JPS63118051A - Fe-ni alloy or fe-ni-co alloy having superior heat resistance in noble metal plating - Google Patents

Fe-ni alloy or fe-ni-co alloy having superior heat resistance in noble metal plating

Info

Publication number
JPS63118051A
JPS63118051A JP26177686A JP26177686A JPS63118051A JP S63118051 A JPS63118051 A JP S63118051A JP 26177686 A JP26177686 A JP 26177686A JP 26177686 A JP26177686 A JP 26177686A JP S63118051 A JPS63118051 A JP S63118051A
Authority
JP
Japan
Prior art keywords
alloy
heat resistance
plating
noble metal
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26177686A
Other languages
Japanese (ja)
Inventor
Masahiro Tsuji
正博 辻
Masato Shigyo
正登 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP26177686A priority Critical patent/JPS63118051A/en
Publication of JPS63118051A publication Critical patent/JPS63118051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To improve the heat resistance of an Fe-Ni or Fe-Ni-Co alloy during noble metal plating by regulating the work degenerated surface layer of the alloy to a thin layer of a specified thickness. CONSTITUTION:An Fe-Ni or Fe-Ni-Co alloy ingot is hot rolled, cold rolled and subjected to cold rolling including annealing. The thickness of the work degenerated surface layer is regulated to <=5mum by selecting conditions during the final cold rolling and the kind of lubricating oil used. When the alloy is plated with a noble metal at a high temp., the resulting plating does not tarnish because the alloy has superior heat resistance.

Description

【発明の詳細な説明】 童1上至且里光旦 本発明は、貴金属めっきを施すのに利用される合金、さ
らに詳しくは耐熱性の優れた貴金属めっきを施すのに有
用なFe−Ni系合金及びFe−Ni−Co系合金に関
する。
[Detailed Description of the Invention] The present invention relates to alloys used for applying precious metal plating, and more specifically, Fe-Ni alloys useful for applying noble metal plating with excellent heat resistance. The present invention relates to alloys and Fe-Ni-Co alloys.

従来技術 一般に、42合金、コバール系合金、アンバー等のFe
−Ni系合金並びにFe−Ni−Co系合金は、その低
い熱膨張特性のため、ICリードフレームをはじめとす
る各種の封着材料として広く使用されている。そして、
これらの合金は、多くの場合、Au、へ8等の貴金属め
っきを施して使用されている。例えば、ICリードフレ
ームとして使用する場合、グイポンディング部及びワイ
ヤポンディング部に^u、 Ag等の貴金属めっきが施
される。このめっきは、半導体索子との接合力確保及び
ポンディングワイヤーとの密着強度確保のため行われる
Prior art In general, Fe alloys such as 42 alloy, Kovar alloy, amber, etc.
-Ni alloys and Fe-Ni-Co alloys are widely used as various sealing materials including IC lead frames due to their low thermal expansion properties. and,
These alloys are often used after being plated with a noble metal such as Au or ferrite. For example, when used as an IC lead frame, the wire bonding part and the wire bonding part are plated with a precious metal such as Ag or Ag. This plating is performed to ensure bonding strength with the semiconductor cord and adhesion strength with the bonding wire.

しかし、これら貴金属めっきされたリードフレームは、
半導体部品としての組立工程において各種条件下での熱
が加えられるため、めっきの耐熱性が重要となる。例え
ば、半導体素子との接合であるグイポンディングの工程
では最高450℃前後の熱が加えられる。そして、この
場合めっきの耐熱性が悪いと、めっき表面が変色して素
材元素の酸化物がめつき表面に生成し、その結果、ワイ
ヤポンディングの際にワイヤとめっきとの接着不良が生
じるという問題がある。
However, these precious metal plated lead frames
Since heat is applied under various conditions during the assembly process for semiconductor parts, the heat resistance of plating is important. For example, heat of up to about 450° C. is applied in the bonding process for bonding semiconductor elements. In this case, if the heat resistance of the plating is poor, the plating surface will discolor and oxides of the material elements will form on the plating surface, resulting in poor adhesion between the wire and the plating during wire bonding. There is.

また、一般に貴金属めっきの)アさを厚くすることによ
り、めっきの耐熱性は向上するが、近年、低コスト化の
要求から、逆にめっきの厚さを薄くして貴金属の使用量
を低減する、いわゆる省貴金属化を進める傾向にある。
Also, generally speaking, increasing the thickness of precious metal plating improves the heat resistance of the plating, but in recent years, due to the demand for lower costs, the thickness of the plating has been reduced to reduce the amount of precious metal used. , there is a tendency to promote the so-called saving of precious metals.

したがって、上記合金における貴金属めっきの耐熱性が
以前にも増して重要となってきており、貴金属めっき耐
熱性の優れたFe−Ni系合金並びにFe−Ni−Co
系合金に対する要望が強くなってきている。
Therefore, the heat resistance of noble metal plating on the above alloys has become more important than ever, and Fe-Ni alloys and Fe-Ni-Co alloys, which have excellent heat resistance for noble metal plating, are becoming more important than ever.
There is a growing demand for alloys.

このような状況から、Fe−Ni系合金における上記め
っきの耐熱性を改善するための技術として、最近、Fe
−旧糸合金の(200)面強度を40%以上にすること
(特開昭61−73356号)が提案されている。
Under these circumstances, Fe-Ni alloys have recently been developed as a technology to improve the heat resistance of the plating mentioned above.
- It has been proposed to increase the (200) surface strength of the old yarn alloy to 40% or more (Japanese Patent Application Laid-open No. 73356/1983).

しかし、Fe−Ni系合金の再結晶集合!1Jll織が
(200)であり、しかも非常に発達し易く、冷間加工
によっても消えにくいため、Re−Ni系合金では多く
の加工の場合(200)面強度は40%以上になる。例
えば、上記合金を高加工率の圧延を行って再結晶した場
合、(200)面強度は90%にも達し、また、この合
金材料を種々の最終調質圧延しても(200)面強度は
40%以上になってしまう。
However, recrystallization collection of Fe-Ni alloy! The 1Jll weave is (200), and it is very easy to develop and is difficult to disappear even by cold working, so in many working cases, the (200) surface strength of Re-Ni alloys is 40% or more. For example, when the above alloy is recrystallized by rolling at a high working rate, the (200) plane strength reaches 90%, and even if this alloy material is subjected to various final temper rolling, the (200) plane strength is becomes more than 40%.

すなわち、Fe−Ni系合金の(200)面強度を40
%以上にする技術は格別的なものではなく、上述のよう
な加工を施して(200)面強度を40%以上にしても
上記めっき耐熱性は改善されないことが判明した。した
がって、合金における貴金属めっきの耐熱性を改善する
技術は未だ確立されていないのが現状である。
In other words, the (200) plane strength of the Fe-Ni alloy is 40
% or more is not special, and it has been found that even if the above-mentioned processing is performed to increase the (200) surface strength to 40% or more, the heat resistance of the plating is not improved. Therefore, at present, a technology for improving the heat resistance of noble metal plating on alloys has not yet been established.

■が解ン しようとする課 本発明は、上述したごとき状況に鑑みなされたものであ
って、貴金属めっきを施したRe−Ni系合金もしくは
Fe−N1−Co系合金を高温にさらした時にめっきに
変色がみられない、いわゆる耐熱性の優れためつきを形
成し得るFe−Ni系合金及びFe−Ni−Co系合金
を提供することを課題とする。
The present invention was developed in view of the above-mentioned situation, and it is possible that when a Re-Ni alloy or a Fe-N1-Co alloy plated with a precious metal is exposed to high temperatures, the plating will be removed. It is an object of the present invention to provide an Fe-Ni alloy and a Fe-Ni-Co alloy that do not cause discoloration and can form a so-called glaze with excellent heat resistance.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

主肌■盪底 本発明の特徴は、Fe−Ni系合金もしくはFe−Ni
−Co系合金の表面の加工変質層の厚さを5μm以下に
したことにある。
Main skin ■Bottom Features of the present invention include Fe-Ni alloy or Fe-Ni alloy.
- The thickness of the process-affected layer on the surface of the Co-based alloy is 5 μm or less.

ここでいう“加工変質層”とは、金属物品に何らかの機
械的表面加工を施したときにみられる表面における変化
を受けた表面層を意味するものであって、その表面から
エツチングをしながら金属′lJimを観察していくこ
とにより測定し得る。しかし、この加工変質層を一層定
量的に測定するには微小硬度計を用い、母材との硬さが
μIIVで10以上異なる層とし、上記測定法と併用し
て判定する。
The term "process-affected layer" here refers to a surface layer that has undergone changes in the surface that occur when a metal article is subjected to some kind of mechanical surface treatment, and is a layer that undergoes surface changes that occur when a metal article is subjected to some kind of mechanical surface treatment. It can be measured by observing 'lJim. However, in order to more quantitatively measure this process-affected layer, a microhardness tester is used, and the layer is determined to have a hardness different from the base material by 10 or more μIIV, and the layer is determined using the above measurement method in combination.

課題を解決するための F 本発明者らは、上記合金における貴金属めっきの耐熱性
の改善について検討した結果、合金材料の表面における
加工変質層がある一定の値以上に生成すると、めっき耐
熱性が著しく劣化することの知見を得た。すなわち、上
記合金材料の表面の加工変質層の厚さが5μmを超える
とそれに施されためつきの耐熱性が著しく劣化すること
がわかった。
F for Solving the Problems The present inventors investigated the improvement of the heat resistance of noble metal plating on the above-mentioned alloy, and found that when a process-affected layer is formed on the surface of the alloy material to a certain value or more, the heat resistance of the plating decreases. We have obtained knowledge that there is significant deterioration. That is, it has been found that when the thickness of the process-affected layer on the surface of the alloy material exceeds 5 μm, the heat resistance of the heat applied thereto is significantly deteriorated.

加工変質層はきれいな結晶格子を組んでいないため、こ
の層の上にめっきを施すとめつき電着粒の合金材料表面
への着き方が不均一となってポーラスなめつき層が生成
される。そして、このようなめつきはポーラスであるた
め、熱を加えたときに材料素地の金属元素であるFeが
表面に拡散し易く、表面でFeの酸化が起って変色の原
因となる。
Since the process-affected layer does not have a clean crystal lattice, if plating is applied on top of this layer, the electroplated particles will be deposited unevenly on the surface of the alloy material, creating a porous plating layer. Since such plating is porous, when heat is applied, Fe, which is a metal element in the base material, tends to diffuse to the surface, and oxidation of Fe occurs on the surface, causing discoloration.

しかして、加工変質層は、前述したごとく、金属を加工
すると生成し易く、実際にはあらゆる加工により生成す
るが、上記めっきの耐熱性に影響を及ぼすのは、ある一
定の厚さ以上、すなわち、5μMを越える厚さになった
場合に限られるのであって、5μm以下の厚さであれば
めっき耐熱性には実質上影響がみられない。
As mentioned above, a process-affected layer is likely to be formed when metal is processed, and in fact it is formed during all processes, but it is only when the thickness exceeds a certain level that it affects the heat resistance of the plating. This is limited to cases where the thickness exceeds 5 μM, and there is virtually no effect on the plating heat resistance if the thickness is 5 μm or less.

したがって、本発明は、表面の加工変質層の厚さを5μ
m以下にしたFe−Ni系合金並びにFe−Ni−Co
系合金を貴金属めっきの母材として用いるものであるが
、上記加工変質層の厚さを5μm以下の薄い層にするに
は、例えば、圧延加工する時には潤滑圧延を用いる必要
がある。圧延条件及び潤滑油の種類を選択することによ
り、加工変質層の厚さが大きく変化するので留意する必
要がある。具体的には圧延スピードは速く、粘度の高い
圧延油を用い、かつ多量の圧延油を供給することがよく
、ワークロール径は大きい方がよい。
Therefore, in the present invention, the thickness of the process-affected layer on the surface is reduced to 5 μm.
Fe-Ni alloys and Fe-Ni-Co
The alloy is used as a base material for noble metal plating, but in order to make the work-affected layer as thin as 5 μm or less, it is necessary to use lubricated rolling when rolling, for example. Care must be taken because the thickness of the process-affected layer changes greatly by selecting the rolling conditions and the type of lubricating oil. Specifically, the rolling speed is high, the rolling oil with high viscosity is used, and a large amount of rolling oil is preferably supplied, and the diameter of the work roll is preferably large.

本発明においてめっきの母材として用いるFe−Ni系
合金としては、Ni30〜85%のFe−Ni系合金、
及び該合金に他の元素を10%まで添加した合金を包含
し、また、Fe−Ni−Co系合金としては、Ni2O
〜50%、0010〜30%のFe−Ni−Co系合金
、及び該合金に他の元素を10%まで添加した合金を包
含する。
In the present invention, the Fe-Ni alloy used as the base material for plating includes a Fe-Ni alloy containing 30 to 85% Ni;
and alloys in which up to 10% of other elements are added to the alloy, and Fe-Ni-Co alloys include Ni2O
-50%, 0010-30% Fe-Ni-Co based alloys, and alloys in which up to 10% of other elements are added to the alloys.

以上述べたとおり、本発明は、従来、ICリードフレー
ムをはじめとする各種封着材料として汎用されているF
e−Ni系合金及びFe−Ni−Co系合金の表面の加
工変質層の厚さを5μ鋼以下にすることにより、これら
合金における貴金属めっきの耐熱性を改善し得るので、
該合金の上記封着材料としての有用性を著しく高めるの
に役立つものといえる。
As described above, the present invention is based on F
By reducing the thickness of the process-affected layer on the surface of e-Ni alloys and Fe-Ni-Co alloys to 5μ or less, the heat resistance of precious metal plating on these alloys can be improved.
This can be said to be useful in significantly increasing the usefulness of the alloy as the above-mentioned sealing material.

?  と ■のt果 以下実施例により本発明とその効果を具体的に説明する
? (2) The present invention and its effects will be concretely explained below with reference to Examples.

実施例1 高周波真空溶解炉にて下記組成の42合金インゴットを
製造した。
Example 1 A 42 alloy ingot having the following composition was manufactured in a high frequency vacuum melting furnace.

CO,004(wt%) Mn     O,61 Si     0.16 S     O,002 Ni    41.33 残部はFe及び不可避的不純物。CO,004 (wt%) Mn O, 61 Si 0.16 S O,002 Ni 41.33 The remainder is Fe and inevitable impurities.

このインゴットを、1100℃で熱間圧延して厚さ4f
fisの板となし、ついで冷間圧延して厚さ1.51と
した。この板をさらに、750℃で1時間焼鈍したのち
、冷間圧延により厚さ0.35mmとなし、再び750
℃で1時間焼鈍した。このようにして得られた合金材料
を最終冷間圧延により厚さ0 、25m+nとなし、そ
の際、ドライ圧延もしくは通常の圧延油(ロータスCC
)を用いた潤滑圧延により、各種のパススケジュール、
圧延速度、圧延ロール径の条件で圧延を行うことにより
合金材料の表面に種々の厚さの加工変質層を形成させた
This ingot was hot rolled at 1100℃ to a thickness of 4f.
fis plate, and then cold-rolled to a thickness of 1.51 mm. This plate was further annealed at 750°C for 1 hour, then cold rolled to a thickness of 0.35mm, and then rolled again at 750°C.
It was annealed at ℃ for 1 hour. The alloy material obtained in this way is finally cold rolled to a thickness of 0.25m+n, and at that time, dry rolling or normal rolling oil (Lotus CC
), various pass schedules,
Process-affected layers of various thicknesses were formed on the surface of the alloy material by rolling under the conditions of rolling speed and roll diameter.

ついで、これらの材料の加工変質層の厚さを、エツチン
グによる金属組織の観察と微小硬度計(μIIV、Ig
)による母材部と10以上異なる層の測定との併用によ
り求めた。その結果は第1表に示すとおりである。
Next, the thickness of the process-affected layer of these materials was measured by observing the metal structure by etching and using a microhardness meter (μIIV, Ig
) was used in conjunction with measurements of the base material and 10 or more different layers. The results are shown in Table 1.

次に、これらの種々の厚さの加工変質層を有する合金材
料に厚さ1.0μmのAuのめっきを常法により施した
後、450℃の温度に5分間大気中で加熱して、めっき
表面の変色の有無を目視観察した。
Next, these alloy materials having process-affected layers of various thicknesses were plated with Au to a thickness of 1.0 μm using a conventional method, and then heated in the air to a temperature of 450°C for 5 minutes to remove the plating. The presence or absence of surface discoloration was visually observed.

その結果は第1表に示すとおりである。The results are shown in Table 1.

第  1  表 第1表にみられるとおり、合金材料の表面の加工変質層
が5μmを越えると、めっきの変色が発生するが、5p
aa以下では加熱によっても変色がみられず、優れた耐
熱性を示すことがわかる。
Table 1 As shown in Table 1, when the process-affected layer on the surface of the alloy material exceeds 5 μm, discoloration of the plating occurs.
It can be seen that when the temperature is less than aa, no discoloration is observed even when heated, and excellent heat resistance is exhibited.

実施例2 高周波真空溶解炉で下記組成のFe−Ni−Co系合金
のインゴットを製造した。
Example 2 An ingot of a Fe-Ni-Co alloy having the following composition was manufactured in a high-frequency vacuum melting furnace.

CO,009(wt%) Mn     0.43 Si     0.10 S     O,001 Ni    29.35 Co    16.75 残部はFe及び不可避的不純物であった。CO,009 (wt%) Mn 0.43 Si 0.10 S O,001 Ni 29.35 Co 16.75 The remainder was Fe and unavoidable impurities.

このインゴットを、実施例1に記載と同様の手順に従っ
て圧延加工して種々の厚さの加工変質層を形成させた。
This ingot was rolled according to the same procedure as described in Example 1 to form work-affected layers of various thicknesses.

ついで、このようにして加工変質層を形成させた各合金
材料の加工変質層の厚さを実施例1と同様にして測定し
た後、合金材料にAuのめっきを実施例1と同様にして
施し、加熱してめっき表面の変色の有無を目視観察した
。結果は第2表に示すとおりである。
Next, the thickness of the work-affected layer of each alloy material on which the work-affected layer was formed in this way was measured in the same manner as in Example 1, and then Au plating was applied to the alloy material in the same manner as in Example 1. After heating, the presence or absence of discoloration of the plating surface was visually observed. The results are shown in Table 2.

第  2  表 第2表にみられるとおり、Fe−Ni−Co系合金につ
いても加工変質層の厚さが5μm以下では良好なめつき
耐熱性を示すのに対し、5μmを越えるとめっきの変色
がみられるようになる。
Table 2 As shown in Table 2, Fe-Ni-Co alloys exhibit good plating heat resistance when the thickness of the damaged layer is 5 μm or less, but when the thickness exceeds 5 μm, discoloration of the plating occurs. You will be able to do it.

Claims (1)

【特許請求の範囲】[Claims] (1)Fe−Ni系合金もしくはFe−Ni−Co系合
金の表面の加工変質層の厚さを5μm以下にしたことを
特徴とする貴金属めつき耐熱性の優れた合金。
(1) An alloy with excellent noble metal plating heat resistance, characterized in that the thickness of the process-affected layer on the surface of the Fe-Ni alloy or Fe-Ni-Co alloy is 5 μm or less.
JP26177686A 1986-11-05 1986-11-05 Fe-ni alloy or fe-ni-co alloy having superior heat resistance in noble metal plating Pending JPS63118051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26177686A JPS63118051A (en) 1986-11-05 1986-11-05 Fe-ni alloy or fe-ni-co alloy having superior heat resistance in noble metal plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26177686A JPS63118051A (en) 1986-11-05 1986-11-05 Fe-ni alloy or fe-ni-co alloy having superior heat resistance in noble metal plating

Publications (1)

Publication Number Publication Date
JPS63118051A true JPS63118051A (en) 1988-05-23

Family

ID=17366539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26177686A Pending JPS63118051A (en) 1986-11-05 1986-11-05 Fe-ni alloy or fe-ni-co alloy having superior heat resistance in noble metal plating

Country Status (1)

Country Link
JP (1) JPS63118051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004645A1 (en) * 2005-07-05 2007-01-11 The Furukawa Electric Co., Ltd. Copper alloy for electronic equipment and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004645A1 (en) * 2005-07-05 2007-01-11 The Furukawa Electric Co., Ltd. Copper alloy for electronic equipment and process for producing the same
US7946022B2 (en) 2005-07-05 2011-05-24 The Furukawa Electric Co., Ltd. Copper alloy for electronic machinery and tools and method of producing the same

Similar Documents

Publication Publication Date Title
JPH02221344A (en) High strength cu alloy having hot rollability and heating adhesiveness in plating
KR960000710B1 (en) Lead frame material of a copper-zirconium alloy
JPH01272733A (en) Lead frame material made of cu alloy for semiconductor device
JPS63118051A (en) Fe-ni alloy or fe-ni-co alloy having superior heat resistance in noble metal plating
JP3232529B2 (en) Fe-Ni alloy for lead frame and method of manufacturing the same
JPS6244691B2 (en)
JPS6244526A (en) Manufacture of alloy for sealing glass
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
CA1042769A (en) Copper base alloys and process
JP2000501787A (en) Plating method for steel sheet containing alloy elements that are easily oxidized
JPH0633206A (en) Method for heat-treating ni-base alloy
JPS59140338A (en) Copper alloy for lead frame
JPH0593230A (en) Lead frame material
JPH0665737B2 (en) Metal plate for glass sealing
JP3251691B2 (en) Fe-Ni alloy material for lead frame and manufacturing method
JP2534917B2 (en) High strength and high conductivity copper base alloy
JP2663777B2 (en) Fe-Ni alloy excellent in plating property and method for producing the same
JP2550784B2 (en) High strength and low thermal expansion Fe-Ni-Co alloy excellent in plating property, soldering property and cyclic bending property, and method for producing the same
JP3044384B2 (en) High strength and high conductivity copper-based alloy and method for producing the same
JPH04221039A (en) Alloy material for lead frame and its production
JPH0288797A (en) Surface-treated steel sheet for high-performance, lead frame having excellent corrosion resistance, solderability, and platability
JPS6160844A (en) Alloy of copper, nickel, tin and titanium and its production
JPS6240343A (en) Fe-ni alloy and its manufacture
JPH0114969B2 (en)
JPH04366A (en) Lead frame material for semiconductor and production thereof