3)はMO
F本体、(4)はMOF負荷側母線、(5)は主変圧器
、(7)はMOF接続部であり、図に示すようにMOF
本体(3)との接続母線は、 MOFの電源側母線(2
)とMOF’の負荷側母線(4)と夫々別個の母線で構
成されている。
@ In Figures 5 and 7, (1) is the power supply lead-in part, (2)
is the power supply side bus of the instrument transformer (MOF), (3) is the MOF
F main body, (4) is the MOF load side bus, (5) is the main transformer, (7) is the MOF connection part, and as shown in the figure, the MOF
The busbar connected to the main body (3) is the power supply side busbar (2) of the MOF.
) and the load side busbar (4) of MOF', and are each composed of separate busbars.

次に動作について説明する。MOF部の電気回路として
は、113図に示すようをこ三相交流回路における二重
力計法により計測する形態で、変圧器相が三相と変流器
相が二相からなり、電源側の導体と負荷側の導体とはほ
り同電位である。第3図において、U、W相の電流通路
は夫々MOFの電源側母線12)よりMOF本体(3)
の電源側端子(以下に側端子という)に入りMOF内の
又流器を通り同相の負荷側端子(以ドL側端子という)
を出て、 MOFの負荷側母線(4)へと流れる。
Next, the operation will be explained. The electrical circuit of the MOF section is as shown in Figure 113, and is measured using the double force meter method in a three-phase AC circuit, consisting of three transformer phases and two current transformer phases. The conductor and the conductor on the load side are at the same potential. In Figure 3, the U and W phase current paths are connected from the MOF power supply side bus 12) to the MOF main body (3).
It enters the power supply side terminal (hereinafter referred to as the side terminal) and passes through the MOF and the load side terminal of the same phase (hereinafter referred to as the L side terminal).
and flows to the load-side bus (4) of the MOF.

尚MOF本体(3)のに側端子とL側端子の電位は。Furthermore, the potentials of the side terminal and L side terminal of the MOF body (3) are as follows.

はゾ同電位である。is the isopotential.

また、V相は変圧6相としてのみ使用されているので、
を流通路はMOF本体(3)内を通らず、 MOFの電
源側母線(2)からMOFの負荷側母線(4)・\直流
流れており、第3図に示ずようこり、W相と組合せて、
 MOF内変圧器相・\接続されている。以上のように
MOF本体との接続を構成した従来のGISでの配置構
成は、第5図、第7図となっている。
Also, since the V phase is only used as a 6-phase transformer,
The flow path does not pass through the MOF main body (3), but direct current flows from the MOF power supply side bus (2) to the MOF load side bus (4). In combination,
The transformer phase within the MOF is connected. The arrangement of a conventional GIS configured to connect to the MOF main body as described above is shown in FIGS. 5 and 7.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のGISは以上のように構成されているので、MO
Fの電源側母線(2]とMOFの負荷側母線(4)が、
夫々別個に必要であり、またGIS設置スペースの増大
、製造価喝の上昇などの問題があった。
Since conventional GIS is configured as above, MO
The power supply side bus (2) of F and the load side bus (4) of MOF are
Each of these is required separately, and there are also problems such as an increase in the GIS installation space and an increase in manufacturing costs.

この発明は上記のような問題点を解消するためになされ
たもので、同相の電源側導体と負荷側導体を円筒形とし
、同軸上の外側と内側にほゞ同心位置に配置した往復導
体で構成することで、MOF電源側母縄と負荷側母線を
一体化した往復母線としより縮小されたGIS構成とし
、安価で信頼性の高い受変電設備を得ることを目的とす
る。
This invention was made in order to solve the above-mentioned problems.The power supply side conductor and load side conductor of the same phase are cylindrical, and reciprocating conductors are arranged almost concentrically on the outside and inside on the same axis. By configuring this, the MOF power supply side bus line and the load side bus line are integrated into a reciprocating bus bar and a more compact GIS configuration, and the purpose is to obtain inexpensive and highly reliable power receiving and transforming equipment.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るGISは、MOFとの接続母線でMOF
の電源側母線とMOF’の負荷側母線とを往復量11を
用いて一体化したものである。
The GIS according to this invention has a connection bus line with the MOF.
The power supply side bus of MOF' and the load side bus of MOF' are integrated using a reciprocating amount of 11.

〔作用〕[Effect]

この発明におけるGISは%MOF(1)電源側母線と
負荷側母線とを一体化した往復母線で接続する構成とす
ることにより、母線管路の容器の胴径を小さくすること
ができ、また容器の数を縮減することができる。
The GIS in this invention has a configuration in which the power supply side bus bar and the load side bus bar are connected by an integrated reciprocating bus bar, thereby making it possible to reduce the body diameter of the container of the bus line conduit. The number of can be reduced.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の実施例1こついて説明する。Igl(イ
)図において、 (la)は電源引込点側導体、 (5
a)は変圧器側(負荷側)導体、(8a)と(8b)は
往復導体の外側導体、(8c)と(8d)は往復導体の
内側導体。
Embodiment 1 of the present invention will be described below. In the Igl (a) diagram, (la) is the power supply inlet point side conductor, (5
a) is the transformer side (load side) conductor, (8a) and (8b) are the outer conductors of the reciprocating conductor, and (8c) and (8d) are the inner conductors of the reciprocating conductor.

(8e)と(8f)は外側導体と内側導体の絶縁を行な
う絶縁体、 (8g)は取付ネジ又は取付ボルトで内側
導体(8e) ’&絶縁体(ア)を介して外側導体(8
b)側に取付は固定している。(8h)は気密性を保つ
ためのパツキン、(9)は絶縁スペーサで、゛IE流相
溝相導体a)を有し、該(9a) It介して往復導体
(8)と接続固定される構造となっている。αqは封入
された絶縁ガス。
(8e) and (8f) are insulators that insulate the outer conductor and inner conductor.
The installation is fixed on the b) side. (8h) is a gasket for maintaining airtightness, and (9) is an insulating spacer, which has an IE phase groove phase conductor a) and is connected and fixed to the reciprocating conductor (8) via the (9a) It. It has a structure. αq is the sealed insulating gas.

(ロ)は上記絶縁ガス、各導体及び絶縁スペーサ等を収
納する容器である。@は気密保持用のパツキン。
(b) is a container for storing the above-mentioned insulating gas, each conductor, insulating spacer, etc. @ is a seal for airtightness.

a3は取付ボルトである。a3 is a mounting bolt.

第1(ロ)図はINNイ)図のA−A部の断面図である
FIG. 1(B) is a sectional view taken along the line A-A in FIG. 1(B) of the INN.

また、!4図、@6図は往復導体(8)を使用した往復
母線(6)で構成した場合のGIS配置構成を示す。
Also,! Figures 4 and 6 show the GIS arrangement in the case of a reciprocating busbar (6) using a reciprocating conductor (8).

図に8いて、C1】は電源引込部、(6)は往復量a[
+73はMOF接続部、(3)はMOF本体、(4)は
MOF負荷側母線、(5)は変圧器である。
In the figure, C1] is the power supply lead-in part, and (6) is the reciprocating amount a[
+73 is the MOF connection part, (3) is the MOF main body, (4) is the MOF load side bus bar, and (5) is the transformer.

尚、往復量R(6)は前述の往復導体(8)、絶縁スペ
ーサ(9)、絶縁ガスαQ、容器CI等により構成され
ており、絶縁スペーサ(9)は@8(イ)図に示すよう
に、中心憂こ穴のあいた電流相用導体(9a)が2個と
゛硫正相用導体(9b) 1個とを、絶縁スペーサ(9
)の注型時に同時注型し、また取付穴(9C)とパツキ
ン溝(9d)が設けである。往復導体(8)の接続状態
は第1(イ)図に示す通り、絶縁スペーサ(9)の電流
相用導体(9a)へ外部導体(8b)を取付け、さらに
内側導体(8C)は絶縁体(8e)により外側導体(8
b)と絶縁して、取付である。また、ガス区分時には、
パツキン(8h)を設置する。また、第1(イ)図には
あられしてないが。
The reciprocating amount R (6) is composed of the reciprocating conductor (8), the insulating spacer (9), the insulating gas αQ, the container CI, etc. The insulating spacer (9) is shown in Figure @8 (A). As shown, two current phase conductors (9a) with a hole in the center and one sulfur positive phase conductor (9b) are connected with an insulating spacer (9).
) is cast at the same time, and a mounting hole (9C) and a packing groove (9d) are provided. As shown in Figure 1 (A), the connection state of the reciprocating conductor (8) is that the outer conductor (8b) is attached to the current phase conductor (9a) of the insulating spacer (9), and the inner conductor (8C) is an insulator. (8e) makes the outer conductor (8
b) Insulated and installed. Also, when classifying gas,
Install Patsukin (8h). Also, there is no hail in Figure 1 (a).

電圧和は電圧和用導体(9b)に電圧相導体をボルトで
直接取付けである。
For voltage summation, the voltage phase conductor is directly attached to the voltage summation conductor (9b) with bolts.

次に動作について説明する。MOFの電気回路としては
、第2図に示す通り従来品と同一である。
Next, the operation will be explained. The electric circuit of the MOF is the same as the conventional product as shown in FIG.

MOFの電流相に2いてに側端子とL側端子は、従来技
術の動作説明の通り同電位であり、MOFの電源側量R
(2)とMOFの負荷側量R(4)は@2図中(6)の
往復母線で構成し配置しである。@1(イ)図に往復量
# (6)の構造の一部断面を示す。図に3いて電流通
路は、を源引込側導体(1a)より往復導体(8)の外
側導体(8a)、絶縁スペーサ(9)に取付けられた外
側導体(8b)を経て電流相用導体(9a) 、MOF
本体(3)のに側端子・\、またL側端子より出た電流
は絶縁スペーサ(9)の内側lこ配置した内側導体(&
)を通り往復導体(8)の内側導体(8d)、変圧器側
導体(5a)へ通じる。(図中矢印〔→〕Eこより図示
しである。)■相は変圧器相のみとして使用されて2す
、@l(イ)図に示してないが単一導体となっている。
The terminal on the second side and the terminal on the L side in the current phase of the MOF are at the same potential as explained in the operation of the conventional technology, and the amount R on the power supply side of the MOF is
(2) and the load side amount R (4) of the MOF are configured and arranged by the reciprocating busbar (6) in the @2 figure. @1 (A) Figure shows a partial cross section of the structure with reciprocating amount # (6). In Figure 3, the current path is from the source lead-in side conductor (1a) through the outer conductor (8a) of the reciprocating conductor (8), the outer conductor (8b) attached to the insulating spacer (9), and then the current phase conductor ( 9a), MOF
The current coming out from the side terminal of the main body (3) and the L side terminal is connected to the inner conductor (&) placed inside the insulating spacer (9).
) to the inner conductor (8d) of the reciprocating conductor (8) and the transformer side conductor (5a). (It is shown from the arrow [→] E in the figure.) Phase 2 is used only as a transformer phase, and phase 2 is a single conductor, although it is not shown in the figure.

そして往復導体(8)と共に容器(6)に5本の導体を
収納しである。
The five conductors are housed in the container (6) together with the reciprocating conductor (8).

また、@1イ)図に示す絶縁スペーサ(9)は、往復導
体(8)が接続可能な構造になっており、 MOF点検
時間短縮等のためガス区分用として、または単に導体の
絶縁支持用として設置することもできる。
In addition, the insulating spacer (9) shown in Figure 1a) has a structure that allows the reciprocating conductor (8) to be connected to it, and can be used for gas separation to shorten MOF inspection time, or simply to support the insulation of the conductor. It can also be installed as

以上のような往復母線(6)を用いて配置構成した実施
例を第4図と第6図fこ示す。
An embodiment in which the reciprocating busbar (6) as described above is used is shown in FIGS. 4 and 6f.

尚、絶縁スペーサ(9)をガス区分用として使用する場
合の絶縁スペーサ(9)の電流相用導体部(9a)の構
造は@t(イ)図に示す通り、パツキン(8h) (ご
てシールすることにより気密性を保持する。
In addition, when the insulating spacer (9) is used for gas division, the structure of the current phase conductor part (9a) of the insulating spacer (9) is as shown in figure @t (a). Maintain airtightness by sealing.

なお、上記実施例では電源引込側導体(1a)を。In addition, in the above embodiment, the power supply lead-in side conductor (1a).

外側導体(8a) 、 (8b)に、変圧器側(負荷側
)導体(5a)を内側導体(8c) 、 (8d)の内
側導体に接続するように構成したが、逆の接続でも同様
の効果を奏する。また絶縁スペーサ(9)は、保守点検
の考え方や配置構成によって、任意に設置できるもので
あり、絶縁スペーサ(9)の設置数fこよる往復導体(
8)8使用した場合の効果の差異はない。
The outer conductors (8a) and (8b) are configured so that the transformer side (load side) conductor (5a) is connected to the inner conductor of the inner conductors (8c) and (8d), but the same thing can be done with the reverse connection. be effective. In addition, the insulating spacer (9) can be installed arbitrarily depending on the concept of maintenance and inspection and the arrangement configuration.
8) There is no difference in effectiveness when using 8.

また、@8(イ)図では絶縁スペーサ(9)を小判形形
状とし、三相−括としたスペーサの一実施例の形状を示
す。第8(ロ)図と@8(ハ)図は、@8図(イ)図の
夫々B−B断面図、C−C断面図である。第8図におい
て、(9)は絶縁スペーサ、(9a)は電流相用導体、
 (9b)は電圧和用導体、(9c)はボルトの取付穴
Further, in the diagram @8 (a), the insulating spacer (9) has an oval shape and shows the shape of an embodiment of the spacer having three phases. 8(b) and 8(c) are a sectional view taken along line B-B and a sectional view taken along line C-C of FIG. 8(a), respectively. In Fig. 8, (9) is an insulating spacer, (9a) is a current phase conductor,
(9b) is the voltage summation conductor, and (9c) is the bolt mounting hole.

(9d)はパツキン溝である。(9d) is a packing groove.

尚、′IE流相円相用導体a)が2個、電圧和用導体(
9b)が1@あれば、絶縁スペーサの形状に関係なく上
記実施例と同様の効果を奏する。尚、電流相用導体(9
a)を1個使用した場合も、効果は若干小さくなるが、
同様な効果が得られる。従って@1f−(1図の容器(
ロ)の断面形状は、小判形1円形、四角形などの形状で
あってもよい。
In addition, there are two 'IE flow phase circular phase conductors a), and a voltage sum conductor (
If 9b) is 1@, the same effect as in the above embodiment can be achieved regardless of the shape of the insulating spacer. In addition, the current phase conductor (9
Even if one a) is used, the effect will be slightly smaller, but
A similar effect can be obtained. Therefore @1f-(container in figure 1 (
The cross-sectional shape of (b) may be an oval shape, a circular shape, a quadrangular shape, or the like.

また、絶縁スペーサ(9)における電流相用導体(9a
)および電圧和用導体(9b)において夫々の対応する
導体との接続は、第1(イ)図の実施例fこ示すようE
こ(8a)と(8b)の間で着脱可能な形状にしてもよ
いし、または直接ボルトなどで固着接続してもよいし、
また導体を直接溶接した接続方法をとってもよい。
In addition, the current phase conductor (9a) in the insulating spacer (9)
) and the voltage summation conductor (9b) with their respective corresponding conductors, as shown in Example f of FIG. 1(A).
These (8a) and (8b) may be connected in a removable shape, or may be connected directly with bolts, etc.
Alternatively, a connection method may be used in which the conductor is directly welded.

第1(イ)図の実施例憂こ示すような着脱可能な形状に
してお(と組立、解体作業が容易になり作業性が向上す
るという効果が得られる。
The embodiment shown in FIG. 1 (a) is designed to be removable (as shown in FIG. 1(a)), which makes assembly and disassembly work easier and improves workability.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればMOF接続導体の構成
をMOFの電源側母線とMOFの負荷側母線とを往復導
体で構成し、同一容器内lこ5本の導体を収納した往復
母線としたので、 MOFとの接続母線が半減し、装置
が安価にでき、より小形化されたGISが得られる効果
がある。
As described above, according to the present invention, the configuration of the MOF connection conductor is such that the power supply side bus of the MOF and the load side bus of the MOF are composed of reciprocating conductors, and the reciprocating bus bar has five conductors housed in the same container. As a result, the number of busbars connected to the MOF is halved, the device can be made cheaper, and a more compact GIS can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

Iglfイ)図はこの発明の一実施例1こよる往復母線
の一部断面図、第1(ロ)図は第1(イ)図のA−A部
の断面図、第2図はこの発明の一実施例によるMOF部
の電気回路図、第3図は従来のMOF部の電気回路図、
第4図、第6図はこの発明の一実施例擾こよるGISの
配置構成図、@5図、第7図は従来のGIsの配置構成
図、@8(イ)図はこの発明の一実施例による絶縁スペ
ーサの平面図、@8(ロ)図と@8(ハ)図は第8(イ
)図の夫々B−B部、C−C部の断面図である。 図Eこおいて、(6ンは往復母線、(8)は往復導体、
(9)は絶縁スペーサ、0℃は容器である。 なお、各図中同一符号は同一、または相当部分を示す。
Iglf A) Figure is a partial sectional view of a reciprocating bus bar according to Embodiment 1 of this invention, Figure 1 (B) is a sectional view of the A-A section of Figure 1 (A), and Figure 2 is a cross-sectional view of the reciprocating bus bar according to Embodiment 1 of the present invention. FIG. 3 is an electrical circuit diagram of a MOF section according to an embodiment of the present invention, and FIG. 3 is an electrical circuit diagram of a conventional MOF section.
Figures 4 and 6 are layout diagrams of a GIS according to an embodiment of the present invention, Figures 5 and 7 are layout diagrams of conventional GIs, and Figure 8 (A) is a layout diagram of a GIS according to the present invention. The plan view of the insulating spacer according to the embodiment, Figure @8 (B) and Figure @8 (C) are cross-sectional views taken along the lines BB and CC in Figure 8 (A), respectively. In Figure E, (6) is a reciprocating busbar, (8) is a reciprocating conductor,
(9) is an insulating spacer, and 0°C is a container. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)計器用変成器を設置するガス絶縁開閉装置の計器
用変成器接続部と遮断器、断路器、接地開閉器等で構成
された部分との間を接続する母線に、同相の円筒形導体
を外側と内側にほゞ同心に配置して構成する往復導体を
有する往復母線を使用して、該往復母線を容器内に収納
して構成したことを特徴とする絶縁開閉装置。
(1) In the gas-insulated switchgear in which the instrument transformer is installed, a cylindrical shape of the same phase is attached to the busbar that connects the instrument transformer connecting part and the part consisting of the circuit breaker, disconnector, earthing switch, etc. An insulated switchgear characterized in that it uses a reciprocating busbar having a reciprocating conductor with conductors arranged substantially concentrically on the outside and inside, and the reciprocating busbar is housed in a container.
(2)前記往復母線の途中に、導体の支持やガス区分の
目的で設置する絶縁スペーサの同時注型された導体部ま
たは絶縁スペーサと別につくられて該絶縁スペーサに組
み込まれた導体部を通じて上記往復導体を接続可能にし
た絶縁スペーサを設置したことを特徴とする特許請求範
囲第1項記載のガス絶縁開閉装置。
(2) The conductor portion of the insulating spacer installed in the middle of the reciprocating bus bar for the purpose of supporting the conductor and gas division, or the conductor portion manufactured separately from the insulating spacer and incorporated into the insulating spacer, The gas insulated switchgear according to claim 1, characterized in that an insulating spacer is installed to which a reciprocating conductor can be connected.
JP61268091A 1986-11-11 1986-11-11 Gas insulated switchgear Pending JPS63121409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61268091A JPS63121409A (en) 1986-11-11 1986-11-11 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61268091A JPS63121409A (en) 1986-11-11 1986-11-11 Gas insulated switchgear

Publications (1)

Publication Number Publication Date
JPS63121409A true JPS63121409A (en) 1988-05-25

Family

ID=17453763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61268091A Pending JPS63121409A (en) 1986-11-11 1986-11-11 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JPS63121409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180163A (en) * 2014-03-19 2015-10-08 株式会社東光高岳 Gas insulation opening/closing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180163A (en) * 2014-03-19 2015-10-08 株式会社東光高岳 Gas insulation opening/closing device

Similar Documents

Publication Publication Date Title
KR20100017368A (en) High-voltage switchgear
DE3564062D1 (en) Gas-insulated three-phase encapsulated switching installation
US4769740A (en) Pressurized gas-insulated three-phase encapsulated high-voltage circuit breaker
JPS63121409A (en) Gas insulated switchgear
KR20030076180A (en) Gas insulation switch
JPH0578245B2 (en)
JPS5915445B2 (en) gas insulated switchgear
JPH05219615A (en) Gas insulated switchgear
KR820000681B1 (en) High voltage on-off device having insulating gas
JPH02266806A (en) Compressed-gas-insulated switchgear
JPS60213208A (en) Gas insulated switching device
KR200271011Y1 (en) structure for one body type each unit of gas insulated switchgear
JPS6243411B2 (en)
JPS60213205A (en) Gas insulated switching device
JPS60261311A (en) 3-phase simultaneous gas insulated switching device
JPH0564004B2 (en)
JPH0564523B2 (en)
JPH0458704A (en) Gas insulation switchgear
JPS61121707A (en) Gas insulated switchgear for communicating bus
JPS6198104A (en) Gas insulated switchgear
JPH0382303A (en) Gas-insulated switchgear
JP2002186157A (en) Gas-insulated switchgear
JPH03265407A (en) Gas-insulated switchgear
JPH01248911A (en) Power receiving substation facility
JPS61112507A (en) Gas insulated switchgear