JPS63121321A - High efficiency encoding system - Google Patents

High efficiency encoding system

Info

Publication number
JPS63121321A
JPS63121321A JP61267339A JP26733986A JPS63121321A JP S63121321 A JPS63121321 A JP S63121321A JP 61267339 A JP61267339 A JP 61267339A JP 26733986 A JP26733986 A JP 26733986A JP S63121321 A JPS63121321 A JP S63121321A
Authority
JP
Japan
Prior art keywords
variable
sample
circuit
length code
quantized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61267339A
Other languages
Japanese (ja)
Inventor
Atsushi Koike
淳 小池
Yoichi Kato
洋一 加藤
Riku Ota
太田 陸
Kiichi Matsuda
松田 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
NEC Corp
Nippon Telegraph and Telephone Corp
KDDI Corp
Original Assignee
Fujitsu Ltd
Kokusai Denshin Denwa KK
NEC Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Kokusai Denshin Denwa KK, NEC Corp, Nippon Telegraph and Telephone Corp filed Critical Fujitsu Ltd
Priority to JP61267339A priority Critical patent/JPS63121321A/en
Priority to CA000551379A priority patent/CA1296430C/en
Priority to EP87116590A priority patent/EP0267578B1/en
Priority to DE8787116590T priority patent/DE3785911T2/en
Priority to US07/118,923 priority patent/US4908862A/en
Publication of JPS63121321A publication Critical patent/JPS63121321A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To adapt the distribution characteristic for variable-length encoding characteristic of a coefficient value and to prevent the decrease of compression effect of information quantity caused by unadaptation by switching plural variable-length code set and making a quantized coefficient variable-length encoded. CONSTITUTION:A quantization circuit 2 quantizes an orthogonal formation coefficient of a signal obtained by dividing an input picture into specified blocks. A sample reading circuit 4 sequentially outputs the synchronizing signals synchronizing signal generation circuit 3 for reading samples and the quantized conversion coefficient according to reading order. A variable-length encoding circuit 5 connected to the circuit 4 selects the variable length code corresponding to the quantized coefficient value from the specified variable-length code set and outputs it to a signal output terminal 8. The specification of the selection in terms of variable-length encoding is switched synchroneously with the switching of a variable-length code set storage circuit 7 by a variable-length code switching circuit 6, with a variable-length code set specification circuit 9 which actuates with the synchronizing signal of the circuit 3.

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は、音声や画像信号を効率良く符号化する高能率
符号化方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical field to which the invention pertains) The present invention relates to a high-efficiency encoding method for efficiently encoding audio and image signals.

(従来の技術) 以下では画像信号の符号化を例にとり説明する。(Conventional technology) In the following, encoding of an image signal will be explained as an example.

画像信号の高能率符号化法として、画像を複数個のサン
プルから成る小ブロックに区切り、その各小ブロックに
対して離散コサイン変換等の直交変換を施し、得られた
直交変換係数を量子化し、その量子化された変換係数を
低次の変換係数から始まり順次高次の変換係数に至る1
次元信号に並び換えて、その1次元信号を順次可変長符
号化し、ある係数以後の全ての係数が零であるときはそ
れらの係数に対して可変長符号を与える代りにその係数
以後の全ての係数が零であることを示す符号(ブロック
終了符号)を与え、前記可変長符号とブロック終了符号
を多重化して伝送する直交変換画像符号化方式が知られ
ている。画像信号を直交変換した直交変換係数は、低次
係数と高次係数では統計的な性質が異なり、高次成分は
ど信号電力が小さくなるという性質がある。このため、
高次成分はど量子化値が零になる確率が高くなる。従来
の方式ではこの性質を利用し、零に量子化される高次成
分係数をブロック終了符号という形でまとめて符号化す
ることにより、情報量圧縮効果が得られている。
As a highly efficient encoding method for image signals, the image is divided into small blocks consisting of multiple samples, each of the small blocks is subjected to orthogonal transformation such as discrete cosine transformation, and the obtained orthogonal transformation coefficients are quantized. The quantized transform coefficients are 1
The one-dimensional signal is rearranged into dimensional signals, and the one-dimensional signal is sequentially variable-length coded. When all coefficients after a certain coefficient are zero, instead of giving variable-length codes to those coefficients, all coefficients after that coefficient are An orthogonal transform image coding method is known in which a code indicating that a coefficient is zero (block end code) is given, and the variable length code and block end code are multiplexed and transmitted. The orthogonal transform coefficients obtained by orthogonally transforming an image signal have different statistical properties between low-order coefficients and high-order coefficients, and the high-order components have a property that the signal power becomes smaller. For this reason,
For higher-order components, the probability that the quantized value becomes zero increases. Conventional methods utilize this property to collectively encode high-order component coefficients that are quantized to zero in the form of a block end code, thereby achieving an information compression effect.

(発明が解決しようとする問題点) しかし以上述べた従来技術においては、単一の可変長符
号セラ1−をプロ・ツク終了符号より以前の係数全てに
使用するため、画像の直交変換係数の低域成分と高域成
分では係数値の分布が異なることに起因して、可変長符
号セラ)・の特性が量子化された係数値の分布に適合せ
ず、高い符号化効率が得られないという欠点があった。
(Problem to be Solved by the Invention) However, in the prior art described above, a single variable length code cell 1- is used for all coefficients before the program end code. Due to the difference in coefficient value distribution between low-frequency and high-frequency components, the characteristics of the variable-length code (Cera) do not match the quantized coefficient value distribution, making it impossible to obtain high coding efficiency. There was a drawback.

また、ブロック終了符号を用いる方式では、ブロック終
了符号の直前の量子化値は決して零にはならないので、
この係数の量子化値分布は、この係数より低次の係数の
量子化値分布とはかなり異なっている。このため、単一
の可変長符号セットを、異なる分布を持つ係数量子化値
の符号化に対して使用することによる符号化効率の減少
があった。
In addition, in the method using the block end code, the quantized value immediately before the block end code never becomes zero, so
The quantization value distribution of this coefficient is quite different from the quantization value distribution of coefficients of lower order than this coefficient. Therefore, there was a reduction in coding efficiency due to the use of a single variable length code set for coding coefficient quantization values with different distributions.

本発明は係数値の分布特性と可変長符号化特性の不適合
によって生ずる情報量圧縮効果の減少を解決し、高い情
報量圧縮効果を得る符号化方式を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problem of a decrease in the information compression effect caused by the mismatch between the distribution characteristics of coefficient values and the variable length encoding characteristics, and to provide an encoding method that achieves a high information compression effect.

(発明の構成) 本発明は、係数値の分布特性と可変長符号化特性を適合
させるために、複数の可変長符号セットを切り替えて、
量子化された係数を可変長符号化することを最も主要な
特徴とする。可変長符号化される係数値の分布特性に適
合するように、複数の可変長符号セットを用いているこ
とが従来の技術とは異なる。
(Structure of the Invention) The present invention switches a plurality of variable-length code sets in order to match coefficient value distribution characteristics and variable-length encoding characteristics.
The most important feature is variable length encoding of quantized coefficients. This method differs from conventional techniques in that a plurality of variable length code sets are used to match the distribution characteristics of coefficient values to be variable length coded.

(発明の実施I@) 実施例1 第1図は、本発明を画像の2次元直交変換符号化方式に
適用した実施例を示す図であって、1は入力信号端子、
2は量子化回路、3は標本読みだし用同期信号発生回路
、4は標本読みだし回路、5は可変長符号化回路、6は
可変長符号化セット切り換え回路、7は可変長符号セッ
ト記憶回路、8は信号出力端子、9は可変長符号セット
指定回路である。
(Implementation of the Invention I@) Example 1 FIG. 1 is a diagram showing an example in which the present invention is applied to a two-dimensional orthogonal transform encoding method for images, in which 1 is an input signal terminal;
2 is a quantization circuit, 3 is a synchronization signal generation circuit for sample readout, 4 is a sample readout circuit, 5 is a variable length encoding circuit, 6 is a variable length encoding set switching circuit, and 7 is a variable length code set storage circuit. , 8 is a signal output terminal, and 9 is a variable length code set designation circuit.

入力画像を、4X4.8X8.16X 16等のブロッ
クに分割した信号の直交変換係数が入力端子1から入力
され、ff1r化回路2によって量子化される。標本読
みだし回路4は、標本読みだし用同期信号発生回路3か
らの同期信号と、第2図に示されている読みだし順序に
したがって、量子化された直交変換係数値を順次出力す
る。第3図は、可変長符号セラI〜を変換係数毎に指定
するためのテーブルの例で、変換係数に対応する可変長
符号セットの番号を示している。可変長符号セット指定
回路は、第3図のようなテーブルに従い、係数毎に可変
長符号セット番号を、可変長符号セット切り換え回路6
に出力する。可変長符号化回路5は、量子化された係数
値に対応する可変長符号を指定の可変長符号セットから
選択し、それを信号出力端子8へ出力する。
Orthogonal transform coefficients of a signal obtained by dividing an input image into blocks such as 4×4.8×8.16×16 are inputted from an input terminal 1 and quantized by an ff1r conversion circuit 2. The sample reading circuit 4 sequentially outputs quantized orthogonal transform coefficient values in accordance with the synchronizing signal from the sample reading synchronizing signal generating circuit 3 and the reading order shown in FIG. FIG. 3 is an example of a table for specifying a variable length code cell I~ for each transform coefficient, and shows the number of the variable length code set corresponding to the transform coefficient. The variable length code set designation circuit assigns a variable length code set number for each coefficient according to the table shown in FIG.
Output to. The variable length encoding circuit 5 selects a variable length code corresponding to the quantized coefficient value from the specified variable length code set and outputs it to the signal output terminal 8.

本実施例は、画像の直交変換係数が低次成分と高次成分
では、その量子化値分布が異なることに着目し、本発明
により符号化効率の改善を図った例である。本実施例の
構造では、それぞれの直交変換係数の量子化値分布に適
きした可変長符号セットを用いることが出来るので、効
率の良い符号化が可能となる。その効果として、同じ品
質の再生画像を得る場合でも、従来の方法に比べて少な
い情報量で済むという改善があった。
This embodiment focuses on the fact that the quantization value distributions of low-order components and high-order components of orthogonal transform coefficients of an image are different, and is an example in which encoding efficiency is improved by the present invention. In the structure of this embodiment, a variable length code set suitable for the quantization value distribution of each orthogonal transform coefficient can be used, so efficient encoding is possible. As a result, even when obtaining a reproduced image of the same quality, the method requires less information than the conventional method.

実施例2 第4図は、本願特許請求の範囲第(3)項記載の方式を
画像の2次元直交変換符号化方式に適用した場合の実施
例を示す図であって、101は信号入力端子、 102
は量子化回路、104は標本読みだし回路、105は可
変長符号化回路、109は最終非零量子化係数検出回路
、107は可変長符号セラ1〜記憶回路、106は可変
長符号セット切り換え回路、105は可変長符号化回路
、11Oはブロック終了符号発生回路、111は、信号
多重化回路、ID8は信号出力端子である。
Embodiment 2 FIG. 4 is a diagram showing an embodiment in which the method described in claim (3) of the present application is applied to a two-dimensional orthogonal transform encoding method for images, and 101 is a signal input terminal. , 102
104 is a quantization circuit, 104 is a sample reading circuit, 105 is a variable length encoding circuit, 109 is a final non-zero quantization coefficient detection circuit, 107 is a variable length code cell 1 to storage circuit, 106 is a variable length code set switching circuit , 105 is a variable length encoding circuit, 11O is a block end code generation circuit, 111 is a signal multiplexing circuit, and ID8 is a signal output terminal.

量子化回路102、標本読みだし回路104は実施例1
と同様である。最終非零量子化係数検出回路!09は、
標本読みだし回路104により1次元化された直交変換
係数の量子化値を監視することにより、どの係数以後の
全ての係数の量子化値が零であるかを検出し、その係数
の直前の係数の位置を、最終非零量子化係数位置として
出力する。可変長符号セット切り換え回路106は、通
常は、可変長符号セット1を選択するが、最終非零量子
化係数を可変長符号化するときは、可変長符号セラ1−
2を選択する。可変長符号化回路105は、量子化され
た係数を、可変長符号セット切り換え回路”106によ
って選択された可変長符号セットを用いて、可変長符号
化する。ブロック終了符号発生回路110は、最終非零
量子化係数の直後に、以後の量子化値は全て零であるこ
とを示すブロック最終符号を発生する。多重化回路11
1は、可変長符号と、ブロック終了符号を多重化して信
号出力端子108へ出力する。ここで、可変長符号セッ
ト1と可変長符号セット2に含まれる可変長符号の2値
パターンの組は等しく、量子化値と2値パターンの対応
関係のみが異なる。本符号を復号するときは、通常は可
変長符号セット1に基づいて可変長符号から量子化値を
再生するが、ブロック終了符号を検出したときは、その
直前に再生された量子化値を取消し、可変長符号セット
2に基づいてブロック終了符号の直前の量子化値を再生
し直す。
The quantization circuit 102 and the sample reading circuit 104 are of the first embodiment.
It is similar to Final non-zero quantization coefficient detection circuit! 09 is
By monitoring the quantized values of the one-dimensional orthogonal transform coefficients by the sample reading circuit 104, it is possible to detect which coefficient the quantized values of all coefficients after which are zero, and to detect the coefficients immediately before that coefficient. The position of is output as the final non-zero quantized coefficient position. The variable length code set switching circuit 106 normally selects the variable length code set 1, but when variable length coding the final non-zero quantized coefficient, the variable length code set switching circuit 106 selects the variable length code set 1-1.
Select 2. The variable length encoding circuit 105 performs variable length encoding on the quantized coefficients using the variable length code set selected by the variable length code set switching circuit 106. The block end code generation circuit 110 encodes the final Immediately after the non-zero quantized coefficient, a block final code indicating that all subsequent quantized values are zero is generated. Multiplexing circuit 11
1 multiplexes the variable length code and the block end code and outputs the multiplexed code to the signal output terminal 108. Here, the sets of binary patterns of variable length codes included in variable length code set 1 and variable length code set 2 are the same, and only the correspondence between quantized values and binary patterns differs. When decoding this code, normally the quantized value is reproduced from the variable length code based on variable length code set 1, but when a block end code is detected, the quantized value reproduced immediately before is canceled. , regenerate the quantized value immediately before the block end code based on variable length code set 2.

本実施例は、画像信号ブロックの直交変換係数の量子化
値分布が、最終非零量子化係数と、それ以前の量子化係
数値では異なることに着目し、本発明により符号化効率
の改善を図った例である。
This embodiment focuses on the fact that the quantization value distribution of orthogonal transform coefficients of an image signal block is different between the final non-zero quantization coefficient and the previous quantization coefficient values, and uses the present invention to improve coding efficiency. This is an example.

本実施例の構造では、最終非零量子化係数に対する可変
長符号セラ1−として、最終非零係数より前の量子化係
数に対する可変長符号セットとは異なる特性を持つもの
を使用することができるので、それぞれの量子化値分布
に適合した2つの可変長符号セットを切り換えることに
より、符号化効率が向上する。その効果として、同じ品
質の再生画像を得る場合でも、従来の方法に比べて少な
い情?4afflで済むという改善があった。
In the structure of this embodiment, it is possible to use a variable length code set for the final non-zero quantized coefficient that has different characteristics from the variable length code set for the quantized coefficients before the final non-zero coefficient. Therefore, by switching between two variable-length code sets that match the respective quantization value distributions, coding efficiency is improved. The effect is that even when obtaining a reproduced image of the same quality, there is less information compared to the conventional method. There was an improvement in that only 4affl was required.

(発明の効果) 以上説明したように、複数の可変長符号セットを可変長
符号化される量子化値の分布に適合するように切り換え
ることにより、符号化効率が向上するという利点がある
。その効果として、同じ品質の再生画像を得る場合でも
、従来の方法に比べて少ない悄ll1i量で済むという
改善がある。
(Effects of the Invention) As described above, there is an advantage that encoding efficiency is improved by switching a plurality of variable-length code sets to match the distribution of quantized values to be variable-length encoded. As a result, there is an improvement in that even if a reproduced image of the same quality is obtained, a smaller amount of data is required compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明である複数の可変長符号を適応的に切
り換える機能を備えた画像の直交変換符号化方式を説明
する図、第2図は、第1の実施例の標本読みだし回路の
直交変換係数読みだし順を示す図、第3図は、第1の実
施例の可変長符号化に使用する可変長符号化セットを直
交変換係数毎に切り換えるための可変長符号セット番号
を指定するためのテーブルを示す図、第4図は、本発明
の他の実施例を示す図である。 図において、 2.102・・・量子化回路、 3・・・標本読みだし用同期信号発生回路、4.104
・・・標本読みだし回路、 5、105・・・可変長符号化回路、 6.106・・・可変長符号セット切り換え回路、7.
107・・・可変長符号セット記憶回路、9・・・可変
長符号セット指定回路、 109・・・最終非零量子化係数検出回路、+10・・
・ブロック終了符号発生回路、をそれぞれ示す。 変換係数次数(垂直)
FIG. 1 is a diagram illustrating an image orthogonal transform encoding system having a function of adaptively switching between multiple variable-length codes according to the present invention, and FIG. 2 is a sample reading circuit of the first embodiment. Figure 3 shows the orthogonal transform coefficient reading order of the first embodiment. FIG. 4 is a diagram showing another embodiment of the present invention. In the figure, 2.102...Quantization circuit, 3...Synchronization signal generation circuit for sample reading, 4.104
. . . sample reading circuit, 5, 105 . . . variable length encoding circuit, 6.106 . . . variable length code set switching circuit, 7.
107...Variable length code set storage circuit, 9...Variable length code set designation circuit, 109...Final non-zero quantization coefficient detection circuit, +10...
・The block end code generation circuit is shown. Conversion coefficient order (vertical)

Claims (4)

【特許請求の範囲】[Claims] (1)離散化された各種信号の複数個の標本から構成さ
れるブロック中の全ての或いは一部の標本を量子化する
手段と、前記量子化された標本値を可変長符号化するた
めの、量子化値と可変長符号の対応関係を示す可変長符
号セットを、標本値毎、或いは、複数の標本値毎に切り
換える手段と、前記切り換えられた可変長符号セットを
用いて前記量子化された標本値を可変長符号化する手段
と、を有することを特徴とする高能率符号化方式。
(1) Means for quantizing all or some samples in a block composed of a plurality of samples of various types of discretized signals, and means for variable length encoding the quantized sample values. , means for switching a variable length code set indicating a correspondence relationship between a quantized value and a variable length code for each sample value or for each plurality of sample values; 1. A high-efficiency encoding method, comprising: means for variable-length encoding the sampled values.
(2)前記高能率符号化方式において、量子化された標
本値を順次走査する手段と、前記走査により読み出され
る量子化された標本値が、ある標本以後ブロックの最終
の標本まで全てある特定の値であるとき、どの標本以後
が、全て前記特定の値であるかを検出する手段と、前記
検出された標本以後ブロックの最終の量子化された標本
まで、前記特定の値に量子化されたことを示すブロック
終了符号を発生する手段と、を有することを特徴とする
特許請求の範囲第(1)項記載の高能率符号化方式。
(2) In the high-efficiency encoding method, the quantized sample values are sequentially scanned, and the quantized sample values read out by the scanning are all performed in a certain specific manner from a certain sample to the final sample of the block. means for detecting which sample after which all the samples are the specific value, and a means for detecting which sample after the detected sample is quantized to the specific value until the final quantized sample of the block. A high-efficiency encoding system according to claim 1, further comprising means for generating a block end code indicating that the block has ended.
(3)前記ブロック終了符号の直前の標本である最終非
零標本の量子化値を可変長符号化する可変長符号化セッ
トを、最終非零標本以外の標本の量子化値を可変長符号
化する可変長符号セットとは異なる可変長符号セットに
切り替える手段を有することを特徴とする特許請求の範
囲第(2)項記載の高能率符号化方式。
(3) Variable-length coding set that variable-length encodes the quantized value of the final non-zero sample, which is the sample immediately before the block end code, and variable-length encoded the quantized value of the sample other than the final non-zero sample. The high-efficiency encoding system according to claim (2), further comprising means for switching to a variable-length code set different from the variable-length code set used in the present invention.
(4)前記最終非零標本以外の標本に対する可変長符号
セットの可変長符号の2値パターンを変更せず、前記2
値パターンと量子化値の対応関係のみを変更することに
よって構成した可変長符号セットを、前記最終非零標本
の量子化値の可変長符号化に用いることを特徴とする特
許請求の範囲第(3)項記載の高能率符号化方式。
(4) without changing the binary pattern of the variable length code of the variable length code set for samples other than the final non-zero sample;
Claim 1, characterized in that a variable length code set configured by changing only the correspondence between the value pattern and the quantized value is used for variable length encoding of the quantized value of the final non-zero sample. High-efficiency encoding method described in section 3).
JP61267339A 1986-11-10 1986-11-10 High efficiency encoding system Pending JPS63121321A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61267339A JPS63121321A (en) 1986-11-10 1986-11-10 High efficiency encoding system
CA000551379A CA1296430C (en) 1986-11-10 1987-11-09 Encoding system capable of accomplishing a high efficiency by anterior and/or posterior processing to quantization
EP87116590A EP0267578B1 (en) 1986-11-10 1987-11-10 Encoding system capable of accomplishing a high efficiency by anterior and/or posterior processing to quantization
DE8787116590T DE3785911T2 (en) 1986-11-10 1987-11-10 HIGH PERFORMANCE CODING SYSTEM THANKS TO QUANTIZATION PRE-AND / OR FOLLOWING PROCESSING.
US07/118,923 US4908862A (en) 1986-11-10 1987-11-10 Encoding system capable of accomplishing a high efficiency by anterior and/or posterior processing to quantization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61267339A JPS63121321A (en) 1986-11-10 1986-11-10 High efficiency encoding system

Publications (1)

Publication Number Publication Date
JPS63121321A true JPS63121321A (en) 1988-05-25

Family

ID=17443446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61267339A Pending JPS63121321A (en) 1986-11-10 1986-11-10 High efficiency encoding system

Country Status (1)

Country Link
JP (1) JPS63121321A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228457A (en) * 1983-06-09 1984-12-21 Fuji Photo Film Co Ltd Method and apparatus for compressing radiant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228457A (en) * 1983-06-09 1984-12-21 Fuji Photo Film Co Ltd Method and apparatus for compressing radiant

Similar Documents

Publication Publication Date Title
JP3135061B2 (en) Image decoding method
JP3369422B2 (en) Data decoding method and apparatus
US5510785A (en) Method of coding a digital signal, method of generating a coding table, coding apparatus and coding method
JP3237096B2 (en) Adaptive zone coder
US5583657A (en) Method and apparatus for scanning image data
US6912318B2 (en) Method and system for compressing motion image information
JPH04343577A (en) Data compressor and data restorer
JP3292221B2 (en) Image compression coding method
JPH0522715A (en) Picture encoder
KR940009117B1 (en) Method and apparatus for recovery of image data
JP3624450B2 (en) Image data encoding method and image data encoding apparatus
JPS63121321A (en) High efficiency encoding system
KR100460947B1 (en) Device for processing image signal and method thereof
KR0134324B1 (en) Variable length method of data compression
KR100293369B1 (en) Digital video compression coding and decoding system using shape adaptive selection and thereof method
KR0134358B1 (en) Coding and decoding system of variable scan method
JPH0669812A (en) Information compression-encoding device and information expansion-decoding device
KR0134359B1 (en) Coding and decoding system of variable scan region
KR940008582B1 (en) Encoding and decoding circuit
JP3238444B2 (en) Image coding system and image decoding system
KR100189875B1 (en) Huffman coder/decoder
JPS62193382A (en) System and device for encoding and decoding picture signal
JPH03285460A (en) Picture data compressing and encoding system
JPH03124124A (en) Inter-frame/in-frame adaptive coding system
JPH08340450A (en) Compression and reproduction processing method for pixel data group