JPS6312086B2 - - Google Patents

Info

Publication number
JPS6312086B2
JPS6312086B2 JP53072436A JP7243678A JPS6312086B2 JP S6312086 B2 JPS6312086 B2 JP S6312086B2 JP 53072436 A JP53072436 A JP 53072436A JP 7243678 A JP7243678 A JP 7243678A JP S6312086 B2 JPS6312086 B2 JP S6312086B2
Authority
JP
Japan
Prior art keywords
olefin
propylene
polymerization
copolymer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53072436A
Other languages
Japanese (ja)
Other versions
JPS54162785A (en
Inventor
Akinobu Shiga
Noryoshi Matsuyama
Masahiro Kakugo
Yukio Naito
Akira Fuse
Masaharu Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7243678A priority Critical patent/JPS54162785A/en
Priority to DE2923754A priority patent/DE2923754C3/en
Priority to BR7903705A priority patent/BR7903705A/en
Priority to IT49388/79A priority patent/IT1193760B/en
Priority to CA000329679A priority patent/CA1198355A/en
Priority to BE0/195712A priority patent/BE876947A/en
Priority to GB7920608A priority patent/GB2027720B/en
Priority to NL7904659A priority patent/NL190783C/en
Priority to FR7915301A priority patent/FR2428651B1/en
Publication of JPS54162785A publication Critical patent/JPS54162785A/en
Priority to GB08137613A priority patent/GB2105651B/en
Priority to SG567/83A priority patent/SG56783G/en
Priority to CA000469444A priority patent/CA1215198A/en
Publication of JPS6312086B2 publication Critical patent/JPS6312086B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明はα―オレフイン含有率が高くても、非
晶性ポリマーの少ない改良された結晶性プロピレ
ン―α―オレフイン共重合体の製造方法に関する
ものである。この改良プロピレン―α―オレフイ
ン共重合体は透明性良好であり、ヒートシール性
の改良されたフイルムに適している。 高結晶性ポリプロピレンの二軸延伸フイルムは
透明性、剛性等においてすぐれた包装材料である
が、ヒートシール性に乏しいためそのままでは自
動包装機にかけることができない。すなわち延伸
したポリプロピレンフイルムは通常ヒートシール
温度が延伸温度以上であるため、ヒートシール時
の熱により未延伸の状態に戻ろうとして収縮が起
り、外観を損うと共にシール強度の低下を生じ
る。またポリプロピレンフイルムはポリエチレン
フイルムなどに比べ融点が高く、製袋時に高いヒ
ートシール温度が要求され、シールスピードを高
速化することができない。 そこで、プロピレンと少量のエチレン、ブテン
―1等の結晶性α―オレフイン共重合体がポリプ
ロピレンより低温ヒートシール性であるので、こ
れらの欠点を補うためポリプロピレンフイルムに
積層して利用することが広く行なわれている。そ
してこれら共重合体のα―オレフイン含有率が高
いほどヒートシール温度が低下し、複合フイルム
の製袋速度を上げることができて経済的に有利で
ある。 しかし、α―オレフインを多く共重合させよう
とすると、その含有率が高いほど副産物として低
分子量、非晶性共重合体ポリマーが多量に生成す
るようなる。一般に結晶性ポリオレフインの製造
において目的とする結晶性オレフイン共重合体に
対する、これらの無価値な低分子量、非晶性共重
合体ポリマーの比率が増加すると原料であるオレ
フインの損失を招くだけでなく、生産上種々の問
題点が生ずる。たとえば不活性溶媒中での重合で
製造する場合、あるいは実質的に溶媒を含まない
液相モノマー中での重合で製造する場合は、懸濁
物の分散状態ないし流動特性が不良となり、粘度
上昇、熱伝達速度の低下をきたすなどの支障とな
り、また生成ポリマーの嵩比重が小さくなつて分
散状態が悪化する。時には重合槽から重合物を抜
き出すことが不能となることもある。また気相で
重合する場合にも重合槽への非晶性ポリマーの付
着による伝熱低下、さらにパウダーの粘着性が増
加するため、パウダーの流動が不十分になつたり
撹拌動力が増大する等の問題が発生する。 そしてこれらα―オレフイン含有率の高いプロ
ピレン共重合体をフイルムにした場合、20℃のキ
シレンに可溶な非晶性ポリマー(以下冷キシレン
可溶部と略す。)をかなり多量に含むために、ブ
ロツキングが大きくなり、かつまたこれらのフイ
ルム表面へのブリード白化により透明性が悪くな
るなどの不都合なことが生じてくる。 従つて、従来プロピレン―エチレン共重合体で
は6〜7モル%までのエチレン含有率の共重合体
が製造されているにすぎない。またプロピレン―
ブテン―1などのα―オレフイン共重合体でも非
晶性ポリマーの少ないα―オレフイン高含有率の
ものはこれまで製造されていない。 発明者らは種々研究の結果、α―オレフイン含
有率の高い結晶性プロピレン―α―オレフイン共
重合体の製造において、無価値な非晶性ポリマー
が少なく、かつパウダーの嵩比重が大きく、流動
性良好な結晶性プロピレン―α―オレフイン共重
合体パウダーを工業的に有利に製造し得る方法を
発明した。 従つて本発明によりブロツキング、透明性良好
で従来予想だにしなかつた低温ヒートシール性良
好なフイルムを得ることができ、先に記した問題
を克服することができ経済的にはるかに有利とな
る。 すなわち、本発明は四塩化チタンを有機アルミ
ニウム化合物で還元し、さらに活性化した三塩化
チタン組成物と一般式 R2AlX(Rは炭化水素
基、Xはハロゲン)の有機アルミニウム化合物と
からなる触媒系を使用し、前もつて三塩化チタン
の単位重量あたり0.01から50重量部のプロピレン
を重合させたのち、炭素数4〜10個のα―オレフ
インとプロピレンを供給し、重合温度をT=−1/
60・C2−3/2・C+85(Tは℃で表わした温度、
Cは共重合体中のα―オレフインのモル%)以下
で重合することを特徴とするα―オレフインの含
有率が8〜25モル%である結晶性プロピレン―α
―オレフイン共重合体の製造方法である。 本発明の製造方法によると、α―オレフインの
含有率が8〜25モル%であつても驚くべきことに
非晶性ポリマーが少なく、かつ低融点であるた
め、フイルムのほかブロー成形品やシートにも好
適であり、耐衝撃性で、透明性等にもすぐれてい
る。 本発明において触媒として使用されるチタン化
合物は、四塩化チタンを有機アルミニウム化合物
で還元して得られた三塩化チタンを活性化された
チタン化合物製造のための出発原料として使用
し、錯化剤処理、有機アルミニウム化合物処理、
または四塩化チタンあるいはその組み合わせによ
り高活性化した触媒を使用することを特徴とす
る。 この触媒は単に還元して得られた三塩化チタン
を熱処理等の公知の方法(たとえば特公昭39−
20501号公報に記載の方法)で得られたものに比
べ活性が高く、立体選択性も高いものである。 さらに詳しくは例えば特開昭50−74595、特願
昭51−108276に記載の方法で得られた固体触媒が
使用可能である。 また本発明の実施に際しては特開昭47−34478
に記載の方法、すなわちβ型三塩化チタンをエー
テル等の錯化剤処理後四塩化チタンで処理するこ
とにより得られた高活性触媒もまた本方法には十
分使用可能である。 本発明が必須とする触媒以外のもの、たとえば
現在市販されているような四塩化チタンを金属ア
ルミニウムで還元し粉砕により活性化処理したも
の(たとえば東邦チタニウム社製、三塩化チタン
AA)、また四塩化チタンを有機アルミニウム化
合物で還元し、熱処理した従来公知の触媒を使用
したものでは不十分で使用不可能である。 これらの触媒を使用した場合には、α―オレフ
イン高含有率共重合体ではパウダーの嵩比重が小
さくなり、非晶性ポリマー生成量が増えるか、ま
たはパウダー状とはなり得ず、ブロツク状または
ゲル状のポリマーが生成し工業的には製造困難で
ある。 次に使用できる有機アルミニウム化合物は一般
式R2AlX(Rは炭化水素基、Xはハロゲン)で表
わされるモノハライドであることが必要である。 本発明の触媒系は上記の活性化したチタン化合
物と有機アルミニウム化合物を含むものである
が、さらにアミン、エーテル、エステル、イオ
ウ、ハロゲン、ベンゼン、アズレンの誘導体、有
機および無機の窒素、りんなどの化合物のような
公知の第三成分を含んでいてもよい。 以上の触媒系を使用することが必須であるが、
その次にこれらの触媒系をプロピレンで前処理し
ておく必要がある。プロピレン重合触媒系の前処
理自体が既に公知であつてたとえば特公昭44−
4992に記載されている。 すなわち、プロピレンとα―オレフインの共重
合を開始するにあたつて使用する触媒系を、触媒
系中の三塩化チタンに対し0.01〜50重量部のプロ
ピレンを重合したものを重合触媒とすることであ
る。この触媒の前処理は触媒を反応器へ投入する
前に別の槽で行なつても良いし、重合を回分式で
行なう場合は重合を開始する前に、重合を行なう
同一の反応器で行ないそれから一定比率のプロピ
レンとα―オレフインを供給し重合しても良い。 この触媒の前処理を欠くと不活性溶媒、または
液相モノマー中へ非晶性共重合体が溶出し、パウ
ダーどうしが固まつてブロツク状になるか、また
はゲル状となり事実上生産が不可能となる。 以上の触媒系、触媒の前処理と並んで重合温度
が重要であつて、次式 T=−1/60C2−3/2C+85 (Tは℃で表わした温度、Cは共重合体中のα
オレフインのモル%)で規定される温度以下でな
ければならない。 式で示される重合温度以上であると、パウダ
ー性状が極度に悪化し、ブロツク状又はゲル状と
なり生産不可能となる。 しかしながら、式で示される温度以下で重合
すると、α―オレフインが高含有率であつてもパ
ウダー性状が良く、かつポリマー中の冷キシレン
可溶部の少ない高品位のプロピレン―α―オレフ
イン共重合体を製造し得る。 一般に非晶性ポリマーを減少させるためには、
重合温度を相当低目の温度で行なえば良いことは
知られている。しかし触媒当り、時間当りの生産
性が犠性になるため高含有率のα―オレフイン共
重合体では工業的に製造することは困難であつ
た。ところが、前述の触媒系を使用し、さらに触
媒の前処理を施すと式で示される温度以下で重
合する場合のみα―オレフイン高含有率、すなわ
ち8〜25モル%の結晶性プロピレン―α―オレフ
イン共重合体を工業的に有利に、かつ生産上支障
なく高品質のものを製造し得る。 α―オレフイン含有率が8〜25モル%のもの
を、以上のように生産できることはこれまで非常
に予想され難いことであり、これは驚くべきこと
である。 式で示される温度以下の重合温度は我々が見
い出した実験値である。 プロピレンと共重合させるα―オレフインは、
炭素数4から10個の炭化水素で具体例を挙げれば
ブテン―1、ペンテン―1、ヘキセン―1,4―
メチルペンテン―1、オクテン―1、デセン―1
等である。α―オレフインは単体と限定されるべ
きものではなく、これら2種以上の混合体であつ
ても良いが、これらα―オレフインの中でブテン
―1は非晶性共重合体が少なく特に望ましい。 本発明において炭素数4〜10個のα―オレフイ
ンの代りにエチレンを使用すると、非晶性共重合
体が多く生成するため粉ポリマー収率が低下する
だけでなく粉ポリマー中の非晶性共重合体が著し
く増大する。そのためこの結晶性プロピレン―エ
チレン共重合体をフイルムにするとヒートシール
温度は低くてもブロツキングが極めて大きく、ま
たフイルム表面への非晶性共重合体のブリード白
化による透明性の経済的低下がはなはだしい等商
品価値のないものしか得られない。本発明におけ
るように炭素数4〜10個のα―オレフインをコモ
ノマーとして使用して始めてヒートシール温度が
十分低く、かつブロツキング等も良好なフイルム
が得られるのであつて、これは真に驚くべきこと
である。 なお、本発明において、α―オレフインの代り
にエチレンを使用することはできないが、プロピ
レン、α―オレフインに少量のエチレンを加えて
重合させることは可能である。この場合、プロピ
レンの含有率を一定にしてもエチレンの含有率が
多くなるほどブロツキング等前述の品質が悪化す
るので、自ずから加えてもよいエチレンの含有率
には上限があり、7モル%以下にしなければなら
ない。 α―オレフインの含有率が8モル%より少ない
結晶性プロピレン―α―オレフイン共重合体は本
発明の製造方法によらなくても従来公知の方法で
製造可能である。一方、α―オレフインの含有率
が25モル%を越す結晶性プロピレン―α―オレフ
イン共重合体は本発明の方法をもつてしても工業
的には製造不可能である。 以上述べた触媒系、触媒系の前処理、式で表
わされる温度以下の重合温度で行なうことが、α
―オレフイン含有率8〜25モル%の非晶性共重合
体の少ない結晶性プロピレン共重合体の製造条件
である。これら三点が不可欠であつて、一つでも
欠けると製造不可能となる。 これらの条件における限り重合様式は公知の方
法で実施できる。たとえば不活性溶媒中、または
液相モノマー中で、回分式重合でも連続式重合で
も行なうことができる。 結局本発明により従来知られている結晶性プロ
ピレン共重合体に比べコモノマー含有率を多くす
ることができ、かつ非晶性共重合体が少なくでき
るので、フイルムの品質、たとえばブロツキン
グ、ブリード白化などの悪影響を及ぼすことな
く、従来よりもより低温でヒートシール可能なフ
イルムに適したプロピレン共重合体を工業的に有
利に製造することが可能である。 本発明方法をさらに明確に説明するために以下
に比較例ならびに実施例を記すが本発明はこれら
の実施例によつてのみ限定されるものではない。
なお、以下の実施例中の特性値は下記の方法で測
定したものである。 (1) 粉ポリマー収率 粉ポリマー収率=重合溶媒不溶部/重合溶媒可溶
部+重合溶媒不溶部×100 (2) 冷キシレン可溶部 5gのポリマーを500mlの沸騰キシレンに溶解
したのち、室温まで徐冷し20℃で4時間放置後析
出したポリマーを別したのち、液からキシレ
ンを蒸発させ、減圧下60℃で乾燥して冷キシレン
可溶ポリマーを回収した。該回収ポリマーの試料
ポリマーに対する百分率を冷キシレン可溶部%と
した。 (3) ヒートシール温度 フイルム同志をヒートシーラーを用いて所定の
温度で2Kg/cm2の荷重をかけ2秒間圧着して得た
幅25mmの試料を剥離速度200mm/min、剥離角度
180でT字型剥離を行なつて得た剥離抵抗力が300
g/25mmのときの温度。 (4) 透明性(ヘーズ) ASTMD 1003によつた。 (5) 開口性(ブロツキング) 40g/cm2の荷重下で60℃3時間処理してブロツ
キングさせた試片を島津製作所製ブロツキングテ
スターで測定した。 実施例 1 (1) 触媒の調製 1 調製法I(還元生成物の調製) 200の反応容器をアルゴン置換した後、
乾燥ヘキサン40、四塩化チタン10を投入
し、この溶液を−5℃に保ち乾燥ヘキサン30
、エチルアルミニウムセスキクロライド
23.2より成る溶液を反応系の温度が−3℃
以下に保たれる様な条件で適下した。ついで
そのままの温度で2時間撹拌を続けた。反応
後静置して得られた還元生成物を20℃で固液
分離し、40のヘキサンで2回洗浄し16Kgの
還元生成物を得た。 2 調製法 調製法Iで得られた還元生成物をn―デカ
リンにスラリー化し、スラリー濃度を0.2
g/c.c.として140℃で2時間熱処理した。反
応後上澄み液を抜き出し40のヘキサンで2
回洗浄し、三塩化チタン組成物(A)を得た。 3 調製法 調製法に従つて調製した三塩化チタン組
成物(A)11Kgをトルエン55にスラリー化し、
三塩化チタン組成物(A)/I2/ジイソアミルエ
ーテル=1/0.1/1.0モル比になる様にヨウ
素及びジイソアミルエーテルを投入し、80℃
で1時間反応させることにより三塩化チタン
固体触媒(B)を得た。 (2) 触媒系の前処理 内容積5の撹拌機付反応容器をアルゴン置換
した後、乾燥n―ヘプタン1、前記の三塩化チ
タン固体触媒(B)を16g、アルミニウムジエチルモ
ノクロライド70gを投入した。次いで反応器内を
プロピレンで置換し温度を50℃まで上昇させ、撹
拌しながらプロピレンを300g供給反応させて触
媒系(C)を得た。 (3) プロピレン―α―オレフインの共重合 内容積200の撹拌機付重合器を充分にプロピ
レンで置換した後、工業用ヘプタン68を送入し
た。前記触媒系(C)を全量投入して工業用ヘプタン
で洗い込み最終的に工業用ヘプタンの量は70に
した。次いでプロピレン6.5Kg、ブテン―17Kg投
入し温度を50℃まで昇温しゲージ圧力4Kg/cm2
した。そして適当な水素分圧下でブテン―1とプ
ロピレンの気相組成を厳密に調節することによつ
て7.0Kgのブテン―1と22.5Kgのプロピレンを連
続的に送入した。 重合後のスラリーはイソブタノールで触媒を分
解除去した後精製し、31Kgの粉末重合体を得た。
このものの極限粘度は135℃、テトラリン溶液中
で測定して1.49、赤外分光法によるブテン―1の
含有率は16.6モル%であつた。得られた共重合体
の粉ポリマー収率、嵩比重、冷キシレン可溶部含
有率及び測定した品質結果を表―1に示す。 実施例 2 重合温度を47℃、結晶性共重合体中のブテン―
1含有率を20.5モル%となるように変化させた以
外は実施例1と同じ方法で共重合体を製造した。
その結果を表―1に示す。 実施例 3 結晶性ポリマー中のエチレン、プロピレン、ブ
テン―1の組成を表―1に示す如くに変化させる
以外は実施例1と同じ方法で共重合体を製造し
た。その結果を表―1に示す。 比較例 1,2,3 東邦チタニウム社製三塩化チタンAAを使用し
た以外は実施例1,2,3と同じ方法で共重合体
を製造した。しかしいずれの場合も、ポリマーが
重合溶媒で膨潤してパウダー状の共重合体は得ら
れず重合器から抜き出し不能となり製造は不可能
であつた。 比較例 4 重合前処理をせずに重合した以外は実施例1と
同じ方法で共重合体を製造した。この場合の粉ポ
リマーは65%であり、得られた重合体はゲル状の
ものが混在したもので嵩比重が0.3以下であつた。 比較例 5 重合温度を60℃で重合した以外は実施例1と同
じ方法で共重合体を製造した。この場合の粉ポリ
マー収率は53%であり、得られた重合体はゲル状
のものが混在したもので、嵩比重が0.3以下であ
つた。 実施例1,2,3と比較例5の重合条件及び結
果を比較のために表―1に示す。 結晶性共重合体中のブテン―1及びエチレン含
有率が表―1になるようにした以外は比較例1と
同じ方法で製造した。 結果を表―1に示す。 比較例 8 東邦チタニウム社製三塩化チタンAAを使用し
ポリマー組成を表―1になるように、温度60℃で
重合した以外は実施例1と同一の方法で共重合し
た。結果を表―1に示す。 比較例 9 結晶性共重合体中のエチレン含有率が表―1に
なるようにした以外は実施例1と同じ方法で製造
した。結果を表―1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing a crystalline propylene-α-olefin copolymer containing less amorphous polymer even if the α-olefin content is high. This improved propylene-α-olefin copolymer has good transparency and is suitable for use as a film with improved heat sealability. Biaxially stretched films made of highly crystalline polypropylene are excellent packaging materials in terms of transparency, rigidity, etc., but cannot be applied to automatic packaging machines as they are because of their poor heat-sealability. That is, since the heat-sealing temperature of a stretched polypropylene film is usually higher than the stretching temperature, the heat during heat-sealing causes the film to shrink as it tries to return to its unstretched state, impairing its appearance and reducing its sealing strength. Furthermore, polypropylene film has a higher melting point than polyethylene film, etc., and requires a high heat sealing temperature during bag making, making it impossible to increase the sealing speed. Therefore, since propylene and a small amount of ethylene, crystalline α-olefin copolymer such as butene-1 has better low-temperature heat-sealability than polypropylene, it is widely used by laminating it on a polypropylene film to compensate for these drawbacks. It is. The higher the α-olefin content of these copolymers, the lower the heat-sealing temperature, which is economically advantageous because the bag-making speed of the composite film can be increased. However, when attempting to copolymerize a large amount of α-olefin, the higher the content, the more low-molecular-weight, amorphous copolymers are produced as by-products. Generally, in the production of crystalline polyolefin, if the ratio of these worthless low molecular weight, amorphous copolymers to the target crystalline olefin copolymer increases, not only will it result in a loss of the raw material olefin; Various problems arise in production. For example, when manufacturing by polymerization in an inert solvent or by polymerization in a liquid phase monomer that does not substantially contain a solvent, the dispersion state or flow properties of the suspension may be poor, resulting in increased viscosity, This causes problems such as a decrease in the heat transfer rate, and the bulk specific gravity of the resulting polymer decreases, resulting in a worsening of the dispersion state. Sometimes it is impossible to extract the polymer from the polymerization tank. In addition, when polymerizing in the gas phase, heat transfer decreases due to amorphous polymer adhering to the polymerization tank, and the stickiness of the powder increases, resulting in insufficient powder flow and increased stirring power. A problem occurs. When these propylene copolymers with a high α-olefin content are made into a film, it contains a fairly large amount of amorphous polymer that is soluble in xylene at 20°C (hereinafter referred to as cold xylene soluble portion). Inconvenient problems such as increased blocking and deterioration of transparency occur due to whitening caused by bleeding to the surface of the film. Therefore, conventional propylene-ethylene copolymers have only been produced with an ethylene content of 6 to 7 mol%. Also propylene
Even with α-olefin copolymers such as butene-1, copolymers with a high α-olefin content and little amorphous polymer have not been produced to date. As a result of various studies, the inventors found that in the production of a crystalline propylene-α-olefin copolymer with a high α-olefin content, the amount of useless amorphous polymer is small, the bulk density of the powder is high, and the fluidity is improved. We have invented a method for industrially advantageously producing a good crystalline propylene-α-olefin copolymer powder. Therefore, according to the present invention, it is possible to obtain a film having good blocking properties, good transparency, and good low-temperature heat-sealing properties that were hitherto unanticipated.The above-mentioned problems can be overcome and the film is economically far more advantageous. That is, the present invention reduces titanium tetrachloride with an organoaluminum compound, and then produces a catalyst comprising an activated titanium trichloride composition and an organoaluminum compound of the general formula R 2 AlX (R is a hydrocarbon group, X is a halogen). After previously polymerizing 0.01 to 50 parts by weight of propylene per unit weight of titanium trichloride using a system, α-olefin having 4 to 10 carbon atoms and propylene are supplied, and the polymerization temperature is set to T=−. 1/
60・C 2 −3/2・C+85 (T is temperature expressed in °C,
C is a crystalline propylene-α with an α-olefin content of 8 to 25 mol%, characterized in that it is polymerized at less than mol% of α-olefin in the copolymer;
- A method for producing an olefin copolymer. According to the production method of the present invention, even if the α-olefin content is 8 to 25 mol%, the amorphous polymer is surprisingly small and has a low melting point, so it can be used in blow molded products and sheets in addition to films. It also has good impact resistance and transparency. The titanium compound used as a catalyst in the present invention is obtained by reducing titanium tetrachloride with an organoaluminum compound, using titanium trichloride as a starting material for producing an activated titanium compound, and treating it with a complexing agent. , organoaluminum compound treatment,
Alternatively, it is characterized by using a catalyst highly activated with titanium tetrachloride or a combination thereof. This catalyst can be prepared by simply reducing titanium trichloride obtained by heat treatment or other known methods (for example,
It has higher activity and stereoselectivity than that obtained by the method described in Publication No. 20501). More specifically, it is possible to use solid catalysts obtained by methods described in, for example, Japanese Patent Application Laid-Open No. 74595/1982 and Japanese Patent Application No. 108276/1983. In addition, when carrying out the present invention, Japanese Patent Application Laid-Open No. 47-34478
A highly active catalyst obtained by the method described in , ie, by treating β-type titanium trichloride with a complexing agent such as ether and then treating it with titanium tetrachloride, can also be used satisfactorily in this method. Catalysts other than those essential to the present invention, such as titanium tetrachloride currently on the market, reduced with metal aluminum and activated by pulverization (for example, titanium trichloride manufactured by Toho Titanium Co., Ltd.)
AA), and those using conventionally known catalysts in which titanium tetrachloride is reduced with an organoaluminum compound and heat treated are insufficient and cannot be used. When these catalysts are used, copolymers with a high α-olefin content may have a low bulk specific gravity of the powder, increasing the amount of amorphous polymer produced, or may not be powder-like, but may be block-like or It produces a gel-like polymer and is difficult to manufacture industrially. The organoaluminum compound that can be used next needs to be a monohalide represented by the general formula R 2 AlX (R is a hydrocarbon group, X is a halogen). The catalyst system of the present invention contains the above-mentioned activated titanium compound and organoaluminium compound, but also contains compounds such as amines, ethers, esters, sulfur, halogens, benzene, azulene derivatives, organic and inorganic nitrogen, phosphorus, etc. It may also contain a known third component such as. Although it is essential to use the above catalyst system,
These catalyst systems must then be pretreated with propylene. The pretreatment of the propylene polymerization catalyst system itself is already known, for example,
4992. That is, the catalyst system used to initiate the copolymerization of propylene and α-olefin is a polymerization catalyst in which 0.01 to 50 parts by weight of propylene is polymerized to titanium trichloride in the catalyst system. be. This pretreatment of the catalyst may be carried out in a separate tank before charging the catalyst into the reactor, or if the polymerization is carried out batchwise, it may be carried out in the same reactor in which the polymerization will be carried out, before starting the polymerization. Then, a certain ratio of propylene and α-olefin may be supplied for polymerization. If this catalyst is not pretreated, the amorphous copolymer will be eluted into the inert solvent or liquid phase monomer, and the powder will solidify into blocks or gels, making production virtually impossible. becomes. In addition to the catalyst system and catalyst pretreatment mentioned above, the polymerization temperature is also important, and is determined by the following formula: T=-1/60C 2 -3/2C+85 (T is the temperature in degrees Celsius, C is α in the copolymer
The temperature must be below the temperature specified by (mol% of olefin). If the polymerization temperature is higher than that shown by the formula, the powder properties will be extremely deteriorated and become block-like or gel-like, making production impossible. However, when polymerized at a temperature below the temperature indicated by the formula, a high-quality propylene-α-olefin copolymer with good powder properties even with a high α-olefin content and a small amount of cold xylene soluble portion in the polymer can be obtained. can be manufactured. Generally, to reduce amorphous polymers,
It is known that polymerization can be carried out at a fairly low temperature. However, it has been difficult to industrially produce α-olefin copolymers with a high content because productivity per catalyst and per hour comes at a cost. However, if the catalyst system described above is used and the catalyst is further pretreated, a high α-olefin content, i.e., 8 to 25 mol% of crystalline propylene-α-olefin can be obtained only when the polymerization occurs at a temperature below the temperature shown by the formula. A copolymer of high quality can be produced industrially advantageously and without any problems in production. It was extremely difficult to predict that it would be possible to produce a product having an α-olefin content of 8 to 25 mol % in the manner described above, and this is surprising. The polymerization temperature below the temperature shown in the formula is an experimental value found by us. α-olefin copolymerized with propylene is
Specific examples of hydrocarbons with 4 to 10 carbon atoms include 1-butene, 1-pentene, and 1,4-hexene.
Methylpentene-1, octene-1, decene-1
etc. The α-olefin is not limited to a single substance and may be a mixture of two or more of these, but among these α-olefins, butene-1 is particularly desirable since it has a small amount of amorphous copolymer. In the present invention, if ethylene is used instead of α-olefin having 4 to 10 carbon atoms, a large amount of amorphous copolymer is produced, which not only lowers the powder polymer yield but also reduces the amount of amorphous copolymer in the powder polymer. Polymer builds up significantly. Therefore, when this crystalline propylene-ethylene copolymer is made into a film, blocking is extremely large even if the heat sealing temperature is low, and the economical decrease in transparency due to whitening caused by bleeding of the amorphous copolymer onto the film surface is significant. You can only get things that have no commercial value. This is truly surprising since it is only by using α-olefin having 4 to 10 carbon atoms as a comonomer as in the present invention that a film with sufficiently low heat-sealing temperature and good blocking properties can be obtained. It is. In the present invention, ethylene cannot be used in place of α-olefin, but it is possible to add a small amount of ethylene to propylene or α-olefin for polymerization. In this case, even if the propylene content is kept constant, as the ethylene content increases, the above-mentioned qualities such as blocking will deteriorate, so there is an upper limit to the ethylene content that can be added, and it must be kept at 7 mol% or less. Must be. A crystalline propylene-α-olefin copolymer having an α-olefin content of less than 8 mol % can be produced by a conventionally known method without using the production method of the present invention. On the other hand, a crystalline propylene-α-olefin copolymer containing more than 25 mol % of α-olefin cannot be produced industrially even by the method of the present invention. The catalyst system and pretreatment of the catalyst system described above are carried out at a polymerization temperature below the temperature expressed by the formula α
- Conditions for producing a crystalline propylene copolymer with an olefin content of 8 to 25 mol % and a small amount of amorphous copolymer. These three points are essential, and if even one is missing, manufacturing becomes impossible. As long as these conditions are met, the polymerization can be carried out by known methods. Batch or continuous polymerization can be carried out, for example in an inert solvent or in liquid phase monomers. As a result, the present invention can increase the comonomer content and reduce the amount of amorphous copolymer compared to conventionally known crystalline propylene copolymers, which improves film quality, such as blocking and bleed whitening. It is possible to industrially advantageously produce a propylene copolymer suitable for a film that can be heat-sealed at a lower temperature than before without any adverse effects. In order to explain the method of the present invention more clearly, comparative examples and examples are described below, but the present invention is not limited only by these examples.
In addition, the characteristic values in the following examples were measured by the following method. (1) Powder polymer yield Powder polymer yield = Polymerization solvent insoluble part / Polymerization solvent soluble part + Polymerization solvent insoluble part x 100 (2) Cold xylene soluble part After dissolving 5g of polymer in 500ml of boiling xylene, After slowly cooling to room temperature and leaving at 20°C for 4 hours, the precipitated polymer was separated, xylene was evaporated from the liquid, and the solution was dried at 60°C under reduced pressure to recover the cold xylene-soluble polymer. The percentage of the recovered polymer to the sample polymer was defined as cold xylene soluble portion %. (3) Heat sealing temperature A sample with a width of 25 mm obtained by pressing two films together using a heat sealer at a predetermined temperature for 2 seconds under a load of 2 kg/cm 2 was peeled off at a peeling speed of 200 mm/min and at a peeling angle.
The peel resistance obtained by performing T-shaped peeling at 180 was 300.
Temperature at g/25mm. (4) Transparency (haze) Based on ASTMD 1003. (5) Opening properties (blocking) Test pieces that were blocked by treatment at 60° C. for 3 hours under a load of 40 g/cm 2 were measured using a blocking tester manufactured by Shimadzu Corporation. Example 1 (1) Preparation of catalyst 1 Preparation method I (preparation of reduction product) After replacing the 200 reaction vessels with argon,
Add 40% dry hexane and 10% titanium tetrachloride, keep this solution at -5℃ and add 30% dry hexane.
, ethylaluminum sesquichloride
A solution consisting of 23.2 was prepared at a temperature of -3°C.
It was applied under the following conditions. Stirring was then continued at the same temperature for 2 hours. After the reaction, the resulting reduced product was allowed to stand still and was subjected to solid-liquid separation at 20°C, and washed twice with 40 kg of hexane to obtain 16 kg of reduced product. 2 Preparation method The reduction product obtained in Preparation method I was slurried in n-decalin, and the slurry concentration was adjusted to 0.2.
It was heat treated at 140°C for 2 hours as g/cc. After the reaction, remove the supernatant and dilute with 40% hexane.
After washing twice, a titanium trichloride composition (A) was obtained. 3 Preparation method 11 kg of titanium trichloride composition (A) prepared according to the preparation method was slurried in 55% toluene,
Iodine and diisoamyl ether were added at a molar ratio of titanium trichloride composition (A)/I 2 /diisoamyl ether = 1/0.1/1.0, and heated at 80°C.
A titanium trichloride solid catalyst (B) was obtained by reacting for 1 hour. (2) Pretreatment of catalyst system After purging a reaction vessel with an internal volume of 5 with a stirrer with argon, 11 g of dry n-heptane, 16 g of the above titanium trichloride solid catalyst (B), and 70 g of aluminum diethyl monochloride were added. . Next, the inside of the reactor was replaced with propylene, the temperature was raised to 50° C., and 300 g of propylene was fed and reacted with stirring to obtain a catalyst system (C). (3) Copolymerization of propylene-α-olefin After a polymerization vessel with an internal volume of 200 and equipped with a stirrer was sufficiently replaced with propylene, 68 of industrial heptane was introduced. The entire amount of the catalyst system (C) was added and washed with industrial heptane until the final amount of industrial heptane was 70. Next, 6.5 kg of propylene and 17 kg of butene were added, and the temperature was raised to 50° C. and the gauge pressure was 4 kg/cm 2 . By strictly controlling the gas phase composition of butene-1 and propylene under an appropriate hydrogen partial pressure, 7.0 kg of butene-1 and 22.5 kg of propylene were continuously fed. The slurry after polymerization was purified after decomposing and removing the catalyst with isobutanol to obtain 31 kg of powdered polymer.
The intrinsic viscosity of this product was determined to be 1.49 as measured in a tetralin solution at 135°C, and the content of butene-1 determined by infrared spectroscopy was 16.6 mol %. Table 1 shows the powder polymer yield, bulk specific gravity, cold xylene soluble content, and measured quality results of the obtained copolymer. Example 2 The polymerization temperature was 47°C, butene in the crystalline copolymer
A copolymer was produced in the same manner as in Example 1 except that the 1 content was changed to 20.5 mol%.
The results are shown in Table-1. Example 3 A copolymer was produced in the same manner as in Example 1, except that the composition of ethylene, propylene, and butene-1 in the crystalline polymer was changed as shown in Table 1. The results are shown in Table-1. Comparative Examples 1, 2, 3 Copolymers were produced in the same manner as in Examples 1, 2, and 3 except that titanium trichloride AA manufactured by Toho Titanium Co., Ltd. was used. However, in both cases, the polymer swelled in the polymerization solvent, making it impossible to obtain a powdery copolymer and making it impossible to extract it from the polymerization vessel. Comparative Example 4 A copolymer was produced in the same manner as in Example 1, except that polymerization was performed without pre-polymerization treatment. In this case, the powder polymer content was 65%, and the obtained polymer was a mixture of gel-like materials and had a bulk specific gravity of 0.3 or less. Comparative Example 5 A copolymer was produced in the same manner as in Example 1 except that the polymerization temperature was 60°C. The powder polymer yield in this case was 53%, and the obtained polymer was a mixture of gel-like materials and had a bulk specific gravity of 0.3 or less. The polymerization conditions and results of Examples 1, 2, and 3 and Comparative Example 5 are shown in Table 1 for comparison. It was produced in the same manner as Comparative Example 1 except that the butene-1 and ethylene contents in the crystalline copolymer were as shown in Table 1. The results are shown in Table-1. Comparative Example 8 Copolymerization was carried out in the same manner as in Example 1 except that titanium trichloride AA manufactured by Toho Titanium Co., Ltd. was used and the polymer composition was as shown in Table 1, and the polymerization was carried out at a temperature of 60°C. The results are shown in Table-1. Comparative Example 9 A copolymer was produced in the same manner as in Example 1, except that the ethylene content in the crystalline copolymer was as shown in Table 1. The results are shown in Table-1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の理解を助けるためのフロー
チヤート図である。
FIG. 1 is a flowchart to aid in understanding the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 四塩化チタンを有機アルミニウム化合物で還
元し、さらに活性化した三塩化チタン組成物と一
般式 R2AlX(Rは炭化水素基、Xはハロゲン)
の有機アルミニウム化合物とからなる触媒系を使
用し、前もつて三塩化チタンの単位重量あたり
0.01から50重量部のプロピレンを重合させたの
ち、炭素数4〜10個のα―オレフインとプロピレ
ンを供給し、重合温度をT=−1/60・C2−3/2・
C+85(Tは℃で表わした温度、Cは共重合体中
のα―オレフインのモル%)以下で重合すること
を特徴とする、α―オレフインの含有率が8〜25
モル%である結晶性プロピレン―α―オレフイン
共重合体の製造方法。
1 Titanium trichloride composition obtained by reducing titanium tetrachloride with an organic aluminum compound and further activating it and the general formula R 2 AlX (R is a hydrocarbon group, X is a halogen)
per unit weight of titanium trichloride.
After polymerizing 0.01 to 50 parts by weight of propylene, α-olefin having 4 to 10 carbon atoms and propylene are supplied, and the polymerization temperature is set to T=-1/60・C 2 −3/2・
The content of α-olefin is 8 to 25, characterized by polymerization at C+85 (T is temperature expressed in °C, C is mol% of α-olefin in the copolymer) or less.
A method for producing a crystalline propylene-α-olefin copolymer that is mol%.
JP7243678A 1978-06-14 1978-06-14 Production of crystalline propylene-alpha-olefin copolymer Granted JPS54162785A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP7243678A JPS54162785A (en) 1978-06-14 1978-06-14 Production of crystalline propylene-alpha-olefin copolymer
DE2923754A DE2923754C3 (en) 1978-06-14 1979-06-12 Process for producing a propylene copolymer and its use in a multi-layer polypropylene-propylene copolymer film
BR7903705A BR7903705A (en) 1978-06-14 1979-06-12 PROCESS FOR THE PRODUCTION OF A PROPYLENE COPOLYMER, THE COPOLIMER FOR THE PRODUCTION OF A PROPYLENE COPOLYMER, PROPYLENE COPOLYMER AND LAYER POLYPROPYLENE LAYER PROPYLENE IMER AND MULTIPLE LAYER POLYPROPYLENE FILM
IT49388/79A IT1193760B (en) 1978-06-14 1979-06-12 PROCEDURE FOR PRODUCING MULTI-LAYER PROPYLENE COPOLYMERS AND POLYPROPYLENE FILM WITH IT OBTAINED
CA000329679A CA1198355A (en) 1978-06-14 1979-06-13 Multilayer polypropylene film
BE0/195712A BE876947A (en) 1978-06-14 1979-06-13 PROCESS FOR THE PRODUCTION OF COPOLYMERS OF PROPYLENE AND MULTI-LAYER POLYPROPYLENE FILM
GB7920608A GB2027720B (en) 1978-06-14 1979-06-13 Process for producing a propylene copolymer and a multilayer polypropylene film
NL7904659A NL190783C (en) 1978-06-14 1979-06-14 Process for the preparation of a propylene copolymer and multilayer polypropylene film.
FR7915301A FR2428651B1 (en) 1978-06-14 1979-06-14 PROCESS FOR PRODUCING PROPYLENE COPOLYMERS AND A MULTI-LAYERED POLYPROPYLENE FILM
GB08137613A GB2105651B (en) 1978-06-14 1981-12-14 Multi-layer polypropylene film
SG567/83A SG56783G (en) 1978-06-14 1983-09-07 Process for producing propylene copolymers
CA000469444A CA1215198A (en) 1978-06-14 1984-12-05 Process for producing propylene copolymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7243678A JPS54162785A (en) 1978-06-14 1978-06-14 Production of crystalline propylene-alpha-olefin copolymer

Publications (2)

Publication Number Publication Date
JPS54162785A JPS54162785A (en) 1979-12-24
JPS6312086B2 true JPS6312086B2 (en) 1988-03-17

Family

ID=13489241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7243678A Granted JPS54162785A (en) 1978-06-14 1978-06-14 Production of crystalline propylene-alpha-olefin copolymer

Country Status (1)

Country Link
JP (1) JPS54162785A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898315A (en) * 1981-12-07 1983-06-11 Chisso Corp Improvement of powder fluidity of polyolefin copolymer
JPS6065007A (en) * 1983-09-21 1985-04-13 Chisso Corp Crosslinkable/expandable propylene/butene copolymer
JPS6065008A (en) * 1983-09-21 1985-04-13 Chisso Corp Crosslinkable/expandable ethylene/propylene/butene copolymer
JP2533321B2 (en) * 1987-05-08 1996-09-11 住友化学工業株式会社 Polypropylene laminated film
JPH085174B2 (en) * 1987-10-19 1996-01-24 三井石油化学工業株式会社 Polypropylene composite laminated molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935487A (en) * 1972-07-20 1974-04-02
JPS5074595A (en) * 1973-11-02 1975-06-19
JPS50128781A (en) * 1974-03-29 1975-10-11
JPS5331787A (en) * 1976-09-07 1978-03-25 Chisso Corp Polymerization of propylene using pre-activated catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935487A (en) * 1972-07-20 1974-04-02
JPS5074595A (en) * 1973-11-02 1975-06-19
JPS50128781A (en) * 1974-03-29 1975-10-11
JPS5331787A (en) * 1976-09-07 1978-03-25 Chisso Corp Polymerization of propylene using pre-activated catalyst

Also Published As

Publication number Publication date
JPS54162785A (en) 1979-12-24

Similar Documents

Publication Publication Date Title
EP0074194B1 (en) Propylene-ethylene random copolymer, production process thereof, and film derived therefrom
KR910008846B1 (en) Laminated poly propylene film
JPS607645B2 (en) Method for producing a copolymer polypropylene by pre-polymerization activation of a catalyst for the copolymer
JPH0543593B2 (en)
KR100462426B1 (en) Propylene block copolymers and molded articles obtained therefrom
EP0577407B1 (en) Process for the preparation of polypropylene random copolymer
EP0719829B1 (en) Polypropylene composition and laminated and oriented film therefrom
JPS6312086B2 (en)
US4433110A (en) Process for producing propylene block copolymers
JP3569737B2 (en) Method for producing propylene-based random copolymer
JPH0724981A (en) Polypropylene laminated film
JPH0673132A (en) Polypropylene random copolymer and film therefrom
CN114174391B (en) Non-foaming sheet and container
US6106938A (en) Polypropylene composition and laminated and oriented film therefrom
JPH08245846A (en) Polypropylene composition for oriented laminate and oriented laminate
JPS6312087B2 (en)
JPH0527546B2 (en)
JP3569740B2 (en) Propylene random copolymer and film and laminate using the same
US4291140A (en) Novel propylene copolymers
JPH0142285B2 (en)
JPS6312088B2 (en)
JP2533321B2 (en) Polypropylene laminated film
KR830001194B1 (en) How to prepare propylene copolymer
JPH0481507B2 (en)
JPH0425134B2 (en)