JPS63120210A - Apparatus for measuring deformation of pipe - Google Patents

Apparatus for measuring deformation of pipe

Info

Publication number
JPS63120210A
JPS63120210A JP26632986A JP26632986A JPS63120210A JP S63120210 A JPS63120210 A JP S63120210A JP 26632986 A JP26632986 A JP 26632986A JP 26632986 A JP26632986 A JP 26632986A JP S63120210 A JPS63120210 A JP S63120210A
Authority
JP
Japan
Prior art keywords
measured
pipe
deformation
strain gauges
leaf spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26632986A
Other languages
Japanese (ja)
Inventor
Mikio Matsubara
松原 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO CHISHITSU KK
Original Assignee
OYO CHISHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO CHISHITSU KK filed Critical OYO CHISHITSU KK
Priority to JP26632986A priority Critical patent/JPS63120210A/en
Publication of JPS63120210A publication Critical patent/JPS63120210A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an accurate measured value without receiving the effect of the material quality of a pipe to be measured and earth magnetism, by a method wherein a measuring rod having a leaf spring part having strain gauges adhered to the front and back surfaces thereof is inserted in an underground embedded pipe in parallel to the axis of said pipe when the deformation of the embedded pipe is measured and the deformation of the embedded pipe is measured on the basis of the outputs of the strain gauges. CONSTITUTION:Four symmetric grooves 12 are usually provided on the inner wall surface of a boring hole or the pipe 10 to be measured arranged in the ground and a measuring rod 14 made of a rigid material having rod-shaped centralizers 16 inserted in the grooves 12 protruded therefrom is inserted in the pipe 10 to be measured in parallel to the axis thereof by utilizing said grooves 12. At this time, two rods 14 are prepared and a deformation detection part 18 is fixed between said rods 14. Horizontal and vertical leaf spring parts 22, 24 are provided on both sides of the central connection part 26 of the detection part 18 so as to hold said connection part 26 therebetween, and bending detecting strain gauges 30a and distortion detecting strain gauges 30b, 30c symmetric to the center axis of the pie 10 to be measured at 45 deg. are respectively adhered to the front and back surfaces of said leaf spring parts 22, 24 and the outer periphery of the detection part 18 is covered with a flexible protective pipe 28. By this method, a structure is made simple and the operation is facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、ポーリング孔の大曲がりや地中埋設管の変形
等を測定する装置に関し、更に詳しくは、開な材料でで
きた複数の測定用ロッドを屈曲自在の仮バネ部で連結し
て被測定管内に挿入し、板バネ部の表裏面に取り付けた
歪ゲージによりその変形量を測定することにより被測定
管の変形を測定できるようにした装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for measuring large bends in poling holes, deformation of underground pipes, etc. The deformation of the pipe to be measured can be measured by connecting the rod with a bendable temporary spring part and inserting it into the pipe to be measured, and measuring the amount of deformation with strain gauges attached to the front and back surfaces of the plate spring part. This relates to a device that has been used.

[従来の技術] 従来、ポーリング孔の孔面がりや地中埋設管の変形等を
測定するには傾斜計が多く用いられている。この種の計
器において、鉛直面内における傾斜は重力を利用しサー
ボアクセロメタ−やポテンショメタ−等により正確に測
定されるが、水平方向の変位測定にはそれらが使えずフ
ラックスゲート型の磁束計等のような地磁気センサが使
用される。
[Prior Art] Conventionally, inclinometers have been widely used to measure the surface roughness of poling holes, deformation of underground pipes, and the like. In this type of instrument, inclination in the vertical plane is accurately measured using gravity using servo accelerometers and potentiometers, but these cannot be used to measure displacement in the horizontal direction, and fluxgate type magnetic flux is used to measure displacement in the horizontal direction. A geomagnetic sensor such as a geomagnetic sensor is used.

被測定管の変形は、傾斜計を儲口端から挿入して挿入量
毎の傾斜量を計ること(挿入式測定法)によって、ある
いは多数の傾斜計を数珠つなぎにして収容し各部位での
傾斜量を計ること(固定式測定法)によって行われる。
Deformation of the pipe to be measured can be measured by inserting an inclinometer from the mouth end and measuring the amount of inclination for each insertion amount (insertion measurement method), or by accommodating a large number of inclinometers in a string and measuring the inclination at each part. This is done by measuring the amount of inclination (fixed measurement method).

[問題点を解決するための手段] 従って被測定管が水平方向に埋設されている鉄管のよう
な場合には方位(水平方向の変位)は測定できず、また
例え被測定管が非磁性材で構成されていても近くに磁性
材が埋設されていたり、あるいは地磁気の乱れがあると
同様に方位を特定することができない。方位の測定装置
として他にジャイロコンパス等もあるが、かなり大型に
なるため細い管乙こは適用できず、しかも精度が悪い欠
点がある。
[Means for solving the problem] Therefore, if the pipe to be measured is an iron pipe buried horizontally, the orientation (horizontal displacement) cannot be measured, and even if the pipe to be measured is made of non-magnetic material. Even if the geomagnetic field is made up of , the direction cannot be determined if there is magnetic material buried nearby or if there is disturbance in the geomagnetic field. There are other azimuth measuring devices such as gyro compasses, but they are quite large and cannot be used with thin tubes, and they also have the disadvantage of poor accuracy.

また従来の傾斜計を用いる測定では、被測定管として予
め所定の溝を形成したゲージングを用い、その溝に測定
プローブの車輪を嵌め込んで溝に沿わせて挿入するので
、ケーシングが捩れている場合にはその捩れを測定でき
ないため測定誤差を生じ、また溝から車輪が脱線するこ
ともしばしばで、そのため更に大きな測定誤差が生じ、
何度も測定作業を繰り返さなければならなくなる等の問
題もある。
Furthermore, in measurements using conventional inclinometers, a gauging tube with a predetermined groove formed in it is used as the tube to be measured, and the wheels of the measurement probe are fitted into the groove and inserted along the groove, resulting in the casing being twisted. In some cases, the torsion cannot be measured, resulting in a measurement error, and the wheel often derails from the groove, resulting in an even larger measurement error.
There are also problems such as having to repeat measurement work many times.

その他、塩化ビニル管の外周を2等分あるいは4等分し
、その軸方向延長線」二に1〜2m間隔で歪ゲージを貼
設し、ポーリング孔内に埋設して孔面がりを測定する歪
ゲージ貼付はパイプもあるが、地水内変形の形状を大ま
かに知り得る程度の測定しかできず、厳密な意味での変
形測定には適していない。
In addition, the outer circumference of the PVC pipe is divided into two or four equal parts, and strain gauges are pasted on the axial extension line at intervals of 1 to 2 m, and the holes are buried in the poling holes to measure the hole surface roughness. Some pipes have strain gauges attached to them, but they can only be used to roughly measure the shape of deformation in ground water, and are not suitable for measuring deformation in a strict sense.

本発明の目的は、上記のような従来技術の欠点を解消し
、任意の材質並び任意の形状の被測定管に対応でき、そ
れが水平方向に配置されている場合でも管の曲がりや捩
れ等も含めて被測定管の変形を容易に正確に且つ低コス
トで測定することが可能となるような装置を提供するこ
とにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to be able to handle tubes to be measured of any material and shape, and to prevent bending, twisting, etc. of the tube even when the tube is arranged horizontally. It is an object of the present invention to provide a device that makes it possible to easily measure the deformation of a pipe to be measured, including the deformation of the pipe to be measured, easily and accurately at low cost.

[問題点を解決するための手段] L記のような目的を達成することのできる本発明は、期
な材料からなる複数の測定用ロッド間を屈曲自在の変形
検出部を介して連結した構造の管変形測定装置である。
[Means for Solving the Problems] The present invention, which can achieve the objects as described in L, has a structure in which a plurality of measuring rods made of a novel material are connected via a bendable deformation detection part. This is a pipe deformation measuring device.

ここで各測定用ロッドは、被測定管内でその軸に垂直な
面内での位置を一定に保つセントライザーの如き位置決
め機構を備えている。また変形検出部は、測定用口、ド
同士を結合する屈曲自在の板バネ部を有し、該板バネ部
は軸に平行に配置され、その表裏両面に歪ゲージが設け
られている構造である。
Here, each measuring rod is equipped with a positioning mechanism such as a centrifuge that maintains a constant position within the tube to be measured in a plane perpendicular to its axis. In addition, the deformation detection section has a measurement port and a bendable plate spring section that connects the dots. be.

より望ましい実施態様としては、2枚の板バネ部が互い
に直交し軸方向にずらせて配置し、それらの表裏面に軸
方向並びに軸に対して傾斜した方向に複数の歪ゲージを
取り付ける構成がある。
A more desirable embodiment is a configuration in which two leaf spring parts are arranged perpendicular to each other and shifted in the axial direction, and a plurality of strain gauges are attached to the front and back surfaces of the leaf spring parts in the axial direction and in a direction inclined with respect to the axis. .

[作用] 変形検出部の両側に位置する測定用ロッドは、それぞれ
その位置決め機構によって被測定管内で中心軸に垂直な
面内での位置が一定に保たれる。被測定管に曲がり等の
変形があると、その変形は板バネ部の変形として現れる
。仮バネ部には表裏両面に歪ゲージが設けられており、
板バネ部の変形が歪ゲージによって検出される。
[Operation] The measuring rods located on both sides of the deformation detecting section are kept at a constant position in a plane perpendicular to the central axis within the tube to be measured by their respective positioning mechanisms. If the tube to be measured is deformed, such as by bending, the deformation appears as deformation of the leaf spring section. The temporary spring part is equipped with strain gauges on both the front and back sides.
Deformation of the leaf spring section is detected by a strain gauge.

即ち被測定管の変形を歪ゲージの出力により外部から検
出することができる。
That is, deformation of the tube to be measured can be detected from the outside by the output of the strain gauge.

板バネ部を互いに直交するように2個連結して設置すれ
ば、2軸の曲がりを検出することができるし、仮バネ部
における歪ゲージの取り付は角度を変えれば被測定管の
捩れも検出することができる。
If two plate spring sections are connected orthogonally to each other and installed, bending in two axes can be detected, and by changing the angle at which the strain gauge is attached to the temporary spring section, twisting of the tube to be measured can be detected. can be detected.

[実施例] 第1図は本発明に係る管変形測定装置の一実施例を示す
説明図であり、第2図はそのll−Tl断面図である。
[Example] FIG. 1 is an explanatory view showing an example of a pipe deformation measuring device according to the present invention, and FIG. 2 is a ll-Tl sectional view thereof.

この実施例は土中で水平に埋設された被測定管lOの変
形を測定するものであり、挿入式の測定装置である。
This embodiment measures the deformation of a pipe to be measured lO buried horizontally in the soil, and is an insertion type measuring device.

被測定管10ば土中に埋設されており、その断面は第2
図からも明らかなように従来技術ど同1190度苛に対
称的な4条の溝12を形成した構造である。さて本装置
は、剛な材料からなる2本の測定用ロッド14を有し、
各測定用ロッド14は被測定管10の内部でその軸に垂
直な面内での位置を一定に保つ位置決め装置としてセン
トライザー16を備えている。そしてこのセントライザ
ー16が被測定管10のンa 12に嵌入し、測定用ロ
ッド14を常に中心軸とで保持するとともに軸回りの回
転を阻止する。
The pipe to be measured 10 is buried in the soil, and its cross section is
As is clear from the figure, the conventional technique has a structure in which four grooves 12 are formed symmetrically at 1190 degrees. Now, this device has two measuring rods 14 made of a rigid material,
Each measuring rod 14 is equipped with a centrifuge 16 as a positioning device that maintains a constant position within the tube 10 to be measured in a plane perpendicular to its axis. The centrifuge 16 is fitted into the tube a 12 of the tube to be measured 10, and constantly holds the measuring rod 14 with respect to the central axis while preventing rotation about the axis.

再測定用ロッド14の間は変形検出部18により連結さ
れ、一方の測定用ロッド16の端部に挿入用ロッド20
が取り付けられて、それにより開目端側から押し込んで
被測定管内を自由に移動できるように構成される。
The remeasurement rods 14 are connected by a deformation detection section 18, and an insertion rod 20 is connected to the end of one of the measurement rods 16.
is attached so that it can be pushed in from the open end side and moved freely within the tube to be measured.

さて本発明における変形検出部の一例を第3図〜第5図
に示す。この実施例では変形検出部18は2枚の板バネ
部22.24と連結部26とを有する。2枚の板バネ部
22.24はいずれも中心軸」二に配置される屈曲自在
の構造であり、第4図並びに第5同の断面図からも明ら
かなようtこ、互いに90度異なる向きで軸方向位置を
ずらせて配設されている。そしてこれらの板バネ部22
.24は中央の連結部26と両側の測定用l】ノド14
とにより結合され、それらの外側は可撓性の保護管28
で密封される。この可撓性の保護管28は、例えばピア
ノ線をスパイラル状に配置してゴム内部に埋設したよう
な構造とし、曲げや模れ等によって潰れないようにする
のが望ましい。
Now, an example of the deformation detection section according to the present invention is shown in FIGS. 3 to 5. In this embodiment, the deformation detection section 18 has two leaf spring sections 22, 24 and a connecting section 26. The two leaf spring parts 22 and 24 are both arranged on the central axis and have a bendable structure, and as is clear from the cross-sectional views of Figs. 4 and 5, they are arranged in directions 90 degrees different from each other. They are arranged at different axial positions. And these leaf spring parts 22
.. 24 is the connecting part 26 in the center and the measurement throats 14 on both sides.
are connected by a flexible protection tube 28 on the outside.
sealed. It is desirable that the flexible protection tube 28 has a structure in which, for example, piano wire is arranged in a spiral shape and buried inside rubber, so that it will not be crushed by bending or chamfering.

板バネ部22の表裏両面の同じ位置には多数の歪ゲージ
30が取り付けられる。この実施例では中心軸に沿った
方向に配置された曲げ検出用歪ゲージ30aと、中心軸
に対して45度で対称的に取り付けられた捩れ検出用歪
ゲージ30b、30Cからなる、また他方の板バネ部2
4も全く同様に歪ゲージ30が配列されている。
A large number of strain gauges 30 are attached to the same positions on both the front and back surfaces of the leaf spring section 22. This embodiment consists of a bending detection strain gauge 30a arranged along the central axis, and torsion detection strain gauges 30b and 30C mounted symmetrically at 45 degrees with respect to the central axis. Leaf spring part 2
4 also has strain gauges 30 arranged in exactly the same way.

これらの歪ゲージは接着剤等によって板バネ部表裏面に
貼設してもよいし、真空蒸着またはスパッタリング技術
を利用して仮バネ部表藁面に直接歪ゲージを形成した構
造でもよい。特にこのような薄膜構造にすると、接着剤
を使用しないのでクリープがなく長期安定性に優れた高
性能かえられる。
These strain gauges may be attached to the front and back surfaces of the leaf spring section with an adhesive or the like, or the strain gauges may be formed directly on the front surface of the temporary spring section using vacuum deposition or sputtering techniques. In particular, with such a thin film structure, since no adhesive is used, there is no creep and high performance with excellent long-term stability can be achieved.

何れの場合でも中心軸上に配設された歪ゲージが板バネ
部の曲がりを検出し、中心軸に対して2方向に角度をも
って取り付けられた歪ゲージが板バネの捩れを検出する
In either case, a strain gauge disposed on the central axis detects bending of the leaf spring, and strain gauges mounted at angles in two directions with respect to the central axis detect twisting of the leaf spring.

なお本実施例では各測定用ロフトはいずれも中実構造と
して描いであるが、中空構造にして内部に歪ゲージのプ
リアンプを内蔵させたり、ケーブルを通す構造が好まし
い。
In this embodiment, each measuring loft is depicted as having a solid structure, but it is preferable to have a hollow structure with a built-in strain gauge preamplifier or a structure through which a cable is passed.

さて、このように構成した本装置の動作並びにその使用
手順は次の如くである。第1図において挿入用ロッド2
0を使用して本装置を被測定管10内に開口端側から押
し込んでいく、測定用ロッド14はそのセントライザー
16が被測定管10の!12に嵌まり込んでそれに沿っ
て回!lJJすることなく移動する。
Now, the operation of this apparatus configured as described above and the procedure for its use are as follows. In Fig. 1, the insertion rod 2
The measuring rod 14 is pushed into the tube to be measured 10 from the open end using the centrifuge 16 of the tube to be measured 10. Get stuck in 12 and follow it! Move without lJJ.

両;剣定用ロッド14は変形検出部18を介して相対的
に変位・変向できるように構成されているから、被測定
管IOの変形に倣って常にその中心軸J二に位置し続け
る。従って地盤の変形等により被測定管10に曲がりや
捩れ等の変形があると、その変形は変形検出部18の板
バネ部22.24の変形となって現れる。
Both: The rod 14 for fixing the rod 14 is configured so that it can be relatively displaced and directed via the deformation detection section 18, so it always remains located at its central axis J2 following the deformation of the tube to be measured IO. . Therefore, if the tube to be measured 10 is deformed such as bending or twisting due to deformation of the ground, the deformation appears as a deformation of the leaf spring portions 22, 24 of the deformation detection section 18.

前記のように、中心軸上に配設された歪ゲージが板バネ
部の曲がりを検出する。各歪ゲージは仮バネ部の表裏両
面で対になって設けられているから、対応する歪ゲージ
の出力を差動増幅することによって正確な測定が行なえ
る。また、中心軸に対して2方向に45度の角度をもっ
て取り付けられた歪ゲージが板バネの捩れを検出する。
As described above, the strain gauge disposed on the central axis detects the bending of the leaf spring portion. Since each strain gauge is provided in pairs on both the front and back surfaces of the temporary spring section, accurate measurements can be made by differentially amplifying the outputs of the corresponding strain gauges. Further, strain gauges attached at 45 degrees in two directions with respect to the central axis detect the torsion of the leaf spring.

捩れの場合、−一方の歪ゲージ(例えば30b)が伸び
、それと対称の位置関係にある他方の歪ゲージ(この場
合300)が縮むから、それらによって大きさと方向を
検出できる。
In the case of torsion, one strain gauge (for example 30b) expands and the other strain gauge (in this case 300) located symmetrically with it contracts, so that the magnitude and direction can be detected by them.

従って一方の板バネ部22(第4図に示す)の曲がりを
中央に配置された歪ゲージで検出することにより水平方
向の曲がりを測定でき、他方の仮バネ部24(第5図に
示す)の曲がりを同じくその中央に配置された歪ゲージ
で検出することによって垂直方向の曲がりを測定できる
Therefore, by detecting the bending of one leaf spring section 22 (shown in FIG. 4) with a strain gauge placed in the center, the bending in the horizontal direction can be measured, and the bending of the other temporary spring section 24 (shown in FIG. 5) can be measured. Vertical bending can be measured by detecting the bending with a strain gauge also placed in the center.

被測定管10の捩れは各板バネ部で両側に位置する歪ゲ
ージにより測定できる。このようにして測定用ロッド2
0により測定点を変えながら測定を続けると、被測定管
lOの変形を正確に求めることができる。
The torsion of the tube 10 to be measured can be measured by strain gauges located on both sides of each leaf spring section. In this way, the measuring rod 2
By continuing the measurement while changing the measurement point based on 0, the deformation of the tube to be measured IO can be determined accurately.

第6図は本発明の他の実施例を示すものであり、固定式
測定法の場合の一例である。これは被測定管10内に多
数の測定用ロッド14間にそれぞれ変形検出部1Bを介
在させて挿入したままにしておき各変形部の変形量を測
定する構成である。装置各部は基本的には前記実施例の
場合と同様であってよいから、対応する部分には同一符
号を付し、それらについての詳細な説明は省略する。
FIG. 6 shows another embodiment of the present invention, and is an example of a fixed measurement method. This is a configuration in which a deformation detecting section 1B is inserted between a large number of measuring rods 14 in the tube 10 to be measured, and the amount of deformation of each deformed section is measured. Since each part of the apparatus may be basically the same as in the above embodiment, corresponding parts are given the same reference numerals and detailed explanation thereof will be omitted.

以上本発明の好ましい実施例について詳述したが、本発
明はこのような構成のみに限定されるものでないこと熱
論である。一方向のみの曲がりを検出すればよい場合に
は仮バネ部は1枚のみでもよい、従って従来の傾斜計等
と組み合わせて測定装置を構成することもできる。また
(戻れを検出する必要がない場合には、歪ゲージは各板
バネ部について中心軸方向に表裏一対設けた構造でよく
、また被測定管を溝付き構造にしなくてもよい、従って
既設の埋設管等の変形測定にも適用できる。
Although preferred embodiments of the present invention have been described in detail above, it is important to note that the present invention is not limited to only such configurations. If it is necessary to detect bending in only one direction, only one temporary spring part may be used. Therefore, a measuring device can be constructed in combination with a conventional inclinometer or the like. In addition, (if there is no need to detect return), the strain gauge may have a structure in which a pair of front and back sides are provided in the central axis direction for each leaf spring part, and the tube to be measured does not have to have a grooved structure. It can also be applied to measuring deformation of buried pipes, etc.

測定用ロッドに取り付ける位置決め機構としてはバネ式
のセントライザーでもよいし車輪方式等でもよく、場合
によってはバネ等により測定用ロッドを一方の壁面に押
し付けて一定位置に保つような構成とすることもできる
The positioning mechanism attached to the measuring rod may be a spring-type centrifuge or a wheel system, and in some cases, the measuring rod may be pressed against one wall using a spring or the like to keep it in a fixed position. can.

[発明の効果] 本発明は上記のように位置決め機構を備え開な材料から
なる複数の測定用ロッド間を歪ゲージを有する仮バネ部
を介して連結した構造だから、被測定管の材質の影響を
受けず鉄管内でも測定することができるし、また地磁気
等の影響も受けず、そのため既設の水平管等の曲がりも
容易に測定することができる効果がある。
[Effects of the Invention] As described above, the present invention has a structure in which a plurality of measurement rods each having a positioning mechanism and made of an open material are connected via a temporary spring portion having a strain gauge, so that the influence of the material of the pipe to be measured can be avoided. It is also possible to measure inside iron pipes without being affected by geomagnetism, so it has the effect of easily measuring bends in existing horizontal pipes, etc.

更に本発明では測定用ロッドが屈曲自在の板バネ部を介
して結合されているため、ケーシングが捩れた場合でも
その捩れも含めて測定することが可能となり、曲がりの
測定誤差が大きくなることもないし、構造がN単で低コ
ストで製作でき、しかも操作し易いなど甚だすぐれた効
果を有するものである。
Furthermore, in the present invention, since the measuring rod is connected via a bendable leaf spring part, even if the casing is twisted, it is possible to measure the torsion including that twist, which may increase the measurement error of bending. In addition, it has an N-unit structure, can be manufactured at low cost, and has excellent effects such as ease of operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る管変形測定装置の一実施例を示す
説明図、第2図はそのn−n断面図、第3図は本発明に
係る管変形測定装置の変形検出部の詳細な一例を示す説
明図、第4図はそのIV−rV断面図、第5図はそのV
−V断面図、第6図は本発明に係る装置の他の使用状態
を示す説明図である。 10・・・被測定管、14・・・測定用ロッド、16・
・・セントライザー、1B・−・変形検出部、22゜2
4・・・仮バネ部、30・・・歪ゲージ。 特許出願人   応用地質株式会社 代  理  人     茂  見     穣第6i
!!
Fig. 1 is an explanatory diagram showing an embodiment of the pipe deformation measuring device according to the present invention, Fig. 2 is a sectional view taken along line nn, and Fig. 3 is a detailed view of the deformation detecting section of the pipe deformation measuring device according to the present invention. An explanatory diagram showing an example, FIG. 4 is a cross-sectional view of the IV-rV, and FIG.
-V sectional view and FIG. 6 are explanatory diagrams showing another usage state of the device according to the present invention. 10...Measurement tube, 14...Measurement rod, 16.
・・Centralizer, 1B・・・Deformation detection part, 22゜2
4...Temporary spring part, 30...Strain gauge. Patent Applicant: Yoyoi Geology Co., Ltd. Director Shigemi Minoru 6i
! !

Claims (1)

【特許請求の範囲】[Claims] 1、被測定管内でその軸に垂直な面内での位置を一定に
保つ位置決め機構を備え剛な材料からなる複数の測定用
ロッドを、軸に平行に配置した屈曲自在の板バネ部を介
して連結し、該板バネ部の表裏両面に歪ゲージを設けた
ことを特徴とする管変形測定装置。
1. A plurality of measurement rods made of a rigid material are equipped with a positioning mechanism that maintains a constant position in a plane perpendicular to the axis within the pipe to be measured, and are placed in parallel to the axis via a bendable leaf spring section. A pipe deformation measuring device characterized in that the plate spring portion is connected to each other and strain gauges are provided on both the front and back surfaces of the plate spring portion.
JP26632986A 1986-11-08 1986-11-08 Apparatus for measuring deformation of pipe Pending JPS63120210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26632986A JPS63120210A (en) 1986-11-08 1986-11-08 Apparatus for measuring deformation of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26632986A JPS63120210A (en) 1986-11-08 1986-11-08 Apparatus for measuring deformation of pipe

Publications (1)

Publication Number Publication Date
JPS63120210A true JPS63120210A (en) 1988-05-24

Family

ID=17429415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26632986A Pending JPS63120210A (en) 1986-11-08 1986-11-08 Apparatus for measuring deformation of pipe

Country Status (1)

Country Link
JP (1) JPS63120210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080011063A1 (en) * 2004-07-01 2008-01-17 Smith Derek R Sensor Finger Module For A Pipeline Inspection Tool
JP2008209239A (en) * 2007-02-27 2008-09-11 Kubota Corp In-pipe investigation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080011063A1 (en) * 2004-07-01 2008-01-17 Smith Derek R Sensor Finger Module For A Pipeline Inspection Tool
US8291780B2 (en) * 2004-07-01 2012-10-23 Pii Limited Sensor finger module for a pipeline inspection tool
JP2008209239A (en) * 2007-02-27 2008-09-11 Kubota Corp In-pipe investigation device

Similar Documents

Publication Publication Date Title
JP5726059B2 (en) Centralizer, passage surveying and guidance device
US6585061B2 (en) Calculating directional drilling tool face offsets
CN106088166B (en) A kind of tubular pole inclination measurement device and its inclinometer pipe are centered about component
EP0193230B1 (en) Method for determining the azimuth of a borehole
EP0541773B1 (en) Method and apparatus for determining path orientation of a passageway
US4711303A (en) Method and means for determining the subsurface position of a blowing well with respect to a relief well
JPS6057007B2 (en) Borehole surveying equipment
US6480119B1 (en) Surveying a subterranean borehole using accelerometers
AU2005220213B2 (en) Method and apparatus for mapping the trajectory in the subsurface of a borehole
CA2815195A1 (en) Bipartite sensor array
US6848189B2 (en) Method and apparatus for measuring a distance
US20170044890A1 (en) Method and Apparatus for Continuous Wellbore Curvature Orientation and Amplitude Measurement Using Drill String Bending
CN205954713U (en) Tubular pile deviational survey device and deviational survey pipe locating component placed in middle thereof
JPH10185633A (en) Underground displacement measuring device
US6041509A (en) Method and device for determining a space position of the axis of a cased well
US4245498A (en) Well surveying instrument sensor
JPS63120210A (en) Apparatus for measuring deformation of pipe
JPS63120211A (en) Apparatus for measuring deformation of pipe
JPH037884B2 (en)
JPS62266484A (en) Inspection for tip position of excavation tube using magnetic sensor
CN112698049A (en) Mounting and positioning device and calibration method for quartz flexible accelerometer in inclinometer
CA1137299A (en) Drill hole survey instrument
Smart et al. A borehole instrumentation system for monitoring strata displacement in three dimensions
Ohhashi et al. The borehole deviation measuring system using a pair of gyros
JPS58131506A (en) Detector for conduit line position measuring device