JPS6311915Y2 - - Google Patents

Info

Publication number
JPS6311915Y2
JPS6311915Y2 JP1979019392U JP1939279U JPS6311915Y2 JP S6311915 Y2 JPS6311915 Y2 JP S6311915Y2 JP 1979019392 U JP1979019392 U JP 1979019392U JP 1939279 U JP1939279 U JP 1939279U JP S6311915 Y2 JPS6311915 Y2 JP S6311915Y2
Authority
JP
Japan
Prior art keywords
motor
current
voltage
automatic
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979019392U
Other languages
Japanese (ja)
Other versions
JPS55120300U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979019392U priority Critical patent/JPS6311915Y2/ja
Publication of JPS55120300U publication Critical patent/JPS55120300U/ja
Application granted granted Critical
Publication of JPS6311915Y2 publication Critical patent/JPS6311915Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は二台の直流電動機間に張設したロープ
の巻き取り巻き戻しをスムーズかつ緩みなく行う
直流電動機の制御装置に関する。
[Detailed Description of the Invention] The present invention relates to a control device for a DC motor that smoothly winds and unwinds a rope stretched between two DC motors without loosening.

従来、ドレツジヤにおけるスイングウインチの
運転やインゴツトバギー走行台車の運転を行う場
合に、二台の直流電動機間に張設したロープで上
記各負荷の搬送を行つているが、その二台の直流
電動機を共に定速度定トルクで運転することがで
きず、その運転中や停止中にロープが弛んでしま
う。このため運転開始時におけるロープの瞬間的
な緊張動作によつて、これが疲労したりその他運
転の支障をきたす欠点があつた。一方、この欠点
を除くため直流電動機の制御回路に静止張力をか
ける回路を追加する必要があり、その制御回路を
複雑かつコストアツプ化する欠点がある。
Conventionally, when operating a swing winch or an ingot buggy truck in a dredge, the above-mentioned loads are transported using ropes stretched between two DC motors. Both cannot be operated at constant speed and constant torque, and the rope becomes slack during operation or when stopped. For this reason, there is a drawback that the momentary tensioning of the rope at the start of operation causes fatigue and other problems in operation. On the other hand, in order to eliminate this drawback, it is necessary to add a circuit for applying static tension to the control circuit of the DC motor, which has the disadvantage of making the control circuit complicated and costly.

本考案はかかる従来の問題点を改善するもので
あり、ロープの停止中にはこれに静止張力をか
け、走行中には巻き取り側の直流電動機を電圧駆
動しながら巻き戻し側の直流電動機には一定のブ
レーキ電流を流して、両直流電動機間に張設した
ロープの正逆両方向の走行を弛みなくスムーズに
行う直流電動機の制御装置を提供することを目的
とする。以下に本考案の実施例を図面について説
明する。
The present invention is intended to improve such conventional problems, and when the rope is at rest, a static tension is applied to it, and when the rope is running, the DC motor on the rewinding side is driven by voltage while the DC motor on the unwinding side is driven. An object of the present invention is to provide a control device for a DC motor that allows a rope stretched between two DC motors to run smoothly in both forward and reverse directions by applying a constant braking current. Embodiments of the present invention will be described below with reference to the drawings.

第1図は走行負荷を二台の直流電動機を用いて
正逆方向に走行制御する機械系の構成を示し、こ
れらの速度制御方式としてサイリスタレオナード
方式やワードレオナード方式その他の制御方式が
任意に採用できる。ここではワードレオナード方
式を採用した制御系について説明する。1,2は
互いに直列接続された直流発電機および直流電動
機で、直流発電機1は他の駆動電動機やエンジン
などの原動機によつて駆動され、その発電電圧に
よつて直流電動機2を駆動する。3,4は他励磁
式の励磁巻線で、特に、励磁巻線3に流す電流を
調整することによつて、直流電動機2の電機子に
加わる電圧を自由かつ精細に調節できる。そして
これらは巻き戻側の駆動系を構成する。一方、
5,6は上記と同様の直流発電機および直流電動
機で、これらには励磁巻線7,8が設けられ、こ
れらが巻き取り側の駆動系を構成する。直流電動
機2,6の駆動軸9,10には互いに逆方向に駆
動されるドラム11,12が取り付けられ、これ
らには各一端を固定したロープ13が巻装され、
これをドラム11,12の一方から他方へ繰り出
したり巻き込んだりするようになつている。ロー
プ13の張架部分には走行負荷14が固定されて
いる。なお、上記ロープ13の走行方向を便宜上
巻き取り方向Aおよび巻き戻し方向Bとする。こ
こで2台の直流電動機2,6でロープ13の巻き
取りおよび巻き戻し運転を行う場合には、停止中
はロープ13が弛むことがないように静止張力を
かけ、ある方向への運転指令が与えられていると
きは、その方向へ走行負荷を移動するように、巻
き取り側の直流電動機6を電圧制御して所定の速
度で運転し、他の巻き戻し側の直流電動機2にブ
レーキ電流を流し、巻き取り側の直流電動機6に
引張られながら常にこれに一定のブレーキをかけ
るようにして動的張力を得ることである。また、
減速して停止する場合には、巻き取り側の直流電
動機6にはブレーキ電流を流してこれを減速する
と同時に、巻き戻し側の直流電動機2には一定以
上のブレーキ電流を流し、巻き取り側の直流電動
機2の減速を助けるとともに、停止時には再び両
直流電動機2,6に静止張力がかかる動作を行う
ことである。すなわち、巻き戻し運転時において
は、直流電動機2の一定のブレーキ電流を供給す
る指令を出し、一方、これが巻き取り運転に切り
換わつたとき、運転に必要な駆動電流を流す指令
が与えられるようにする。換言すれば、直流電動
機2,6のいずれも駆動運転時(ロープ13を巻
き取るとき)にはそれぞれ自動電圧制御を、ま
た、ロープ13を送り出す側の巻き戻し用として
使用されるときには自動電流制御をそれぞれ行わ
しめればよい。また、各直流電動機2,6の電圧
制御および電流制御の切り換えは、各直流電動機
2,3の電圧設定入力で判定し、自動電圧制御装
置で行う様にする。
Figure 1 shows the configuration of a mechanical system that controls running loads in forward and reverse directions using two DC motors, and the thyristor Leonard method, Ward Leonard method, and other control methods are optionally adopted as the speed control method. can. Here, a control system employing the Ward Leonard method will be explained. Reference numerals 1 and 2 denote a DC generator and a DC motor that are connected in series with each other. The DC generator 1 is driven by a prime mover such as another drive motor or an engine, and the generated voltage drives the DC motor 2. Reference numerals 3 and 4 denote separately excited type excitation windings. In particular, by adjusting the current flowing through the excitation winding 3, the voltage applied to the armature of the DC motor 2 can be freely and finely adjusted. These constitute a drive system on the rewinding side. on the other hand,
Reference numerals 5 and 6 are a DC generator and a DC motor similar to those described above, and these are provided with excitation windings 7 and 8, and these constitute a drive system on the winding side. Drums 11 and 12 that are driven in opposite directions are attached to the drive shafts 9 and 10 of the DC motors 2 and 6, and a rope 13 with one end fixed to each drum is wound around these drums.
This is fed out from one of the drums 11, 12 to the other and rolled in. A running load 14 is fixed to the tensioned portion of the rope 13. Note that the running directions of the rope 13 are referred to as a winding direction A and a winding direction B for convenience. When winding and unwinding the rope 13 using the two DC motors 2 and 6, stationary tension is applied to the rope 13 so that it does not loosen while the rope is stopped, and a driving command in a certain direction is applied. When the current is given, the DC motor 6 on the winding side is voltage controlled and operated at a predetermined speed so as to move the traveling load in that direction, and the braking current is applied to the DC motor 2 on the other winding side. The purpose is to obtain dynamic tension by constantly applying a constant brake while being pulled by the DC motor 6 on the winding and winding side. Also,
When decelerating and stopping, a brake current is applied to the DC motor 6 on the winding side to decelerate it, and at the same time, a brake current above a certain level is applied to the DC motor 2 on the rewinding side to reduce the speed of the winding side. This is to help decelerate the DC motor 2 and to perform an operation in which static tension is applied to both DC motors 2 and 6 again when the motor is stopped. That is, during rewinding operation, a command is issued to supply a constant braking current to the DC motor 2, while when switching to winding operation, a command is given to supply the drive current necessary for operation. Make it. In other words, both DC motors 2 and 6 are under automatic voltage control during drive operation (when winding up the rope 13), and automatic current control when used for unwinding the rope 13 on the sending side. All you have to do is to do each of them. Further, switching between voltage control and current control of each DC motor 2, 6 is determined by the voltage setting input of each DC motor 2, 3, and is performed by an automatic voltage control device.

第2図はかかる動作を実現する制御系の回路図
であり、これによつて直流電動機2,6および直
流発電機1,5の界磁巻線3,7に、第3図に示
す電圧電流を供給する。第2図において、15は
可変抵抗よりなる制御回路用電圧設定器で、それ
ぞれ左右方向にいつぱい回転したとき+15Vおよ
び−15Vの制御電圧が得られる。この電圧設定器
15には巻き取り側および巻き戻し側の二系統の
制御回路が接続されている。まず、16は直流電
動機6制御用の自動電圧調整アンプで、その入力
側には上記の設定電圧および駆動制御用の電圧検
出信号が入力される。これらの比較出力信号は駆
動制御用の電流検出信号とともに自動電流調整ア
ンプ17に入力される。さらに、その比較出力信
号が界磁制御アンプ(図示しない)に供給され、
界磁巻線7に第3図dに示す界磁電流を得るよう
に作用する。一方、18は巻き戻し側の信号極性
反転アンプで、その出力信号および直流電動機2
の駆動制御用の電圧検出信号が自動電圧調整アン
プ19に入力され、その比較出力信号および駆動
制御用の電流検出信号が自動電流調整アンプ20
に入力される。その比較出力信号は界磁制御アン
プ(図示しない)に供給され、界磁巻線3に第3
図gに示す界磁電流を得るように作用する。ここ
で上記ロープ13を直流電動機2,6の駆動によ
り走行させ、負荷14を右方(矢印A方向)へ移
動する場合には、電圧設定器15を右回転し適当
な設定電圧を自動電圧調整アンプ16に加える。
ここでこの設定電圧が電圧検出信号と比較され、
自動調整された電圧出力信号を得る。また、この
信号は自動電流調整アンプ17にて電流検出信号
と比較され、その比較出力信号によつて界磁電流
制御アンプを制御する。すなわち、直流電動機6
はこれら電圧電流出力信号に対応した第3図b,
cに示す電圧電流によつて駆動制御される。一
方、既述の設定電圧は極性反転アンプ18を経て
他の自動電圧調整アンプ19にも入力され、上記
同様に自動調整された電圧出力信号が得られ、こ
れが自動電流調整アンプ20に加えられて界磁電
流制御信号を経て、励磁巻線3の制御アンプを制
御する。そして上記負荷14の走行を第3図aで
示す速度で行わせる場合には、既述のように界磁
制御アンプによつて制御される直流電動機2,6
の界磁電流を第3図d,eに示すようにする。こ
れによつて各直流電動機2,6の駆動電圧はt1
t2内で徐々に立ち上がり、第3図b,eに示すよ
うにt2で定電圧運転となる。すなわち、これらは
定速度回転する。このとき、各直流電動機に流れ
る駆動電流は、第3図c,fに示すように大きな
起動トルクを得るためにパルス的に立ち上がるほ
ぼ等しい大きな電流となる。なお、第3図cに示
す駆動電流はt1以前ではロープ13に静止張力を
与える逆方向のブレーキ電流となつている。そし
て直流電動機2,6が定速度回転してロープ13
を定速走行しているt2〜t3内では駆動電圧は一定
であり、駆動電流も定常値を示す。しかし、巻き
戻し側の直流電動機2に流れる駆動電流は上記の
立ち上がり後大きく立ち下がつて、右方向への駆
動力を吸収するブレーキ電流に変わり、両直流電
動機2,6の定速駆動時に直流電動機2のみに一
定のこのブレーキ電流を供給する。なお、かかる
電圧電流特性を得るための界磁電流は第3図d,
gに示す。したがつて、この定速運転時間中ロー
プ13は一定の張力で負荷14を運ぶ。一方、こ
の負荷14が所定位置に来て、これを停止する場
合には、上記の電圧設定器15を左回転し電圧設
定値を例えばOボルトにする。このとき既述の制
御回路によつて界磁電流はt3〜t4内で次第に立ち
下がり、両直流電動機2,6の回転速度および駆
動電圧も同様に立ち下がり、遂にはそれぞれ停止
およびOVとなる。しかし、直流電動機6にはこ
れを以前の回転方向に付勢するブレーキ電流が流
され、一方、直流電動機2にはこれを逆方向に駆
動する励磁電流が流されている。かかる励磁電流
はt4〜t5間で一定に維持されており、これら両励
磁電流によつてロープ13が緊張されたままバラ
ンスして止つている。続いて、負荷14を逆方向
に搬送するようにロープ13を左方(第1図中、
矢印B方向)へ移動する場合には、電圧設定器1
5を左方向に回転し、上記制御回路によつて、第
3図d,gのt5〜t6に示す励磁電流を得る。この
励磁電流は両直流電動機2,6を上記とは逆方向
に駆動するために、負方向に加えられる。したが
つて、両電動機2,6の回転速度および駆動電圧
はともに徐々に大きく立ち下がり、駆動電流も第
3図c,fに示すように立ち下がる。しかし、回
転速度および駆動電圧が一定となる時間t6〜t7
は駆動電流は立ち上つて戻り、一定値を維持する
が、直流電動機6の励磁電流は直流電動機2の回
転に対向する一定のブレーキ電流となつており、
両直流電動機2,6間のロープ13を緊張して巻
き戻し方向に走行する。この場合において、直流
電動機2は直流電動機6の励磁電流より充分大で
ある。ここで負荷14が所定位置に達し、ロープ
13の矢印B方向の走行を停止するときは、各励
磁電流はt7〜t8間で立ち上がるが、励磁巻線7に
おけるそれは立ち上がり速度が幾分大きく、両直
流電動機2,6の回転速度および駆動電圧がOv
になる時点では直流電動機6を巻き取り方向に駆
動する方向に立ち上がり、直流電動機2の励磁電
流は直流電動機を未だ巻き戻し方向に付勢する値
に保持される。なお、このとき駆動電流は直流電
動機2,6をともに急速に停止させるように、パ
ルス状に立ち上がりの大きい電流となつている。
しかし、t8後では直流電動機2には巻き戻し方向
のブレーキ電流が流れ、ロープ13の張力を一定
に保つている。
FIG. 2 is a circuit diagram of a control system that realizes such an operation, which causes the voltage and current shown in FIG. supply. In FIG. 2, reference numeral 15 denotes a control circuit voltage setter made of a variable resistor, which provides control voltages of +15V and -15V when fully rotated in the left and right directions, respectively. Two control circuits, one on the winding side and one on the rewinding side, are connected to the voltage setting device 15. First, 16 is an automatic voltage adjustment amplifier for controlling the DC motor 6, and the above-mentioned set voltage and a voltage detection signal for drive control are input to the input side of the amplifier. These comparison output signals are input to the automatic current adjustment amplifier 17 together with a current detection signal for drive control. Furthermore, the comparison output signal is supplied to a field control amplifier (not shown),
It acts on the field winding 7 to obtain the field current shown in FIG. 3d. On the other hand, 18 is a signal polarity inversion amplifier on the rewinding side, and its output signal and DC motor 2
The voltage detection signal for drive control is input to the automatic voltage adjustment amplifier 19, and the comparison output signal and the current detection signal for drive control are input to the automatic current adjustment amplifier 20.
is input. The comparison output signal is supplied to a field control amplifier (not shown), and the third
It acts to obtain the field current shown in Figure g. Here, when the rope 13 is run by the drive of the DC motors 2 and 6 and the load 14 is moved to the right (in the direction of arrow A), the voltage setting device 15 is rotated clockwise to automatically adjust the set voltage. Add to amplifier 16.
Here this set voltage is compared with the voltage detection signal,
Get an auto-adjusted voltage output signal. Further, this signal is compared with a current detection signal in the automatic current adjustment amplifier 17, and the field current control amplifier is controlled by the comparison output signal. That is, the DC motor 6
are the voltage and current output signals in FIG. 3b,
The drive is controlled by the voltage and current shown in c. On the other hand, the above-mentioned set voltage is also input to another automatic voltage adjustment amplifier 19 via the polarity inversion amplifier 18, and an automatically adjusted voltage output signal is obtained in the same manner as described above, which is added to the automatic current adjustment amplifier 20. The control amplifier of the excitation winding 3 is controlled via the field current control signal. When the load 14 is caused to run at the speed shown in FIG. 3a, the DC motors 2 and 6 are controlled by the field control amplifier as described above.
The field current of is set as shown in Fig. 3d and e. As a result, the driving voltage of each DC motor 2, 6 is t 1 ~
The voltage gradually rises within t 2 and becomes constant voltage operation at t 2 as shown in Fig. 3 b and e. That is, they rotate at a constant speed. At this time, the driving current flowing through each DC motor becomes a substantially equal large current that rises in a pulse manner to obtain a large starting torque, as shown in FIG. 3c and f. Note that the drive current shown in FIG. 3c is a braking current in the opposite direction that applies static tension to the rope 13 before t1 . Then, the DC motors 2 and 6 rotate at a constant speed, and the rope 13
During the period from t 2 to t 3 when the vehicle is traveling at a constant speed, the drive voltage is constant and the drive current also shows a steady value. However, the drive current flowing through the DC motor 2 on the rewinding side drops significantly after the rise described above, and changes to a braking current that absorbs the drive force in the right direction. This constant braking current is supplied only to the electric motor 2. The field current to obtain such voltage-current characteristics is shown in Figure 3d,
Shown in g. The rope 13 therefore carries the load 14 under constant tension during this constant speed operation period. On the other hand, when the load 14 reaches a predetermined position and is to be stopped, the voltage setting device 15 is rotated counterclockwise to set the voltage setting value to, for example, O volts. At this time, the field current gradually falls within t 3 to t 4 by the control circuit described above, and the rotational speed and drive voltage of both DC motors 2 and 6 similarly fall, and finally they stop and reach OV. Become. However, a braking current is applied to the DC motor 6 to urge it in the previous direction of rotation, while an excitation current is applied to the DC motor 2 to drive it in the opposite direction. This excitation current is maintained constant between t 4 and t 5 , and the rope 13 remains balanced and tensioned by both of these excitation currents. Next, the rope 13 is moved to the left (in Fig. 1) so as to transport the load 14 in the opposite direction.
When moving in the direction of arrow B), voltage setting device 1
5 to the left, and the excitation current shown at t 5 to t 6 in FIG. 3 d and g is obtained by the control circuit. This excitation current is applied in the negative direction to drive both DC motors 2 and 6 in the opposite direction to the above. Therefore, the rotational speeds and drive voltages of both electric motors 2 and 6 gradually decrease significantly, and the drive current also decreases as shown in FIGS. 3c and 3f. However, during time t 6 to t 7 when the rotational speed and drive voltage are constant, the drive current rises back up and maintains a constant value, but the excitation current of the DC motor 6 remains at a constant value opposite to the rotation of the DC motor 2. It becomes a brake current,
The rope 13 between the two DC motors 2 and 6 is tensioned to run in the unwinding direction. In this case, the excitation current of the DC motor 2 is sufficiently larger than the excitation current of the DC motor 6. When the load 14 reaches a predetermined position and the rope 13 stops running in the direction of arrow B, each exciting current rises between t7 and t8 , but the rising speed of the exciting current in the exciting winding 7 is somewhat faster. , the rotational speed and driving voltage of both DC motors 2 and 6 are Ov
At the point in time, the current rises in the direction of driving the DC motor 6 in the winding direction, and the excitation current of the DC motor 2 is maintained at a value that still urges the DC motor in the unwinding direction. At this time, the drive current is a pulsed current with a large rise so as to rapidly stop both the DC motors 2 and 6.
However, after t8 , a braking current in the rewinding direction flows through the DC motor 2, keeping the tension of the rope 13 constant.

なお、第2図に示す自動電圧調整アンプ19は
巻き取り側制御回路の自動電圧調整アンプ16と
は逆極性(例えば正極性)の設定電圧が供給され
た場合に、その出力極性は適当な負極性のVL
規制されるようにして、次段の自動電流調整アン
プ20に対して一定の設定信号を与え、巻き戻し
側の直流電動機2を電流制御して、既述のブレー
キ電流を得るような出力特性をもつように設計さ
れる。このときの自動電圧調整アンプ19の出力
特性図は後述の第5図Aである。逆に、ロープ1
3を直流電動機2によつて巻き戻すときには、上
記制御回路の動作は全く逆になり、したがつて第
3図c,fに示すt6〜t7間のブレーキ電流および
t2〜t3のブレーキ電流は大きさ等しく方向が異
る。また、停止時には設定電圧がOでも自動電圧
調整アンプ16,19の出力は第5図Aに示すよ
うに一定の負値であるので、出力電圧VL相当の
静止張力が得られる。
Note that when the automatic voltage adjustment amplifier 19 shown in FIG. 2 is supplied with a set voltage of opposite polarity (for example, positive polarity) to the automatic voltage adjustment amplifier 16 of the winding side control circuit, its output polarity is set to an appropriate negative polarity. A constant setting signal is given to the automatic current adjustment amplifier 20 in the next stage , and the current of the DC motor 2 on the rewinding side is controlled so that the brake current as described above is obtained. It is designed to have such output characteristics. The output characteristic diagram of the automatic voltage adjustment amplifier 19 at this time is shown in FIG. 5A, which will be described later. On the contrary, rope 1
3 is rewinded by the DC motor 2, the operation of the control circuit is completely reversed, so that the brake current and
The brake currents from t 2 to t 3 are equal in magnitude and different in direction. Furthermore, even when the set voltage is O when stopped, the outputs of the automatic voltage adjustment amplifiers 16 and 19 are constant negative values as shown in FIG. 5A, so that a static tension equivalent to the output voltage V L can be obtained.

なお、本考案の制御を行なうには、自動電圧調
整アンプ16,19の詳細をそれぞれ第4図のよ
うな構成とする。すなわち、これらのアンプは第
2図の設定電圧+と電圧検出値−の差が入る入力
抵抗Rin、増幅器A、コンデンサCf、抵抗Rf、ダ
イオードD1,D2、リミツタ調整用設定器VR1
VR2、可変抵抗器VR3よりなる。接点RYが現在位
置「off」にある時は第5図Aの入出力特性とな
つて、片側の直流電動機は自動電圧調整による駆
動、他側の直流電動機は自動電流調整によるブレ
ーキ運転となり、一方、接点RYを「ON」の位
置にすれば両直流電動機共自動電圧調整運転とな
り、その入出力特性は第5図Bとなる。
In order to carry out the control according to the present invention, the details of the automatic voltage adjustment amplifiers 16 and 19 are respectively configured as shown in FIG. In other words, these amplifiers include an input resistor Rin that receives the difference between the set voltage + and the detected voltage value - shown in Figure 2, amplifier A, capacitor Cf, resistor Rf, diodes D 1 , D 2 , limiter adjustment setting device V R1 ,
It consists of V R2 and variable resistor V R3 . When the contact RY is in the current position "off", the input/output characteristics shown in Figure 5A are obtained, the DC motor on one side is driven by automatic voltage adjustment, the DC motor on the other side is in brake operation by automatic current adjustment, and the other side is in brake operation with automatic current adjustment. If the contact RY is set to the "ON" position, both DC motors will operate with automatic voltage adjustment, and the input/output characteristics will be as shown in Figure 5B.

以上のように、本考案によれば、制御回路に加
える速度設定信号の切り換え操作のみで、二つの
直流電動機の駆動電圧・電流の調節でき、これに
よつて往復走行するロープの走行中および停止時
に所期のテンシヨンを維持することができる。従
つて、ロープの弛みによつて起動時に受ける機械
損傷や疲労を防止することができ、その他直流電
動機が受けるその他の支障を防止することができ
る。また、かかる効果を実現する制御手段は、例
えばこれを集積回路化したものにて簡単に構成で
き、二つの直流電動機を一つの信号設定器の連続
操作によつて手動また自動によつて容易に制御で
きる。したがつて、静止張力を得るための制御回
路や多接点形の切換スイツチを要せず、構成の小
形化ならびに単純化が図れ接点の接触不良事故な
どが未然に防止される。
As described above, according to the present invention, the driving voltage and current of the two DC motors can be adjusted simply by switching the speed setting signal applied to the control circuit, and this allows the rope to be reciprocated while the rope is running and when it is stopped. Sometimes the desired tension can be maintained. Therefore, it is possible to prevent mechanical damage and fatigue caused by slack in the rope during startup, and to prevent other problems caused to the DC motor. Furthermore, the control means for realizing such an effect can be easily configured by, for example, an integrated circuit, and two DC motors can be easily controlled manually or automatically by continuous operation of one signal setting device. Can be controlled. Therefore, there is no need for a control circuit or a multi-contact type changeover switch to obtain static tension, the structure can be made smaller and simpler, and accidents such as contact failures can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案にかかる直流電動機の制御装置
の概略を示す説明図、第2図は同じくその制御回
路図、第3図a乃至gは直流電動機の速度および
駆動電圧・電流ならびに直流発電機の励磁電流の
変化の状況を示すタイムチヤート、第4図は同じ
く自動電圧調整アンプの詳細図、第5図A,Bは
その出力特性図である。 2,6……直流電動機、13……ロープ、14
……負荷、15……駆動信号設定器、16,19
……自動電圧調整アンプ、17,20……自動電
流調整アンプ。
Fig. 1 is an explanatory diagram showing an outline of the control device for a DC motor according to the present invention, Fig. 2 is a control circuit diagram thereof, and Figs. 3 a to g show the speed, driving voltage and current of the DC motor, and the DC generator. FIG. 4 is a detailed diagram of the automatic voltage adjustment amplifier, and FIGS. 5A and 5B are its output characteristic diagrams. 2, 6...DC motor, 13...rope, 14
...Load, 15...Drive signal setting device, 16, 19
...Automatic voltage adjustment amplifier, 17,20...Automatic current adjustment amplifier.

Claims (1)

【実用新案登録請求の範囲】 二台の直流電動機間に張設したロープを交互に
巻き取つて、ロープに付けた負荷を正逆方向に走
行せしめる装置の、前記直流電動機を駆動制御す
る直流電動機の制御装置において、 前記二台の直流電動機の駆動制御用の駆動信号
設定器と、 前記駆動信号設定器の出力信号および前記二台
のうち一方の直流電動機の電圧検出信号とが入力
され、該入力に応じて出力が変化するとともに入
力が所定値以下のとき一定出力を発する第1の自
動電圧調整アンプと、 前記駆動信号設定器の出力を反転した信号およ
び前記二台のうち他方の直流電動機の電圧検出信
号とが入力され、該入力に応じて出力が変化する
とともに入力が所定値以下のとき一定出力を発す
る第2の自動電圧調整アンプと、 前記第1の自動電圧調整アンプの出力と前記一
方の直流電動機の電流検出信号との偏差を増幅す
る第1の自動電流調整アンプと、 前記第2の自動電圧調整アンプの出力と前記他
方の直流電動機の電流検出信号との偏差を増幅す
る第2の自動電流調整アンプとを備え、 前記第1の自動電流調整アンプの出力に基づい
て前記一方の直流電動機を制御するとともに、第
2の自動電流調整アンプの出力に基づいて前記他
方の直流電動機を制御し、少くとも一方の直流電
動機の定電圧駆動時および停止時には、他方の直
流電動機にこれを逆方向に駆動するブレーキ電流
を流すようにしたことを特徴とする直流電動機の
制御装置。
[Claims for Utility Model Registration] A DC motor that drives and controls a DC motor of a device that alternately winds a rope stretched between two DC motors and causes a load attached to the rope to travel in forward and reverse directions. In the control device, a drive signal setting device for drive control of the two DC motors; an output signal of the drive signal setting device and a voltage detection signal of one of the two DC motors are input; a first automatic voltage adjustment amplifier whose output changes according to the input and which emits a constant output when the input is below a predetermined value; a signal obtained by inverting the output of the drive signal setting device; and the other of the two DC motors. a second automatic voltage adjustment amplifier that receives a voltage detection signal of the first automatic voltage adjustment amplifier, changes its output according to the input, and emits a constant output when the input is less than a predetermined value; and the output of the first automatic voltage adjustment amplifier. a first automatic current adjustment amplifier that amplifies the deviation between the current detection signal of the one DC motor; and a first automatic current adjustment amplifier that amplifies the deviation between the output of the second automatic voltage adjustment amplifier and the current detection signal of the other DC motor. a second automatic current adjustment amplifier, the one DC motor is controlled based on the output of the first automatic current adjustment amplifier, and the other DC motor is controlled based on the output of the second automatic current adjustment amplifier. A control device for a DC motor, characterized in that the electric motor is controlled, and at least when one DC motor is driven at a constant voltage and when the other DC motor is stopped, a braking current is applied to the other DC motor to drive the other DC motor in the opposite direction.
JP1979019392U 1979-02-16 1979-02-16 Expired JPS6311915Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979019392U JPS6311915Y2 (en) 1979-02-16 1979-02-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979019392U JPS6311915Y2 (en) 1979-02-16 1979-02-16

Publications (2)

Publication Number Publication Date
JPS55120300U JPS55120300U (en) 1980-08-26
JPS6311915Y2 true JPS6311915Y2 (en) 1988-04-06

Family

ID=28848403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979019392U Expired JPS6311915Y2 (en) 1979-02-16 1979-02-16

Country Status (1)

Country Link
JP (1) JPS6311915Y2 (en)

Also Published As

Publication number Publication date
JPS55120300U (en) 1980-08-26

Similar Documents

Publication Publication Date Title
US4461958A (en) Drive system and method for automotive vehicles, especially floor vehicles such as forklift trucks
KR830002153B1 (en) Motor controller
US2437973A (en) Electrical tensioning control system
CA2159405C (en) Procedure for starting an elevator
JPS6311915Y2 (en)
US4658189A (en) Series connected series motors for independent loads
JPS59124690A (en) Method of controlling vertical motion of winding of movable travelling body
US2462171A (en) Generator fed motor control system
US3078406A (en) Multi-range hoist system
US2175820A (en) Means for supplying current to direct current electric motors
JPS6050714B2 (en) Hanging load cutting speed control device
US3093779A (en) D. c. adjustable speed hoist drive with motor field control
JP2593302Y2 (en) Winding machine tension control device
US2516001A (en) Torque control system for electric reel motors
US2743404A (en) Magnetic amplifier for a generator fed motor system
US2476883A (en) Cable laying apparatus
JPS6226825Y2 (en)
JPH028559B2 (en)
JPH0678589A (en) Speed controller for dc motor
JPH10191689A (en) Inverter apparatus
JPH0235375B2 (en)
SU1425170A1 (en) Method of moving loads along varying-incline path
JPS5815282B2 (en) Drive control device for material transport vehicle
SU152804A1 (en)
JPS60252593A (en) Method of controlling tension of rope in winch