JPS63118637A - Infrared scattering agent - Google Patents

Infrared scattering agent

Info

Publication number
JPS63118637A
JPS63118637A JP62138128A JP13812887A JPS63118637A JP S63118637 A JPS63118637 A JP S63118637A JP 62138128 A JP62138128 A JP 62138128A JP 13812887 A JP13812887 A JP 13812887A JP S63118637 A JPS63118637 A JP S63118637A
Authority
JP
Japan
Prior art keywords
infrared
scattering agent
refractive index
inorg
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62138128A
Other languages
Japanese (ja)
Other versions
JPH0545899B2 (en
Inventor
Mikio Kaihara
貝原 巳樹雄
Hiroaki Mametsuka
豆塚 広章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Publication of JPS63118637A publication Critical patent/JPS63118637A/en
Publication of JPH0545899B2 publication Critical patent/JPH0545899B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remove background and to enhance analysis accuracy by using a solid soln. or dispersing element of >=2 kinds of inorg. materials which have specific refractive indices, have small surface reflection losses and allow transmission of IR rays to prepare an IR scattering agent. CONSTITUTION:>=2 Kinds of the inorg. materials which have the refractive indices varying from each other by >=0.1, have <=1/3 surface reflection losses of the inorg. materials and allow transmission of IT rays are used. For example, CsI (1.738 refractive index), CsBr (1.662 refractive index), KBr (1.526 refractive index), etc., are used as said inorg. materials. Fine powders of >=2 kinds of the inorg. materials are mixed and are molded to a disk-shaped filter to obtain the IR scattering agent. Since absorption spectra are measured by using such IR scattering agent, the background of a heterogeneous sample is removed and the analysis accuracy is enhanced. In addition, uniform heating by using an IR lamp is permitted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は赤外線利用機材、機器等に広く利用できる赤外
線散乱剤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an infrared scattering agent that can be widely used in infrared utilizing equipment, devices, and the like.

〔従来の技術〕[Conventional technology]

従来、赤外線の散乱手段は赤外線利用機材あるいは機器
等に応じ設けられていた場合とそうでない場合があった
。例えば赤外線吸収スペクトル測定機器には石炭粉末な
どの不均一系試料を測定する際にも設けられておらず、
熱源として利用される赤外線ランプにも付加されいなか
った。また、特殊な分析を目的とした赤外線スペクトル
測定機器において使用されている積分球は内面の金メツ
キ表面を粗面とし、建物の窓ガラスの場合には表面を粗
面あるいは凹凸面とし、電気ストーブにおいては反射板
を設けるなどの赤外線散乱手段が講じられていた。
Conventionally, an infrared scattering means has been provided depending on the equipment or equipment using infrared rays, and other times it has not been provided. For example, infrared absorption spectrometers are not equipped even when measuring heterogeneous samples such as coal powder.
Nor was it added to infrared lamps used as heat sources. In addition, integrating spheres used in infrared spectrum measurement equipment for special analysis purposes have a rough gold-plated inner surface, and building window glass has a rough or uneven surface. Infrared scattering measures such as providing a reflector were taken.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の結果それぞれの分野に応じて種々の問題を生じて
いた0石炭粉末などの不均一系試料の赤外線吸収スペク
トルを測定する場合には、得られたスペクトルから直線
とか曲線を用いてベースラインを差し引くことによりバ
ックグラウンドを消去していた(大沢祥拡、村松秀彦、
藤井修治、燃協誌、 48.703(1969)、  
Peter R,Solomon  and R。
As a result of the above, various problems have arisen depending on the field.When measuring the infrared absorption spectrum of a heterogeneous sample such as coal powder, a baseline can be drawn from the obtained spectrum using a straight line or curve. The background was erased by subtracting it (Yoshihiro Osawa, Hidehiko Muramatsu,
Shuji Fujii, Nenkyo Journal, 48.703 (1969),
Peter R, Solomon and R.

bert M、Carangelo、Fuel、61.
663(1982))がこの方法では真のバックグラウ
ンドは不明確であり、バックグラウンドとしての直線や
曲線の決定を人間の勘に頼らざるをえないところから分
析精度に問題があった。また、赤外線ランプから出射さ
れる赤外光が不均一であったため局所的に加熱され用途
に応じてそれぞれの問題点を生じていた。窓ガラスも散
乱が不充分であって局所的に加熱されやすく電気ストー
ブも同様の問題を有していた。
bert M., Carangelo, Fuel, 61.
663 (1982)), but in this method, the true background was unclear and the determination of straight lines and curves as the background had to rely on human intuition, which caused problems in analytical accuracy. Furthermore, since the infrared light emitted from the infrared lamp was non-uniform, it was locally heated, causing problems depending on the application. Window glass also has insufficient scattering and tends to be locally heated, and electric stoves have similar problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれらの問題点を解決する手段を提供するもの
であり、少なくとも一のものの屈折率が他の無機物の屈
折率と0.1以上具なり、表面反射損失が1/3以下で
、かつ赤外光を透過しうる、屈折率の異なる2種以上の
無機物よりなる固溶体あるいは均一分散体によって形成
された赤外線散乱剤が赤外光の散乱に極めてすぐれてい
るという知見に基づいている。
The present invention provides a means to solve these problems, and the refractive index of at least one inorganic material is 0.1 or more than that of the other inorganic material, the surface reflection loss is 1/3 or less, and This is based on the knowledge that an infrared scattering agent made of a solid solution or uniform dispersion of two or more inorganic substances with different refractive indexes that can transmit infrared light is extremely effective in scattering infrared light.

この赤外線散乱剤は屈折率の異なる2種以上の無機物か
ら形成され、少なくともその一のものの屈折率は他の無
機物の屈折率と0.1以上具ならなくてはならない0次
に、この赤外線散乱剤を形成する無機物はいずれも表面
反射損失が少なくかつ赤外光を透過しうるものでなけれ
ばならない。表面反射損失は少なければ少ない程好まし
く、1/3以下、なるべく1/3以下であることが好ま
しい。
This infrared scattering agent is formed from two or more types of inorganic substances having different refractive indexes, and the refractive index of at least one of them must be 0.1 or more than the refractive index of the other inorganic substance. Any inorganic material forming the agent must have low surface reflection loss and must be able to transmit infrared light. The smaller the surface reflection loss, the better, and it is preferably 1/3 or less, preferably 1/3 or less.

波長としては用途にもよるが一般に600〜4000c
m−’程度の範囲で透過性を有することが好ましい。透
過性はなるべく高いほうがよく、例えば厚さ5鮒で透過
率60%以上あるものが好ましい。
The wavelength generally ranges from 600 to 4000c, although it depends on the application.
It is preferable to have transparency in a range of about m-'. The transmittance should be as high as possible; for example, it is preferable to have a transmittance of 60% or more at a thickness of 5 mm.

このような赤外線散乱剤用無機物に適するものの例とし
てはNaCl2(屈折率1.519)、KBr(屈折率
1,526)、KH2−5(屈折率2.371)、KH
2−6(屈折率2.177)、AgCjl!(屈折率1
.980)、Cs1(屈折率1.738)、C5Br(
屈折率1.662)、Si(屈折率3.422)などを
挙げることができる。−の無機物にKBrを用いた場合
には他の無機物としてはKH2−5、KH2−6、Ag
Cj!、SL CsL CsBr等が適当であり、Na
C1は屈折率の差が小さすぎるため適当でない。これら
のなかではCsI及びCsBrが特に好ましい。KH2
−5及びKH2−6は表面反射損失が24〜28%と大
きく、Ag(lは表面反射損失が20%と比較的大きい
ことに加えて測定波長域の両端部における透過率が大き
くない点で問題が残る。これらと組合わせる他の無機物
としては例えばKBr、NaCl2などが適当である。
Examples of inorganic materials suitable for such infrared scattering agents include NaCl2 (refractive index 1.519), KBr (refractive index 1,526), KH2-5 (refractive index 2.371), and KH2-5 (refractive index 2.371).
2-6 (refractive index 2.177), AgCjl! (Refractive index 1
.. 980), Cs1 (refractive index 1.738), C5Br (
(refractive index: 1.662), Si (refractive index: 3.422), and the like. - When KBr is used as the inorganic substance, other inorganic substances include KH2-5, KH2-6, Ag
Cj! , SL CsL CsBr etc. are suitable, and Na
C1 is not suitable because the difference in refractive index is too small. Among these, CsI and CsBr are particularly preferred. KH2
-5 and KH2-6 have a large surface reflection loss of 24 to 28%, while Ag(l has a relatively large surface reflection loss of 20%, and the transmittance at both ends of the measurement wavelength range is not large. Problems remain.Other inorganic substances suitable for combination with these include, for example, KBr, NaCl2, etc.

−の無機物にKCl、NaC1,Klなどを用いた場合
にもこれと組合わせる適当な無機物が同様に選択される
- When KCl, NaCl, Kl, etc. are used as the inorganic substance, an appropriate inorganic substance to be combined with the inorganic substance is similarly selected.

赤外線散乱剤用無機物は2種に限定されるものではなく
、3種以上を混合して用いることもできる。
The inorganic substances for the infrared scattering agent are not limited to two types, and a mixture of three or more types can also be used.

赤外線散乱剤用無機物の混合比は例えば、石炭等の不均
一系試料の赤外線吸収スペクトルをKBrBr法で測定
する際に窓材としてCsl −KBrを用いた場合には
第6〜7図に示すようにCs150〜60%程度が適当
である。他の場合には適当な混合比を実験によって求め
ればよい。
For example, when Csl-KBr is used as the window material when measuring the infrared absorption spectrum of a heterogeneous sample such as coal by the KBrBr method, the mixing ratio of the inorganic substance for the infrared scattering agent is as shown in Figures 6 and 7. Appropriately, Cs is about 150 to 60%. In other cases, an appropriate mixing ratio may be determined by experiment.

本発明の赤外線散乱剤は上記の無機物を混合してCsl
なとのように固溶体としであるいはStなどのように均
一分散体とすることによって製造する。これらは真空プ
レス成型によって形成してもよくまた加熱融解して形成
してもよい。均一分散体にする場合の粒径は1〜100
μm程度、特に3〜20μ階程度が好ましい。
The infrared scattering agent of the present invention is prepared by mixing the above-mentioned inorganic substances.
It is produced by forming it into a solid solution, such as St, or by forming it into a uniform dispersion, such as St. These may be formed by vacuum press molding or by heating and melting. When making a uniform dispersion, the particle size is 1 to 100.
The thickness is preferably on the order of μm, particularly on the order of 3 to 20 μm.

赤外線散乱剤の厚さは用途にもよるが通常0.5〜5I
Ia1程度が適当である。この赤外線散乱剤は用途等に
応じ片面あるいは両面に透明支持板を積層してもよい。
The thickness of the infrared scattering agent depends on the application, but is usually 0.5 to 5I.
Approximately Ia1 is appropriate. This infrared scattering agent may be laminated with a transparent support plate on one or both sides depending on the use.

この透明支持板にはガラス板、ポリエチレンテレフタレ
ート、ポリカーボネート、アクリル等の透明プラスチッ
ク板を利用することができる。積層方法としては、ガラ
ス板等の場合には赤外線散乱剤を融解して塗着してもよ
く、あるいは接着剤を用いて接着してもよい。プラスチ
ックの場合にはプラスチックを融解して赤外線散乱剤に
塗着してもよい。分散体の場合には赤外線透過性の適当
なバインダーを用いて支持体に塗着すればよい。支持体
を両面に設ける場合にはその間隙に単に充填するだけで
もよい。
A glass plate, a transparent plastic plate made of polyethylene terephthalate, polycarbonate, acrylic, or the like can be used as the transparent support plate. As for the lamination method, in the case of glass plates, etc., an infrared scattering agent may be melted and applied, or an adhesive may be used to adhere them. In the case of plastic, the plastic may be melted and applied to the infrared scattering agent. In the case of a dispersion, it may be applied to a support using an appropriate binder that transmits infrared rays. When supporting bodies are provided on both sides, the gaps may simply be filled.

本発明の赤外線散乱剤の使用方法としては、赤外線吸収
スペクトルのバックグラウンド軽減用窓材として使用す
る場合には第4図に示すような打錠された試料と同径あ
るいは異径のディスク状、あるいは第5図に示すような
打錠された試料を挿入する凹所を有する皿状として試料
の後方に密着させて使用する。測定は常法によって行え
ばよい。
When using the infrared scattering agent of the present invention as a window material for reducing the background of the infrared absorption spectrum, the infrared scattering agent may be used in the form of a disk having the same diameter or a different diameter from the tableted sample as shown in FIG. Alternatively, as shown in FIG. 5, it may be used in the form of a dish having a recess into which a compressed sample is inserted, in close contact with the rear of the sample. The measurement may be carried out by a conventional method.

赤外線領域における積分球に使用する場合には内面にコ
ーティングすればよ(、赤外線ランプに使用する場合に
はガラス球の表面あるいは内面にコーティングしてもよ
く、またガラス球自体を赤外線散乱剤で代替してもよい
。建物の窓ガラスに使用する場合には窓ガラス板にコー
ティングすればよく、電気ストーブの場合には筒状にし
てそのなかに発熱体を設置すればよい。本則はそのほか
ライフインダストリーや医療、宇宙産業、防衛産業など
で広汎な用途が考えられる。
When used in an integrating sphere in the infrared region, the inner surface may be coated (and when used in an infrared lamp, the surface or inner surface of the glass bulb may be coated, or the glass bulb itself may be replaced with an infrared scattering agent. When used for building window glass, it is sufficient to coat the window glass plate, and in the case of electric stoves, it may be made into a cylinder and a heating element may be installed inside it. It has a wide range of potential applications in the medical, space, and defense industries.

〔作用] 本発明の赤外線散乱剤は入射する赤外光を透過して均一
に散乱することができる。
[Function] The infrared scattering agent of the present invention can transmit incident infrared light and scatter it uniformly.

〔実施例〕〔Example〕

実施例I C5Iの微粉末(125amアンダー)40%とKBr
の微粉末(125μmアンダー)60%を混合し、これ
を真空プレス成型して直径10m++厚さ1mmのディ
スク状フィルターを作製した。このフィルター1に第1
図に示すように2ffIllΦの赤外線ビーム2を照射
し、その中心線後方3IIII11の位置及び中心線か
ら3ff11離れた位置に2■Φの検出器3.4を1個
づつ設置して各検出器に入射する赤外光を測定した。中
心線上に設置した検出器3が検出したスペクトルを第2
図に、そして中心線から離して設置した検出器4が検出
したスペクトルを第3図に示す。これらの図に示すよう
に両スペクトルの干渉波形は略同−であり、赤外光が均
一に分散していることがわかる。
Example I 40% C5I fine powder (under 125 am) and KBr
60% of fine powder (under 125 μm) was mixed and vacuum press molded to produce a disk-shaped filter with a diameter of 10 m++ and a thickness of 1 mm. This filter 1 has the first
As shown in the figure, an infrared beam 2 of 2ffIllΦ is irradiated, and one detector 3.4 of 2■Φ is installed at a position 3III11 behind the center line and at a position 3ff11 away from the center line. The incident infrared light was measured. The spectrum detected by the detector 3 installed on the center line is
3, and the spectrum detected by the detector 4 placed away from the center line is shown in FIG. As shown in these figures, the interference waveforms of both spectra are approximately the same, indicating that the infrared light is uniformly dispersed.

実施例2 Cslの微粉末(125amアンダー)とKBrの微粉
末(125μ僧アンダー)を混合し、これを真空プレス
成型して直径10ai厚さ1mmのディスク状窓材を作
製した。この窓材5を第1図に示すように石炭粉末をK
Brで錠剤化した試料6の後方に密着させて赤外線吸収
スペクトルを測定した。図中、7は検出器をそして8は
光源を示す。
Example 2 A fine powder of Csl (under 125 am) and a fine powder of KBr (under under 125 μm) were mixed and vacuum press molded to produce a disc-shaped window material having a diameter of 10 ai and a thickness of 1 mm. This window material 5 is coated with coal powder as shown in FIG.
The infrared absorption spectrum was measured by placing it in close contact with the back of Sample 6 which had been tableted with Br. In the figure, 7 indicates a detector and 8 indicates a light source.

測定結果を第6図及び第7図に示す。図中aはK B 
rloO%の場合を、bはCs1.10%、CはCs1
20%、dはC5I30%、eはCs140%、fはC
5I60%、gはC5I70%、そしてhはCs180
%の場合をそれぞれ示している。
The measurement results are shown in FIGS. 6 and 7. In the figure, a is KB
In the case of rloO%, b is Cs1.10%, C is Cs1
20%, d is C5I30%, e is Cs140%, f is C
5I60%, g is C5I70%, and h is Cs180
% cases are shown respectively.

実施例3 Stの微粉末(2〜20uI11)2%をKBrの微粉
末(125μmアンダー)に混合し、これを真空プレス
成型して直径10mm厚さ1mmのディスク状窓材を作
製した。この窓材5を第4図に示すように石炭粉末をK
Brで錠剤化した試料6の後方に密着させて赤外線吸収
スペクトルを測定した。
Example 3 2% of St fine powder (2 to 20 uI11) was mixed with KBr fine powder (under 125 μm), and this was vacuum press-molded to produce a disk-shaped window material with a diameter of 10 mm and a thickness of 1 mm. This window material 5 is coated with coal powder as shown in FIG.
The infrared absorption spectrum was measured by placing it in close contact with the back of Sample 6 which had been tableted with Br.

測定結果(i)を第8図に示す。尚、窓材を使用しない
従来法で測定した結果(j)も併せて同図に示す。
The measurement result (i) is shown in FIG. The same figure also shows the results (j) measured using a conventional method that does not use a window material.

比較例 CsIの代わりにNaC1を10%、20%、30%、
40%加えて実施例2と同様にして窓材を作製し、この
窓材を用いて赤外線吸収スペクトルを測定した結果を第
9図に示す。
Comparative Example NaC1 was used instead of CsI at 10%, 20%, 30%,
A window material was prepared in the same manner as in Example 2 by adding 40%, and the infrared absorption spectrum was measured using this window material. The results are shown in FIG.

尚、本明細書における%はすべて重量%である。Note that all percentages in this specification are percentages by weight.

〔発明の効果〕〔Effect of the invention〕

本発明の赤外線散乱剤は赤外線の透過性及び散乱率が高
い。この赤外線散乱剤を赤外線吸収スペクトルを測定す
る際に窓剤に使用することにより、不均一系試料のバッ
クグラウンドを除去しそれによって分析精度を高めるこ
とができる。また、赤外線領域の積分球の内面にコーテ
ィングすれば粗面化せずに光の散乱性を確保することが
でき従って表面粗度を管理する必要がない。赤外線ラン
プ、赤外線ヒーターなどに使用すれば均一な加熱を行う
ことができ、暖房器具として使用すればマイルドで均一
な暖房が得られる。ま、た調理用として使用すれば均一
な加熱が可能になる。建物の窓ガラスにラミネートすれ
ば太陽光による室内の局所加熱を防止して室内全体をマ
イルド温度分布になっ居住性がよくなる。
The infrared scattering agent of the present invention has high infrared transmittance and high scattering rate. By using this infrared scattering agent as a window agent when measuring an infrared absorption spectrum, the background of a heterogeneous sample can be removed, thereby increasing the accuracy of analysis. Furthermore, by coating the inner surface of an integrating sphere in the infrared region, light scattering properties can be ensured without roughening the surface, and therefore there is no need to control surface roughness. When used in infrared lamps, infrared heaters, etc., it can provide uniform heating, and when used as a heating device, it can provide mild and uniform heating. Also, if you use it for cooking, you will be able to heat it evenly. When laminated on the window glass of a building, it prevents local heating inside the room due to sunlight and creates a mild temperature distribution throughout the room, improving livability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は赤外線散乱剤をフィルターに成形して散乱性を
計測している状態を示す図であり、第2図及び第3図は
この計測により得られた赤外線干渉波形(スペクトル)
図である。第4図は本発明の窓剤の使用方法を説明する
図であり、第5図は第4図と異なる形状の窓材の例を示
す側面断面図である。第6図及び第7図は窓材のCsI
とKBrの混合比を変えて赤外線吸収スペクトルを測定
した図である。第8図は本発明の窓材を用いた場合と用
いなかった場合の赤外線吸収スペクトルを比較した図で
ある。第9図は窓材にNaC1−KBrを用いて赤外線
吸収スペクトルを測定した図である。
Figure 1 is a diagram showing the state in which an infrared scattering agent is formed into a filter and the scattering property is measured, and Figures 2 and 3 are the infrared interference waveform (spectrum) obtained by this measurement.
It is a diagram. FIG. 4 is a diagram illustrating a method of using the window material of the present invention, and FIG. 5 is a side sectional view showing an example of a window material having a shape different from that in FIG. 4. Figures 6 and 7 show CsI of window material.
It is a figure obtained by measuring infrared absorption spectra by changing the mixing ratio of KBr and KBr. FIG. 8 is a diagram comparing infrared absorption spectra when the window material of the present invention is used and when it is not used. FIG. 9 is a diagram of an infrared absorption spectrum measured using NaCl-KBr as a window material.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一のものの屈折率が他の無機物の屈折率と0
.1以上異なり、表面反射損失が1/3以下でかつ赤外
光を透過しうる、屈折率の異なる2種以上の無機物より
なる固溶体あるいは均一分散体によって形成された赤外
線散乱剤
The refractive index of at least one substance is 0 with the refractive index of other inorganic substances.
.. An infrared scattering agent formed by a solid solution or uniform dispersion of two or more inorganic substances with different refractive indexes, which have a surface reflection loss of 1/3 or less and which can transmit infrared light.
JP62138128A 1986-06-27 1987-06-03 Infrared scattering agent Granted JPS63118637A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15086986 1986-06-27
JP61-150869 1986-06-27

Publications (2)

Publication Number Publication Date
JPS63118637A true JPS63118637A (en) 1988-05-23
JPH0545899B2 JPH0545899B2 (en) 1993-07-12

Family

ID=15506155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138128A Granted JPS63118637A (en) 1986-06-27 1987-06-03 Infrared scattering agent

Country Status (1)

Country Link
JP (1) JPS63118637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228540A (en) * 1988-07-19 1990-01-30 Nkk Corp Sensitizing diluent for infrared ray spectrum
EP1879733A2 (en) * 2005-05-10 2008-01-23 WTP Optics, Inc. Solid state method and apparatus for making lenses and lens components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128544A (en) * 1975-04-30 1976-11-09 Canon Inc Light difusive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128544A (en) * 1975-04-30 1976-11-09 Canon Inc Light difusive material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228540A (en) * 1988-07-19 1990-01-30 Nkk Corp Sensitizing diluent for infrared ray spectrum
EP1879733A2 (en) * 2005-05-10 2008-01-23 WTP Optics, Inc. Solid state method and apparatus for making lenses and lens components
JP2008541167A (en) * 2005-05-10 2008-11-20 ダブリューティーピー オプティクス, インコーポレイテッド Solid-state method and apparatus for making lenses and lens components
EP1879733A4 (en) * 2005-05-10 2014-03-19 Wtp Optics Inc Solid state method and apparatus for making lenses and lens components

Also Published As

Publication number Publication date
JPH0545899B2 (en) 1993-07-12

Similar Documents

Publication Publication Date Title
Bellec et al. Beat the diffraction limit in 3D direct laser writing in photosensitive glass
US4648690A (en) Light diffusing device
ES2040707T3 (en) ELECTROPHORETIC SCREEN PARTICLES AND A PROCESS FOR ITS PREPARATION.
Soni et al. Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films
HUE029104T2 (en) Optical sky-sun diffuser
JP2006221173A (en) Diffusing structure with uv absorbing properties
EP1541536A4 (en) Infrared shielding glass
JP7402609B2 (en) Low sparkle matte coat and manufacturing method
Studer et al. Transparent phosphor coatings
WO1996012205A3 (en) Metal-pigmented composite media with selectable radiation-transmission properties and methods for their manufacture
JPS63118637A (en) Infrared scattering agent
Fedorov et al. Radiative transfer in a semitransparent glass foam blanket
US3722977A (en) Optical scattering filter
US3523847A (en) Method of making pellucid laminates having an interference filter
Egan et al. Anomalous refractive index of submicron-sized particulates
JP2014205811A (en) Ultraviolet ray shielding film
Van den Akker Theory of some of the discrepancies observed in application of the Kubelka-Munk equations to particulate systems
Tong et al. Examination of the radiative properties of coated silica fibers
Husk et al. Absolute photoluminescent efficiency and photon damage of sodium salicylate in the soft-x-ray regime
US2861896A (en) Method of producing a coated optical filter and the resulting article
CN210775900U (en) Light-reducing optical filter for observing strong light source
JPS578535A (en) Transmission type screen
Carboni Silver nanoprisms embedded in a polymeric matrix for energy saving glazing
Horvath Determination of the scattering function of atmospheric aerosols with a telephotometer
JPH01189545A (en) Analyzing method of pitch by infrared absorption spectrum