JPS6311954A - Conductive toner - Google Patents

Conductive toner

Info

Publication number
JPS6311954A
JPS6311954A JP61156707A JP15670786A JPS6311954A JP S6311954 A JPS6311954 A JP S6311954A JP 61156707 A JP61156707 A JP 61156707A JP 15670786 A JP15670786 A JP 15670786A JP S6311954 A JPS6311954 A JP S6311954A
Authority
JP
Japan
Prior art keywords
toner
conductive
magnetic
conductive layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156707A
Other languages
Japanese (ja)
Inventor
Tsuneo Handa
恒雄 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61156707A priority Critical patent/JPS6311954A/en
Publication of JPS6311954A publication Critical patent/JPS6311954A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To obtain a toner which exhibits excellent transfer efficiency as a conductive magnetic toner to be used in a simultaneous method by forming a continuous conductive layer on the surface of an insulating resin. CONSTITUTION:The continuous conductive layer 2 of 50-80% of the entire surface area of particles is formed on the surface of the particles which are prepd. by mixing a pigment 4, magnetic powder 3, resin 1 and characteristic adjusting agent and have 5-15mum grain size. The injection of the electric charge to the toner at the top end of a magnetic brush at the time of development in the simultaneous method is executed by the contact of the conductive layers 2 on the toner surfaces with each other to form conductive paths. The electrostatic transfer power to paper at the time of corona transfer is assured by the electric charge preliminarily charged to the non-conductive part or the charge remaining in the conductive layers not in contact with the paper.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はゼログラフィーで使用されるトナーに関する、 〔従来の技術〕 従来、ゼログラフィーで使用されるトナーとしては、2
α分磁気ブラシ現像法や7O−ト電啄効実現像法におけ
る絶縁性非磁性トナー、ジャンピング現像法に於ける絶
縁性磁性トナー、エレクトo7了ヴクスに於ける導電性
磁性トナーなどが知られている。中た、最近、プロセス
の大幅な簡略化の可能性を秘める、露光と珊像を同時に
行なって画備を形成する方法(以下同時法とよぶ)I’
ll。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a toner used in xerography. [Prior Art] Conventionally, toners used in xerography include 2.
Insulating non-magnetic toner for α minute magnetic brush development method and 7O-to electric effect realization imaging method, insulating magnetic toner for jumping development method, conductive magnetic toner for Electo7Rovx, etc. are known. There is. Recently, a method of forming an image by simultaneously performing exposure and coral imaging (hereinafter referred to as the "simultaneous method") I' has been developed, which has the potential of greatly simplifying the process.
ll.

各所で吟肘され1例えば特開昭58−153957に提
案されている。この方法にかいては、バイアス電圧を印
加した導電性磁性トナーのブラシで、露光中の光導電体
の表面を擦過する方法が最適な現債法と矛えちれており
、光導電体h;絶縁体として作用する時(未露光部)と
、導電体として作用する時(露光部)とで、バイアス電
圧により光導電体表面に接触しているトナーへ注入され
る電荷量が大きく異なり、その電荷Iの差が光導電体表
面への静電付着量の差となって現像h;可症となって現
像が可能となっている。
It has been extensively discussed and proposed in, for example, Japanese Patent Laid-Open No. 58-153957. This method is inconsistent with the current method, which is the most suitable method in which a brush of conductive magnetic toner to which a bias voltage is applied is used to rub the surface of the photoconductor during exposure. ;The amount of charge injected into the toner in contact with the photoconductor surface by the bias voltage differs greatly between when it acts as an insulator (unexposed area) and when it acts as a conductor (exposed area). The difference in charge I results in a difference in the amount of electrostatic adhesion to the photoconductor surface, making development possible.

〔発明が解決しようとする問題膚〕[Problem that the invention seeks to solve]

しかし、同時法で用いるトナーは、その導電性のために
、トナーの電替ht短い緩和時間で中和されてしまい残
留電荷を失って紙への静電付着力を失へので、周知のコ
ロナ転写法ではトナーの紙への転写が十分になされない
という欠点を有してい1F、、。
However, due to its electrical conductivity, the toner used in the simultaneous method is neutralized by the short relaxation time of the toner and loses its residual charge and loses its electrostatic adhesion to paper. The transfer method has the disadvantage that the toner is not sufficiently transferred to the paper.

大発明の目的は、同諺法において現偉h;可能でかつコ
ロナ転写法で普通紙への転写hS行なえるトナーを提供
することKある。
The object of the invention is to provide a toner that can be transferred to plain paper by the corona transfer method.

〔問題点を解決するための手段〕[Means for solving problems]

未発明のトナーは、トナー表面に、連続し之導′電層が
トナー全表面積の50%以上な占めていることを@徴と
する。
The uninvented toner is characterized by having a continuous conductive layer on the surface of the toner, which occupies 50% or more of the total surface area of the toner.

〔作用〕[Effect]

本発明の上2の構成によれば、同時法に於ける現像時の
磁気ブラシ先端のトナーへの電荷注入はトナー表面の導
電層同士が接触しあい導電路を形成すること疋より行な
われ、コロナ転写時の紙への静電転写力は、非導電部に
あらかじめ帯電されている電荷、あるいけ紙と接触して
いない導電層に゛残っている電荷により確伏される。
According to the second aspect of the present invention, charge injection into the toner at the tip of the magnetic brush during development in the simultaneous method is performed by the conductive layers on the toner surface coming into contact with each other to form a conductive path. The electrostatic transfer force to the paper during transfer is ensured by the charge that is pre-charged on the non-conductive part or the charge remaining on the conductive layer that is not in contact with the paper.

〔実施例〕〔Example〕

第1図に本発明のトナーの実施例を示す。第1図れ)は
外観図1軍1図(6)は断面図である。1け顔料、樹脂
が磁性粉中に分散されたもので、樹脂表fあるいは樹脂
内部が帯電制御剤・電気抵抗制御剤・流動性向上剤等の
特性調整剤が樹脂内部あるいFi樹脂表面に添加されて
いる。1け比抵抗が、I Q”、Q*(M以上となるよ
うに調整されろ。理想的には1014G、儂以上である
ことht望ましい。樹脂1の表面に連続した導電層2h
;形成されている。比抵抗は10”Q−α以下、理想的
にけ10”Q−α以下である。2の面積はトナーの表面
積の50係以上でなければならない。こればトナーチェ
インが導電路とrzる念めに必要な値である。また20
面積は80優以下でなければならない。これは転写時に
おいて導電層と紙の接触を防ぐためである。第2図に現
像時の櫃念図を示す。現像ス11−プ(マグネットロー
ル)8と感光体6(透明基板上て透明電極。
FIG. 1 shows an embodiment of the toner of the present invention. Figure 1 (6) is an external view and Figure 1 (6) is a cross-sectional view. Pigment and resin are dispersed in magnetic powder, and the surface of the resin or inside the resin is filled with property adjusting agents such as charge control agents, electrical resistance control agents, and fluidity improvers inside or on the surface of the resin. has been added. Adjust so that the single-digit resistivity is equal to or greater than IQ", Q*(M. Ideally, it should be greater than or equal to 1014G. A conductive layer 2h continuous on the surface of the resin 1.
; is formed. The specific resistance is 10"Q-α or less, ideally 10"Q-α or less. The area of 2 must be 50 times or more of the surface area of the toner. This value is necessary to ensure that the toner chain becomes a conductive path. 20 again
The area must be less than 80 U. This is to prevent the conductive layer from coming into contact with the paper during transfer. Figure 2 shows the image of the image during development. Developing strip (magnet roll) 8 and photoreceptor 6 (transparent electrode on transparent substrate).

有機光導電体、絶Jif[を順次形成したもの)の間に
トナーhtチェインを形成している。トナーチェインは
導電/117同士h;接触することにより導電路を形成
するので、感光体上の露光部にトナーが接触したと弾ト
ナー先端部に電荷が注入され、強い静電吸引力が感光体
とトナーの間に働き現像ができる。渾3図に転写時の櫃
念図を示す。紙10が現像されtトナーに押し団けられ
る。このとき導TIJj2は感光体6の側にあり、かつ
導電層の面積がある穆度小さいと導電層上に貯えられ比
電荷は紙から逃げないので転写が十分に行なえる。これ
らのプロセスh”=効率良く行なえるのl1ls )ナ
ー表面上f導電層が50〜80彊を占めていると欠であ
る。
A toner ht chain is formed between the organic photoconductor and the organic photoconductor. Toner chains are electrically conductive/117; contact forms a conductive path, so when toner comes into contact with the exposed area on the photoreceptor, charge is injected into the tip of the bullet toner, and a strong electrostatic attraction force is applied to the photoreceptor. It works between the toner and the toner to perform development. Figure 3 shows the pennant diagram at the time of transcription. Paper 10 is developed and packed with toner. At this time, if the conductor TIJj2 is on the side of the photoreceptor 6 and the area of the conductive layer is small, the specific charge stored on the conductive layer will not escape from the paper, so that sufficient transfer can be performed. These processes can be carried out efficiently (l1ls) If the conductive layer occupies 50 to 80 degrees on the surface of the toner, it is defective.

もちろんこれらの状況は確率的な状況でトナーがこのシ
チュエーションをとらない場合もあるht。
Of course, these situations are probabilistic and the toner may not take this situation.

実際には従来の導電性トナーと比べて転写効率は犬きく
向上する。
In fact, the transfer efficiency is significantly improved compared to conventional conductive toner.

より確実に理想的なシチュエーシヲンをトナー6sとる
よ5にするためてトナー磁気的異方性をけ与−すると効
果が大きい、炬4mのよへに磁化容易軸方向を導電層の
中心部と絶@表面部の由心部を結ぶ線に垂直となるよう
にとると、導電チェイン?I;確実だできる。導電チェ
インht確実にできるので、さらに導電層の面積を減ら
して転写なより確実に行なえるようにすることhiでき
る。
In order to more reliably set the ideal situation for toner 6s to 5, giving toner magnetic anisotropy has a great effect. If you take it perpendicular to the line that connects the center of gravity on the surface, it becomes a conductive chain? I: I'm sure it can be done. Since the conductive chain can be formed reliably, it is possible to further reduce the area of the conductive layer to ensure more reliable transfer.

大発明のトナーの製造プロセスの概略を次に説明する。The outline of the manufacturing process of the toner of the great invention will be explained below.

(1)  混線 樹脂、磁性粉、顔料、流動性向上剤、帯電制御剤を混合
して良く分散させる。装置け通常のスクリュー押し出し
機で良い。樹脂材料としては、ポリエステル、ポリスチ
レン、ポリエチレン、アク′11ル、エポキシ、ビニル
系樹脂などである。磁性粉としては、四三酸化鉄、r酸
化鉄、二酸化クロム、二ヴケルフエライト、鉄合金粉末
などである。
(1) Mix the crosslinking resin, magnetic powder, pigment, fluidity improver, and charge control agent and disperse well. For equipment, a normal screw extruder is sufficient. Examples of the resin material include polyester, polystyrene, polyethylene, acryl, epoxy, and vinyl resin. Examples of the magnetic powder include triiron tetroxide, r-iron oxide, chromium dioxide, ferrite, and iron alloy powder.

顔料としては、カーボンブラνり、ニグロシン、スビリ
1ドブラックなどである。流動性向上剤としては、酸化
珪票粉末、酸化チタンなどである。
Examples of pigments include carbon black, nigrosine, and black black. Examples of fluidity improvers include silicon oxide powder and titanium oxide.

帯電制御剤としては、各糧あるが電子受容性の錯体物質
rxどを選ぶ。
As the charge control agent, there are various options, but electron-accepting complex substances such as rx are selected.

混練礪の材料取り出し口に電磁石により一方向磁場を印
加すると磁気異方性をけ与できる。
Magnetic anisotropy can be imparted by applying a unidirectional magnetic field using an electromagnet to the material outlet of the kneading basin.

(2)  粉砕及び分級 スタンプミルにより粗粉砕を行ない、気流粉砕機により
微粉砕を行rj ’lと同時に分級も行なう。
(2) Grinding and Classification Coarse pulverization is performed using a stamp mill, fine pulverization is performed using an air flow pulverizer, and classification is also performed at the same time.

この時点で5〜15μm径の樹脂粉末b;得られる。At this point, a resin powder b having a diameter of 5 to 15 μm is obtained.

トナー形状は′pI=木的に破砕片であるh″−1長時
間気ηゝ 流粉砕機に5けると角がとれ几比較的丸い形状になる。
The shape of the toner is 'pI=wooden fragments h''-1 when it is passed through a pneumatic pulverizer for a long period of time, the corners are removed and the shape becomes relatively round.

更だ丸くするためには熱気流にさらせば良い。To make it even more round, just expose it to hot air.

(3)  導電層形収 導電層は金属の薄樽とし、1を空蒸着法により形改する
。導電層材料とし、ては真空蒸着可能な金属であれば何
でも良く、例えば、 Cvt、、Ni 、F6 *ある
いけそれ等の合金いずれも良く、また炭素で屯良い結果
hz得られる。トナーは静電吸着あるいけ磁界勾配によ
る吸着によりプレートあるいけベルト状の物で搬送され
ろ。磁界を利用し定場合、11 磁界勾配の方向を揃え
るとトナーの向きを揃えることができ、1!4ryJK
示し定構造htできろ。蒸着時の真空度け1(r’To
rr程度であるhz、蒸着材料の回り通入を増やすため
て10−’ Tort−程度まで真空度を落としても良
い。真空度を変えることKより蒸着の回り込みをコント
ロールで#る。蒸着層は厚い必要はな(’−0,1〜2
μmの厚さであれば良い。
(3) Conductive layer type The conductive layer is a thin metal barrel, and the shape of 1 is modified by empty deposition. The material for the conductive layer may be any metal as long as it can be vacuum deposited; for example, Cvt, Ni, F6*, or an alloy thereof, and carbon can give the best results hz. The toner is transported by a plate or a belt-like object by electrostatic attraction or attraction by a magnetic field gradient. When using a magnetic field, the direction of the toner can be aligned by aligning the direction of the 11 magnetic field gradient, and 1!4ryJK
Do you have a specific structure? Vacuum level 1 (r'To) during vapor deposition
The degree of vacuum may be lowered to about 10 Tort to increase the circulation of the vapor deposition material. By changing the degree of vacuum, the wraparound of the vapor deposition can be controlled. The deposited layer does not need to be thick ('-0,1~2
It is sufficient if the thickness is μm.

以上のプロセスで大発明のトナーが完成する。The toner of the great invention is completed through the above process.

it比で、アクリル樹脂49、四三酸化鉄A9、ニグロ
シン2を混合し、C?A−Ni合合金0ス70%穆度の
面積となるように蒸着した。このトナーを使って、同時
法のプロセス実験を行ない、転写効率を確認し,た。相
対湿!50%の条件で、103Ω.Qllの従来の導電
性トナーの転写効嘉け50俤であったが、大発明のトナ
ーの場合,磁気異方性を揃えない場合で70チ、揃えた
場合で80係と優秀な値ht得られ次。
Mix acrylic resin 49, triiron tetroxide A9, and nigrosine 2 at a ratio of C? An A-Ni alloy was deposited on an area with a 70% smoothness. Using this toner, we conducted a process experiment using the simultaneous method and confirmed the transfer efficiency. Relative humidity! At 50% condition, 103Ω. The transfer efficiency of Qll's conventional conductive toner was 50cm, but with the toner of the great invention, it has an excellent value of 70cm when the magnetic anisotropy is not aligned, and 80cm when the magnetic anisotropy is aligned. Next.

〔発明の効果〕〔Effect of the invention〕

以上述べたよ5に本発明によれば,絶縁性樹脂の表面に
連続し之導電層を形成したことだより、同時法に使われ
る導電性磁性トナーとして優れた転写効耶を示すものが
得られ友。
As stated above, according to the present invention, since a conductive layer is formed continuously on the surface of an insulating resin, it is possible to obtain a conductive magnetic toner that exhibits excellent transfer efficiency as a conductive magnetic toner used in the simultaneous method. friend.

【図面の簡単な説明】[Brief explanation of drawings]

填1図は大発明の実施例であり、(α)力;外観図であ
り,の)がl!F1面図である。 第2図は大発明のトナーの現像プロセスを示した図であ
る。 筆3図は大発明のトナーの転写プロセスを示しt図であ
る。 掌4囮は大発明の実施例の磁気異方性をっけ之場合の断
面図である。 1・・・・・・樹脂 2・・・・・・導電層 3・・・・・・磁性粉 4・・・・・・顔料 5・・・・・・侵性樹脂 6・・・・・・感光体 7・・・・・・トナー 8・・・・・・現像スリーブ 9・・・・・・光 10・・・・・・紙 11・・・・・・コロナ放電電筆 12・・・・・・磁化容易軸        以 上山
願人 セイコーエプソン株式会社 (山)           (い 第1 図 ↑ 9シ 第2図
Figure 1 shows an embodiment of the great invention, and is an external view of the (α) force; It is an F1 side view. FIG. 2 is a diagram showing the toner development process of the great invention. Figure 3 is a diagram showing the toner transfer process of the great invention. The palm 4 decoy is a cross-sectional view of the magnetic anisotropy of the embodiment of the invention. 1... Resin 2... Conductive layer 3... Magnetic powder 4... Pigment 5... Aggressive resin 6...・Photoreceptor 7...Toner 8...Developing sleeve 9...Light 10...Paper 11...Corona discharge pen 12... ...Axis of easy magnetization Above: Ganto Kamiyama Seiko Epson Corporation (Mountain) (Figure 1 ↑ Figure 2 of 9)

Claims (1)

【特許請求の範囲】[Claims] 顔料、磁性粉、樹脂、及び特性調整剤を混合した粒径5
〜15μmの粒子の表面に、該粒子の全表面積の50〜
80%の連続した導電層を形成してなることを特徴とす
る導電性トナー。
Particle size 5 mixed with pigment, magnetic powder, resin, and property modifier
50 to 15 μm of the total surface area of the particle
A conductive toner characterized by forming an 80% continuous conductive layer.
JP61156707A 1986-07-03 1986-07-03 Conductive toner Pending JPS6311954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156707A JPS6311954A (en) 1986-07-03 1986-07-03 Conductive toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156707A JPS6311954A (en) 1986-07-03 1986-07-03 Conductive toner

Publications (1)

Publication Number Publication Date
JPS6311954A true JPS6311954A (en) 1988-01-19

Family

ID=15633578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156707A Pending JPS6311954A (en) 1986-07-03 1986-07-03 Conductive toner

Country Status (1)

Country Link
JP (1) JPS6311954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207478A (en) * 1989-11-17 1991-09-10 Koninkl Ptt Nederland Nv Buffer system for performing buffer processing consisting of supply of flat object such as letter, its temporary storage and release, and buffer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207478A (en) * 1989-11-17 1991-09-10 Koninkl Ptt Nederland Nv Buffer system for performing buffer processing consisting of supply of flat object such as letter, its temporary storage and release, and buffer

Similar Documents

Publication Publication Date Title
JPH0352870B2 (en)
JPS59501840A (en) Electrography developer composition and development method
JPS6311954A (en) Conductive toner
JPS62201463A (en) Developing method
JP4016440B2 (en) Electrophotographic equipment
US4873540A (en) Image recording method
US5952101A (en) Granular charging agent and charging method and image forming method using the same
JPS6342778B2 (en)
JPS6242163A (en) Developer for developing electrostatic charge image
JPS58186765A (en) Developing method
JPS63250658A (en) One component toner
JPH01142562A (en) Developing method
JPH0257302B2 (en)
JPS5895748A (en) Transfer type magnetic toner particle
JPS60203971A (en) Magnetic one-component developing method
JP2987529B2 (en) Image forming method
JPH0623868B2 (en) Reverse development method
JPS6125157A (en) Carrier for electrostatic charge image developer
JPS63250659A (en) One component toner
JPH03121467A (en) Dry type two component developer
JPS6340167A (en) Toner
JPS62112167A (en) Toner
JPH09211991A (en) Developing method
JPH08328387A (en) Developing method
JPH0192759A (en) Developing method