【発明の詳細な説明】[Detailed description of the invention]
本発明は農業用合成樹脂被覆材に係わり、更に
詳しくは植物の生育を促進する農業用合成樹脂被
覆材に関する。
我国においては施設園芸が極めて盛んであり、
ガラス温室の外に、ポリ塩化ビニルやポリエチレ
ン等の熱可塑性合成樹脂製のフイルムやシートを
掩蓋物として用いた園芸施設、いわゆる農ビハウ
スが非常に多く建設され、各種の果菜や花卉の栽
培が行なわれている。
しかして、園芸施設の掩蓋被覆材として用いら
れる熱可塑性合成樹脂製のフイルムやシート、特
にポリ塩化ビニル製のフイルムやシートには、耐
久性(耐候性)を高めるため通常紫外線吸収剤を
配合したものが用いられている。紫外線吸収剤は
太陽光中の紫外線(高エネルギーの光で化学線と
いわれており、熱可塑性合成樹脂製フイルムやシ
ートの光劣化の原因をなす)を吸収して熱可塑性
合成樹脂を光劣化より防ぐ効果があり耐久性(耐
候性)を高めるうえで非常に効果があるが、この
紫外線を植物の生育エネルギーの観点から利用効
率を考えた場合、紫外線の有するエネルギーは紫
外線吸収剤によつて吸収されるだけなので植物に
は到達せず無駄になつている。
従来無駄にされていた紫外線のエネルギーを利
用するという技術思想から、紫外線吸収剤の代り
に有機螢光増白剤を用いて紫外線を、それよりも
長波長の光に変換して放出するフイルム(特公昭
49―16301)などが提案されている。紫外線を植
物の生育により有効な可視光(例えば440nm近辺
の青色光や650nm近辺の赤色光)に変換するとい
う技術思想のもとに螢光剤や螢光増白剤が探索さ
れたが、一般的には螢光剤や螢光増白剤は有機系
化合物しか知られていない。一般に知られている
有機螢光剤や有機螢光増白剤は螢光能の耐久性、
即耐候性が余りよくなく、使用する合成樹脂基
材、安定剤にもよるが、普通1ケ月程度しか螢光
能が持続せず、植物の生育に利用するのに短期す
ぎるため実用上農業用被覆材に螢光能を付与して
農業用掩蓋資材として用いるのには必ずしも満足
すべきものといえない。
本発明者等はかかる現状に鑑み、耐久性に優れ
た螢光剤を鋭意研究探索の結果、酸素酸塩系無機
螢光体が螢光能の耐久性、安定性、耐熱性に優れ
ていることを知り本発明を完成したもので、本発
明の要旨は、酸素酸塩系無機螢光剤を配合した熱
可塑性合成樹脂を成形加工してなるフイルム、シ
ートまたはパネル状板;或は熱可塑性合成樹脂を
成形加工してなるフイルム、シート、パネル状板
に酸素酸塩系無機螢光剤を塗布展着してなる農業
用合成樹脂被覆材に存する。
本発明を更に詳細に説明する。
本発明で用いることのできる酸素酸塩系無機螢
光剤(以下、無機螢光剤と記す)としては、例え
ばバナジン酸イツトリウムのユーロピウム付活体
(YVO4:Eu);りん酸ストロンチウム・マグネ
シウムの錫付活体(SrMg)3(PO4)2:Sn);ふつ
化ゲルマニウム酸マグネシウムのマンガン付活体
(3.5MgO.0.5MgF2・GeO2:Mn);ほう酸カドミ
ユウムのマンガン付活体(Cd2B2O5:Mn);けい
酸亜鉛のマンガン付活体(Zn2SiO4:Mn);ひ酸
マグネシウムのマンガン付活体(6MgO・
As2O5:Mn);けい酸亜鉛のマンガン付活体
(Zn2SiO4:Mn);けい酸カルシウムの鉛、マン
ガン付活体(CaSiO3:Pd.Mn);マグネシウムガ
レートのマンガン付活体(MgGa2O4:Mn);タ
ングステン酸カルシウムの鉛付活体(CaWD4:
Pb);けい酸バリウムの鉛付活体(Ba2Si2O5:
Pb);りん酸カルシウム亜鉛のテルル付活体
(Zn.Ca)3(PO4)2:Tl);けい酸イツトリウムのセ
リウム、テルビウム付活体(Y2SiO5:Ce,
Tb);塩化カルシウムりん酸ストロンチユウムの
ユーロピウム付活体(3Sr3(PO4)2・CaCl2:
Eu);りん酸ストロンチユウムの錫付活体
(Sr2P2O7:Sn);ふつ化りん酸ストロンチウムの
錫、マンガン付活体(3Sr3(PO2)・SrF2:Sn.
Mn);けい酸バナジユウ・イツトリウムのユー
ロツピウム付活体(YVSiO4:Eu);ハロりん酸
カルシユウムのアンチモン付活体(3Ca3(PO2)・
Ca(F,Cl)2:Sb)等が好適なものとしてあげら
れ、これ等の1種または2種以上を併用して用い
ることができる。
本発明で用いられる上記の無機螢光剤は、従来
の有機螢光剤が発光する光の波長が、励起される
(吸収した)波長よりも100nm弱の長波長域に限
られ、例えば赤色に発光させるには有機螢光剤の
場合、赤色より波長が100nm短い緑色域の光を吸
収する必要があるのに対し、無機螢光剤はかかる
制約がなく、無機螢光体の場合、可視域光を吸収
することなく紫外光のみで可視域光を発光するこ
とができる点に特徴がある。従つて、有機螢光剤
を農業用被覆材に応用した場合、必然的に可視域
の光の透過率を低下させるので、これを被覆材と
して用いて植物を栽培すると光線不足となり植物
の光合成を阻害する恐れがあり、これらの被覆材
を用いても気候等によつては植物の生育促進の効
果に結びつかぬ場合もあるが、本発明で用いられ
る無機螢光剤は可視域の光の透過を阻害しない利
点がある。
本発明で、上記した無機螢光剤を保持する基材
となる熱可塑性合成樹脂としては、軟質又は硬質
の塩化ビニル樹脂、ポリエチレン樹脂、エチレン
―酢酸ビニル樹脂、ポリエステル樹脂等が好適な
ものとしてあげられる。なお、これらの樹脂は単
独で用いるが、場合によつては、2種類の樹脂を
同時押出しによる複合物、または別々に製造した
ものを積層して用いることは何ら差支えない。さ
らに、無機材料であるガラス板に前記した樹脂皮
膜を積層して用いることも可能である。
前記した熱可塑性合成樹脂は加工に際して、通
常用いられている加工性向上剤或は他の性能を附
与する為の助剤等、例えば混練加工助剤、剥離性
改良剤、着色剤、帯電防止剤、防曇剤等を添加し
て用いることは何ら差支えないことは勿論であ
り、本発明の特徴を損うものではない。但し樹脂
の耐候性を向上させるために一般に使用される紫
外線吸収剤は、螢光能を低下させることがあるの
で、使用の場合は添加量を充分考慮する必要があ
り、必要ならば紫外線を吸収しない耐候性向上剤
を用いる方が好ましい。
前記した基材の熱可塑性合成樹脂に無機螢光剤
を保持させる方法としては、無機螢光剤が比較的
に耐熱性があり、樹脂の加工温度には充分耐える
ので、通常は基材樹脂に無機螢光剤を添加混合後
一般に知られている製膜方法、即ち、カレンダ
法、押出法等適宜の加工方法で加工、製膜するこ
とができる。なお無機螢光剤はそのまゝでも使用
し得るが、基材樹脂が塩化ビニル樹脂のような混
練加工時に、樹脂より発生する塩酸の影響を受け
る恐れがある場合には、これを防ぐため予めコー
テイング処理をしておいたものを用いるとか、樹
脂中の分散性をよくするためマイクロカプセル化
して用いてもよい。
無機螢光剤の添加使用量としては、無機螢光剤
の品質、発光特性、効率等によつて適宜決められ
るが、基材樹脂に混入して用いる場合、基材に対
し、0.1〜5重量%位が好ましい。
無機螢光剤を塗布展着して用いる場合は、無機
螢光剤をそのまゝ、或は必要によつては適宜、コ
ーテイング処理マイクロカプセル化したものを、
光線の通過を阻害しない展着剤等を用いて塗布剤
を作成し、これを基体樹脂上に塗布展着し、更に
必要があればその上に保護層を設けて使用する。
本発明の農業用合成樹脂被覆材は上記した構成
よりなるものであるが、本発明の農業用合成樹脂
被覆材は、有機螢光体を用いたものと異なり、可
視域光を吸収することなく紫外光のみで可視域光
を発光することができるため、紫外線の有する高
エネルギーを有効活用して、植物の生育を促進す
ることができ、無機螢光剤の有する安定性と相ま
つて長期の使用にも耐えるので、本発明の被覆材
の有する有用性はすこぶる大である。
以下、本発明を理解し易くするために実施例に
ついて述べるが、本発明は以下の実施例に限定さ
れるものではない。
実施例 1〜2
下記ポリ塩化ビニル組成物
ポリ塩化ビニル 100重量部
ジ―2―エチル―ヘキシル―フタレート
50重量部
エポキシ大豆油 3重量部
バリウムステアレート 0.5重量部
ジンクステアレート 1.0重量部
トリフエニルフオスフアイト 0.5重量部
に、無機螢光剤として、バナジン酸イツトリウ
ムのユーロピウム付活体(YVO4:Eu)、並びに
塩化カルシユウムりん酸ストロンチユウムのユ
ーロピウム付活体(3Sr3(PO4)2・CaCl2:Eu)を
それぞれ各0.5重量部を添加配合したものを、常
法により熱混練、ロール圧延加工により0.1m/
m厚味の2種類のフイルムを作成した。
比較例 1
比較として、上記ポリ塩化ビニル組成物に、無
機螢光体の代りに有機螢光体(商品名;ユービテ
イツクス・OB―チバ・ガイギー社製)を0.1重量
部を用い前記と同様に加工して0.1m/m厚味の
フイルムを作成した。
<螢光能の耐候性試験>
上記実施例1〜2;並びに比較例1で作成し
た、3種類のフイルムを、サンシヤイン型ウエザ
ロメーター(スガ試験機(株)製;WE―SUN―HC
型)を用いて照射テストを行ない、螢光能の耐候
性を評価した。結果を下記表1に示す。
The present invention relates to an agricultural synthetic resin covering material, and more particularly to an agricultural synthetic resin covering material that promotes the growth of plants. In our country, greenhouse horticulture is extremely popular.
A large number of so-called agricultural greenhouses, which are horticultural facilities using films and sheets made of thermoplastic synthetic resins such as polyvinyl chloride and polyethylene as covers, have been constructed outside glass greenhouses, and various fruits and vegetables and flowers are cultivated. It is. Therefore, films and sheets made of thermoplastic synthetic resin, especially films and sheets made of polyvinyl chloride, used as cover covering materials for gardening facilities are usually compounded with ultraviolet absorbers to increase their durability (weather resistance). something is being used. Ultraviolet absorbers absorb ultraviolet rays from sunlight (high-energy light known as actinic radiation, which causes photodeterioration of thermoplastic synthetic resin films and sheets) and protect thermoplastic synthetic resins from photodeterioration. It has a protective effect and is very effective in increasing durability (weather resistance), but when considering the efficiency of using this ultraviolet ray from the perspective of plant growth energy, the energy contained in ultraviolet rays is absorbed by ultraviolet absorbers. It is wasted without reaching the plants. Based on the technical concept of utilizing the energy of ultraviolet rays, which was previously wasted, we developed a film that uses an organic fluorescent brightener instead of an ultraviolet absorber to convert ultraviolet rays into light with a longer wavelength and emit it. Tokko Akira
49-16301) have been proposed. Fluorescent agents and fluorescent whitening agents were explored based on the technical idea of converting ultraviolet rays into visible light that is more effective for plant growth (for example, blue light around 440 nm and red light around 650 nm), but Generally, only organic compounds are known as fluorescent agents and fluorescent whitening agents. Generally known organic fluorescent agents and organic fluorescent whitening agents have a long fluorescence performance,
Immediate weather resistance is not very good, and depending on the synthetic resin base material and stabilizer used, the fluorescent ability usually lasts only about one month, which is too short to be used for plant growth, so it is not suitable for practical use in agriculture. It cannot be said that it is necessarily satisfactory to impart fluorescent properties to the covering material and use it as an agricultural cover material. In view of the current situation, the present inventors conducted extensive research and search for a fluorescent agent with excellent durability, and as a result, they found that an oxyacid-based inorganic phosphor has excellent fluorescence durability, stability, and heat resistance. Knowing this, the present invention was completed, and the gist of the present invention is to produce a film, sheet, or panel-shaped plate formed by molding a thermoplastic synthetic resin containing an oxyacid-based inorganic fluorescent agent; This invention consists in synthetic resin coating materials for agriculture, which are made by coating and spreading an oxyacid-based inorganic fluorescent agent on a film, sheet, or panel-like plate formed by molding a synthetic resin. The present invention will be explained in more detail. Oxylate-based inorganic fluorescent agents (hereinafter referred to as inorganic fluorescent agents) that can be used in the present invention include, for example, europium activated form of yttrium vanadate (YVO 4 :Eu); tin of strontium magnesium phosphate. Activated form (SrMg) 3 (PO 4 ) 2 :Sn); Manganese activated form of magnesium germanate fluoride (3.5MgO.0.5MgF 2・GeO 2 :Mn); Manganese activated form of cadmium borate (Cd 2 B 2 O 5 :Mn); manganese-activated form of zinc silicate (Zn 2 SiO 4 :Mn); manganese-activated form of magnesium arsenate (6MgO.
As 2 O 5 : Mn); Manganese activated form of zinc silicate (Zn 2 SiO 4 : Mn); Lead, manganese activated form of calcium silicate (CaSiO 3 : Pd.Mn); Manganese activated form of magnesium gallate (MgGa 2 O 4 :Mn); Lead-activated form of calcium tungstate (CaWD 4 :
Pb); Lead-activated form of barium silicate (Ba 2 Si 2 O 5 :
Pb); tellurium activated form of calcium zinc phosphate (Zn.Ca) 3 (PO 4 ) 2 : Tl); cerium and terbium activated form of yttrium silicate (Y 2 SiO 5 :Ce,
Tb); europium-activated form of calcium chloride strontium phosphate ( 3Sr3 ( PO4 ) 2・CaCl2 :
Eu); tin-activated form of strontium phosphate (Sr 2 P 2 O 7 : Sn); tin-activated form of fluorinated strontium phosphate (3Sr 3 (PO 2 ), SrF 2 : Sn.
Mn); Eurotupium-activated form of vanadium and yttrium silicate (YVSiO 4 :Eu); antimony-activated form of calcium halophosphate (3Ca 3 (PO 2 ),
Preferred examples include Ca(F,Cl) 2 :Sb), and one or more of these can be used in combination. The wavelength of the light emitted by the above-mentioned inorganic fluorescent agent used in the present invention is limited to a wavelength range slightly less than 100 nm longer than the excited (absorbed) wavelength of conventional organic fluorescent agents. In order to emit light, organic fluorophores need to absorb light in the green range, which has a wavelength 100 nm shorter than red, whereas inorganic fluorophores do not have this restriction; It is unique in that it can emit visible light using only ultraviolet light without absorbing any light. Therefore, when organic fluorescent agents are applied to agricultural coverings, they inevitably reduce the transmittance of light in the visible range, so if plants are grown using organic fluorescent agents as coverings, there will be a lack of light and the plants will not be able to photosynthesize. Even if these coating materials are used, they may not be effective in promoting plant growth depending on the climate, etc. However, the inorganic fluorescent agent used in the present invention can inhibit the transmission of light in the visible range It has the advantage of not inhibiting In the present invention, suitable examples of the thermoplastic synthetic resin serving as the base material holding the above-mentioned inorganic fluorescent agent include soft or hard vinyl chloride resin, polyethylene resin, ethylene-vinyl acetate resin, polyester resin, etc. It will be done. Note that these resins are used alone, but in some cases, there is no problem in using a composite product made by coextruding two types of resins, or a laminated product of separately manufactured resins. Furthermore, it is also possible to use a glass plate, which is an inorganic material, by laminating the resin film described above. During processing, the above-mentioned thermoplastic synthetic resin may be treated with commonly used processability improvers or other performance-imparting aids, such as kneading processing aids, peelability improvers, coloring agents, and antistatic agents. It goes without saying that there is no problem in adding and using agents, antifogging agents, etc., and this does not impair the characteristics of the present invention. However, ultraviolet absorbers that are commonly used to improve the weather resistance of resins may reduce the fluorescent ability, so when using them, it is necessary to carefully consider the amount added, and if necessary, absorb ultraviolet rays. It is preferable to use a weather resistance improver that does not. As a method for retaining an inorganic fluorescent agent in the thermoplastic synthetic resin of the base material described above, inorganic fluorescent agents are relatively heat resistant and can withstand the processing temperature of the resin, so it is usually carried out by attaching the inorganic fluorescent agent to the base resin. After adding and mixing the inorganic fluorescent agent, it can be processed and formed into a film by a generally known film forming method, ie, an appropriate processing method such as a calendering method or an extrusion method. Note that the inorganic fluorescent agent can be used as is, but if the base resin is likely to be affected by hydrochloric acid generated from the resin during kneading processing, such as vinyl chloride resin, it may be used in advance to prevent this. It may be used after being coated, or it may be microencapsulated to improve dispersibility in the resin. The amount of the inorganic fluorescent agent to be added is determined appropriately depending on the quality, luminous properties, efficiency, etc. of the inorganic fluorescent agent, but when used mixed into the base resin, it is 0.1 to 5% by weight based on the base material. % is preferable. When using an inorganic fluorescent agent by coating and spreading, the inorganic fluorescent agent can be used as it is, or if necessary, it can be coated and microencapsulated.
A coating agent is prepared using a spreading agent or the like that does not inhibit the passage of light, and this is applied and spread on a base resin, and if necessary, a protective layer is provided thereon for use. The agricultural synthetic resin coating material of the present invention has the above-described structure, but unlike those using organic phosphors, the agricultural synthetic resin coating material of the present invention does not absorb visible light. Since visible light can be emitted using only ultraviolet light, the high energy of ultraviolet light can be effectively used to promote plant growth, and the stability of inorganic fluorescent agents allows for long-term use. Therefore, the usefulness of the coating material of the present invention is extremely large. Examples will be described below to make the present invention easier to understand, but the present invention is not limited to the following examples. Examples 1-2 The following polyvinyl chloride composition Polyvinyl chloride 100 parts by weight di-2-ethyl-hexyl phthalate
50 parts by weight Epoxy soybean oil 3 parts by weight Barium stearate 0.5 parts by weight Zinc stearate 1.0 parts by weight Triphenyl phosphite 0.5 parts by weight, Europium-activated form of yttrium vanadate (YVO 4 :Eu) as an inorganic fluorescent agent, In addition, 0.5 parts by weight of calcium chloride and strontium phosphate with europium activation (3Sr 3 (PO 4 ) 2・CaCl 2 :Eu) were added and blended by a conventional method, and then heat-kneaded and roll-rolled to form 0.1 parts by weight. m/
Two types of films with a thickness of m were prepared. Comparative Example 1 As a comparison, the above polyvinyl chloride composition was processed in the same manner as above using 0.1 part by weight of an organic phosphor (trade name: Ubitix OB - manufactured by Ciba Geigy) instead of the inorganic phosphor. A film with a thickness of 0.1 m/m was prepared. <Weather resistance test for fluorescence ability> The three types of films prepared in Examples 1 and 2 above and Comparative Example 1 were tested using a Sunshine type Weatherometer (manufactured by Suga Test Instruments Co., Ltd.; WE-SUN-HC).
An irradiation test was conducted using a mold) to evaluate the weather resistance of the fluorescent ability. The results are shown in Table 1 below.
【表】
上記表1から明らかなように、ウエザロメータ
ーの照射ではあるが、本発明の無機螢光体は有機
螢光体に比較して耐候性が格段と優れていること
が分る。
実施例 3
ポリエチレン樹脂粉末100重量部に、ふつ化ゲ
ルマニウム酸マグネシウムのマンガン付活性体
(3.5MgO・0.5MgF2・GeO2:Mn)0.5重量部添
加混合し、この混合物を押出機を用い常法により
0.1m/m厚味のフイルムを作製した。
作製したフイルムを前記実施例1、2と同様ウ
エザロメーター照射後の螢光能を求めた。結果
は、300時間照射後の螢光能は照射前と同じ(残
率100%)であつた。[Table] As is clear from the above Table 1, it can be seen that the inorganic phosphor of the present invention has much better weather resistance than the organic phosphor even though it is irradiated with a weatherometer. Example 3 To 100 parts by weight of polyethylene resin powder, 0.5 parts by weight of manganese-attached activated form of magnesium germanate fluoride (3.5MgO・0.5MgF 2・GeO 2 :Mn) was added and mixed, and this mixture was processed using an extruder in a conventional manner. by
A film with a thickness of 0.1 m/m was produced. The produced film was irradiated with a weatherometer and the fluorescent power was determined in the same manner as in Examples 1 and 2 above. As a result, the fluorescence activity after irradiation for 300 hours was the same as before irradiation (residual rate: 100%).