JPS6311744B2 - - Google Patents

Info

Publication number
JPS6311744B2
JPS6311744B2 JP5632980A JP5632980A JPS6311744B2 JP S6311744 B2 JPS6311744 B2 JP S6311744B2 JP 5632980 A JP5632980 A JP 5632980A JP 5632980 A JP5632980 A JP 5632980A JP S6311744 B2 JPS6311744 B2 JP S6311744B2
Authority
JP
Japan
Prior art keywords
grid electrode
electron gun
implanted
insulating support
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5632980A
Other languages
Japanese (ja)
Other versions
JPS56153652A (en
Inventor
Yukio Takanashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5632980A priority Critical patent/JPS56153652A/en
Publication of JPS56153652A publication Critical patent/JPS56153652A/en
Publication of JPS6311744B2 publication Critical patent/JPS6311744B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/82Mounting, supporting, spacing, or insulating electron-optical or ion-optical arrangements

Description

【発明の詳細な説明】 本発明は3個の電子ビームを射出するカラーブ
ラウン管用電子銃構体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron gun assembly for a color cathode ray tube that emits three electron beams.

カラーブラウン管用電子銃構体のそれぞれの3
電子銃は例えば陰極、第1格子電極、第2格子電
極、第3格子電極及び第4格子電極などを所定間
隔で保持し、多孔質ガラスなどからなる絶縁支持
体によつて一体に組立てられている。そして最近
の傾向として、3電子銃の同一電圧の印加される
格子電極については3電子銃共通の所謂一体化構
造に形成している。このため3電子銃の信号入力
は陰極電位に重畳されて付加される原色ドライブ
方式が使用されることになり、この結果陰極の熱
電子放出面と第1格子電極間の間隔は極めて正確
に設定されなければならない。このことは第1格
子電極と第2格子電極間に於ても同様である。
3 each of electron gun structures for color cathode ray tubes
The electron gun holds, for example, a cathode, a first grid electrode, a second grid electrode, a third grid electrode, a fourth grid electrode, etc. at predetermined intervals, and is assembled integrally with an insulating support made of porous glass or the like. There is. As a recent trend, the grid electrodes of the three electron guns to which the same voltage is applied are formed into a so-called integrated structure common to the three electron guns. For this reason, the signal input of the three electron guns uses a primary color drive method that is superimposed and added to the cathode potential, and as a result, the interval between the thermionic emission surface of the cathode and the first grid electrode is set extremely accurately. It must be. This also applies between the first grid electrode and the second grid electrode.

このように電極間の間隔を正確に保つことはカ
ラーブラウン管ばかりでなく、他の陰極線管につ
いても重要な点であるが、通常電子銃構体を陰極
線管に組込み稼動するとき、ヒータ点火後、陰
極、第1格子電極、第2格子電極の順に温度が上
昇する。この場合、ヒータ、陰極、第1格子電
極、第2格子電極の温度上昇曲線が異なり、従つ
て温度上昇に伴う熱膨張による部品寸法の変化及
び歪によつて電子銃構体特に陰極と第1格子電極
間の間隔が常温時に設定した値より大きく異なつ
てくる。特にカラーブラウン管用の3電子銃でこ
の陰極と第1格子電極の間隔差が出てくると、こ
のようなカラーブラウン管を装着したカラーテレ
ビジヨン受像機はスイツチオンしたのち、画面に
色ずれを生じ、甚だしく画質を害うことになる。
従つてカラー受像管の3電子銃に於ては、ヒータ
点火後の熱膨張による各部の伸びと歪とをどの様
に吸収あるいは逃げるかが、電子銃構体を構成す
る電極の構造の重要な問題となつている。
Maintaining accurate spacing between the electrodes is important not only for color cathode ray tubes but also for other cathode ray tubes. Normally, when an electron gun assembly is assembled into a cathode ray tube and operated, after the heater ignites, the cathode The temperature increases in the order of , the first grid electrode, and the second grid electrode. In this case, the temperature rise curves of the heater, cathode, first grid electrode, and second grid electrode are different, and therefore the electron gun assembly, especially the cathode and the first grid The spacing between the electrodes becomes significantly different from the value set at room temperature. In particular, if there is a difference in the spacing between the cathode and the first grid electrode in the three-electron gun for color cathode ray tubes, color shifts will occur on the screen after the color television receiver equipped with such a color cathode ray tube is switched on. This will seriously impair image quality.
Therefore, in the three-electron gun of a color picture tube, how to absorb or escape the elongation and strain of each part due to thermal expansion after heater ignition is an important issue in the structure of the electrodes that make up the electron gun structure. It is becoming.

次にカラーブラウン管に使用される電子銃構体
の一例を第1図及び第2図によつて説明する。
Next, an example of an electron gun assembly used in a color cathode ray tube will be explained with reference to FIGS. 1 and 2.

即ちヒータ1を内蔵した陰極2が赤R,緑G,
青B用として3個一直線上に所定の間隔を保つて
並設され、これら陰極2と同軸的に所定の間隔を
おいて第1格子電極3、第2格子電極4、第3格
子電極5、第4格子電極6、第5格子電極7及び
第6格子電極8が順次所定間隔をもつて絶縁支持
体9に植設されており、第1格子電極3乃至第5
格子電極7は陰極2の赤,緑,青用と同軸上に所
定の電子ビーム通過孔部を有する1個以上の一体
化された電極素子により構成され、第6格子電極
8も同様に所定の電子ビーム通過孔部を有する
が、緑用の中央電子ビーム通過孔部は陰極と同軸
であるが、赤,青用の両側電子ビーム通過孔部は
やや偏心して設けられており、この偏心により3
本の電子ビームをシヤドウマスクの開孔部に集中
し、蛍光面の所定の蛍光体層を射突するようにな
つている。
That is, the cathode 2 containing the heater 1 is red R, green G,
Three grid electrodes for blue B are arranged in parallel at a predetermined interval in a straight line, and coaxially with the cathode 2 and spaced at a predetermined interval, a first grid electrode 3, a second grid electrode 4, a third grid electrode 5, A fourth grid electrode 6, a fifth grid electrode 7, and a sixth grid electrode 8 are implanted in order on the insulating support 9 at predetermined intervals, and the first grid electrode 3 to the fifth grid electrode
The grid electrode 7 is composed of one or more integrated electrode elements having a predetermined electron beam passage hole coaxially with the cathode 2 for red, green, and blue, and the sixth grid electrode 8 also has a predetermined hole. The center electron beam passage hole for green is coaxial with the cathode, but the electron beam passage holes on both sides for red and blue are slightly eccentric.
The electron beam of the book is focused on the aperture of the shadow mask, and is made to strike a predetermined phosphor layer of the phosphor screen.

この電子銃構体の各電子ビーム通過孔部にはそ
れぞれ環状の突出部が相対向する電極より遠ざか
るように設けられ、電子ビーム通過孔部を補強す
ると共に電極間に形成される電子レンズの形状や
相互干渉を防止するようになつている。また各電
極には電子ビーム通過孔部の中心を結ぶ直線と直
角な方向の両側に植設部が設けられており、この
植設部を介して絶縁支持体9に植設される。
Each electron beam passage hole of this electron gun structure is provided with an annular protrusion so as to be spaced apart from the opposing electrodes. It is designed to prevent mutual interference. Further, each electrode is provided with a planting portion on both sides in a direction perpendicular to a straight line connecting the centers of the electron beam passage holes, and is planted on the insulating support 9 via this planting portion.

前述した電子銃構体は複合形主電子レンズ系を
有する所謂QPF形電子銃構体と呼ばれるもので
あり、第6格子電極8に陽極電圧を印加し、第5
格子電極7と第3格子電極5を内部導線12にて
接続してステム10に植設されたステムピン11
より陽極電圧の20乃至30%を印加し、第4格子電
極6を第2格子電極4に内部導線13で接続する
ことにより、第3格子電極5、第4格子電極6及
び第5格子電極7により補助電子レンズとしての
ユニポテンシヤル形電子レンズを形成すると共
に、第5格子電極7と第6格子電極8により主電
子レンズとしてのバイポテンシヤル形電子レンズ
を形成する極めて特性の良好な電子銃構体であ
る。
The electron gun assembly described above is a so-called QPF type electron gun assembly having a composite main electron lens system, and an anode voltage is applied to the sixth grid electrode 8.
A stem pin 11 is implanted in the stem 10 by connecting the grid electrode 7 and the third grid electrode 5 with an internal conductor 12.
By applying 20 to 30% of the anode voltage and connecting the fourth grid electrode 6 to the second grid electrode 4 with the internal conductor 13, the third grid electrode 5, the fourth grid electrode 6, and the fifth grid electrode 7 are connected. This is an electron gun structure with extremely good characteristics, in which a unipotential electron lens is formed as an auxiliary electron lens, and a bipotential electron lens is formed as a main electron lens by the fifth grid electrode 7 and the sixth grid electrode 8. be.

次にこの様な電子構体に組込まれる第1格子電
極3について第3図乃至第8図によつて説明す
る。
Next, the first grid electrode 3 incorporated into such an electronic structure will be explained with reference to FIGS. 3 to 8.

即ち、第3図及び第4図は第1格子電極3の組
立図であり、第5図及び第6図に示す本体3aと
第7図及び第8図に示す支持体3bとを×印の溶
接点30にて固定して組立てられている。
That is, FIGS. 3 and 4 are assembly diagrams of the first grid electrode 3, and the main body 3a shown in FIGS. 5 and 6 and the support body 3b shown in FIGS. 7 and 8 are marked with an X. It is assembled by being fixed at welding points 30.

この様な第1格子電極3に於ては支持体3bに
設けられた植設部31a,31b,31c,31
dを絶縁支持体9に固定して組立てるが、この植
設部31a,31b間、31c,31d間の間隔
が広ければ広いほど第1格子電極3と第2格子電
極4との間隔は正確に固定され、また第1格子電
極3と第2格子電極4の平行度も正確となる。し
かし常温時の寸法が正確に保たれても、陰極2、
ヒータ1を取付け、ステム10に接続し、一般的
な封止排気工程を経てカラーブラウン管を完成
し、ヒーター1を再点火した時に、第1格子電極
の植設部31aと31b,31cと31dとがそ
れぞれ1本の絶縁支持体9間に支持されているた
め、この植設部31a,31b間及び31c,3
1d間が広いとヒータの点火により陰極2が加熱
されると、熱輻射などにより第1格子電極3が温
度上昇する。この第1格子電極3の温度上昇はこ
の熱輻射の他にヒータ1及び陰極2を支持してい
る支持片(植設部)から絶縁支持体9を介しての
熱伝導がある。このような熱輻射や熱伝導により
第1格子電極3の温度が上昇すると、熱膨張によ
つて第1格子電極3が膨張する。この場合、第1
格子電極3を形成する材質であるステンレス系1
6―14の熱膨張係数αはα=176×10-7であり、
一方絶縁支持体9の材質であるガラスの熱膨張係
数α′はα′=24×10-7とその差が大きく、また熱膨
張係数の同じ材質の組合せにしても温度上昇の速
度は必ずしも一致せず、必然的に熱膨張係数及び
温度差による寸法差を生じ、第1格子電極3は電
子ビーム通過孔部R,G,Bの配列方向にそりを
生じる。更に悪いことには、第2格子電極4は第
1格子電極3に比較して熱源から遠いために温度
の到達点(飽和温度)及びその上昇温度が第1格
子電極3と異なり遅くなる。同様にして第3格子
電極5、第4格子電極6など順次熱源から遠くな
るに従つて温度が上昇するが、その時間は遅く、
各電極共に寸法差を生じるが、特に第1格子電極
3、第2格子電極4は熱源に近く、その歪を受け
変形が大となる。
In such a first grid electrode 3, the implanted portions 31a, 31b, 31c, 31 provided on the support 3b are
d is fixed to the insulating support 9 and assembled, and the wider the distance between the planted parts 31a and 31b and between 31c and 31d, the more accurate the distance between the first grid electrode 3 and the second grid electrode 4 becomes. The parallelism between the first grid electrode 3 and the second grid electrode 4 is also accurate. However, even if the dimensions at room temperature are maintained accurately, the cathode 2,
After installing the heater 1 and connecting it to the stem 10, completing the color cathode ray tube through a general sealing and evacuation process, and relighting the heater 1, the implanted portions 31a and 31b, 31c and 31d of the first grid electrodes are are each supported between one insulating support 9, and between the implanted portions 31a and 31b and between 31c and 3.
If the interval 1d is wide, when the cathode 2 is heated by ignition of the heater, the temperature of the first grid electrode 3 will rise due to thermal radiation or the like. The temperature rise of the first grid electrode 3 is caused by heat conduction from the support piece (planted part) supporting the heater 1 and the cathode 2 via the insulating support body 9 in addition to this heat radiation. When the temperature of the first grid electrode 3 increases due to such thermal radiation or conduction, the first grid electrode 3 expands due to thermal expansion. In this case, the first
Stainless steel 1 which is the material forming the grid electrode 3
The thermal expansion coefficient α of 6-14 is α=176×10 -7 ,
On the other hand, the coefficient of thermal expansion α' of glass, which is the material of the insulating support 9, is α' = 24 × 10 -7 , which is a large difference, and even if materials with the same coefficient of thermal expansion are combined, the rate of temperature rise is not necessarily the same. However, dimensional differences due to thermal expansion coefficients and temperature differences inevitably occur, and the first grid electrode 3 warps in the direction in which the electron beam passage holes R, G, and B are arranged. To make matters worse, since the second grid electrode 4 is farther from the heat source than the first grid electrode 3, the point at which the temperature reaches (saturation temperature) and its rising temperature are slower than the first grid electrode 3. Similarly, as the third grid electrode 5, fourth grid electrode 6, etc. are further away from the heat source, the temperature increases, but the time is slow;
Although each electrode has a dimensional difference, the first grid electrode 3 and the second grid electrode 4 are particularly close to the heat source and are subjected to the strain, resulting in large deformation.

この場合、植設部31a,31b間に代表され
る寸法が大きく取られていると、この2つの植設
部31a,31bで絶縁支持体9に固定された第
1格子電極3は熱膨張により植設部31a,31
bを通る円弧状にそり返えることになる。このそ
りによる寸法変化は中央の緑用電子銃と両側電子
ビームの赤,青用電子銃とは一致しない。これは
第1格子電極3の折返し即ち浅皿状の本体3aの
側壁32a,支持体3bの側壁32bが陰極2側
を内面としているため、このそりは第2格子電極
側を外面とした円弧状となり、中央の緑用電子銃
の電子ビーム通過孔部との陰極間の寸法は広くな
る方向で、両側の赤,青用の電子銃の電子ビーム
通過孔部と陰極間の寸法は中央の緑用電子銃の電
子ビーム通過孔部に比して陰極間の寸法は狭くな
る方向となり、その結果各電子銃の陰極電流比
(IK比)(安定時を100%とする。)は第9図の破
線35で示す中央電子銃のものと実線36で示す
両側電子銃のものとに分離して変化する。即ちヒ
ータ点火から10秒乃至3分位は陰極寸法が伸び、
第1格子電極3、陰極2間の寸法は縮まるので電
流IKは大きくなる。次に第1格子電極3のそり
が加わる時点即ち1分乃至20分位迄は徐々に減少
する。これは陰極2の伸びが止まり(温度が安定
領域に入いる)、しかも第1格子電極3の温度が
上昇して寸法が変化してそりを生じると定常状態
より電流が少ない方向に変化し始めるためであ
る。この影響の最も大きい点は点火後3分乃至10
分位で電流は最少となる。この時中央の緑用電子
銃の変化が最も大であり、電流は3電子銃中で最
少となる。従つてこの時のカラーブラウン管の色
は緑の抜けた色即ちマゼンダ色に変化する。更に
時間が進むと絶縁支持体9の温度が上昇して寸法
歪はやゝ緩和され、電流は徐々に回復する方向と
なる。この間第2格子電極4は温度が徐々に上昇
しているが、顕在効果と電流変化が見られるのは
20分位からであり、電流は定常値を越えた時点か
ら徐々にわずかであるが下降し安定領域に入る。
第2格子電極4の変化は第1格子電極3の変化と
前半は重なつて差数として出るので単独の効果は
見えないが、後半第1格子電極3の変化が止つた
時点から現われる。このように一体化構造に組立
てられた第1、第2格子電極3,4は温度上昇
時、第3格子電極5などより必ず早く温度が上昇
し、従つて第9図のような陰極電流の変化とな
り、特に中央の緑用電子銃における電流変化が大
きいため、スイツチオン時の色ずれの原因となる
問題点があつた。
In this case, if the dimension between the planted parts 31a and 31b is large, the first grid electrode 3 fixed to the insulating support 9 by the two planted parts 31a and 31b will be damaged due to thermal expansion. Planting parts 31a, 31
It will curve back in an arc passing through b. The dimensional change due to this warping does not match the green electron gun in the center and the red and blue electron guns with electron beams on both sides. This is because the side wall 32a of the folded first grid electrode 3, that is, the side wall 32a of the shallow dish-shaped main body 3a, and the side wall 32b of the support body 3b have the cathode 2 side as the inner surface, so this warp is shaped like an arc with the second grid electrode side as the outer surface. Therefore, the dimension between the electron beam passage hole of the central green electron gun and the cathode is in the direction of widening, and the dimension between the electron beam passage hole of the red and blue electron guns on both sides and the cathode is the width of the center green electron gun. As a result, the cathode current ratio (IK ratio) of each electron gun (assuming 100% when stable) is as shown in Figure 9. The central electron gun is shown by a broken line 35, and the electron guns on both sides are shown by a solid line 36. In other words, for about 10 seconds to 3 minutes after ignition of the heater, the cathode size expands,
Since the dimension between the first grid electrode 3 and the cathode 2 is reduced, the current IK becomes larger. Next, it gradually decreases until the warp of the first grid electrode 3 is added, that is, from about 1 minute to 20 minutes. This is because the elongation of the cathode 2 stops (the temperature enters a stable region), and the temperature of the first grid electrode 3 rises and its dimensions change, causing warping, and the current starts to change in the direction of less than in the steady state. It's for a reason. The point where this effect is greatest is 3 minutes to 10 minutes after ignition.
The current is at its minimum at the quantile. At this time, the change in the green electron gun in the center is the largest, and the current is the smallest among the three electron guns. Therefore, the color of the color cathode ray tube at this time changes to a color without green, that is, a magenta color. As time progresses further, the temperature of the insulating support 9 increases, the dimensional strain is somewhat relaxed, and the current gradually recovers. During this time, the temperature of the second grid electrode 4 is gradually rising, but the apparent effect and current change are observed.
After about 20 minutes, the current gradually decreases, albeit slightly, from the point at which it exceeds the steady-state value and enters a stable region.
The change in the second grid electrode 4 overlaps with the change in the first grid electrode 3 in the first half and appears as a difference number, so that no independent effect can be seen, but it appears from the time when the change in the first grid electrode 3 stops in the second half. When the temperature of the first and second grid electrodes 3 and 4 assembled into an integrated structure increases faster than that of the third grid electrode 5, etc., the cathode current as shown in FIG. In particular, there was a problem in that the current change in the central green electron gun was large, causing color shift during switch-on.

本発明は前述した問題点に鑑みなされたもので
あり、スイツチオン時の初期色ずれを軽減し、精
度の良好な電子銃構体を提供することを目的とし
ている。
The present invention was made in view of the above-mentioned problems, and an object of the present invention is to provide an electron gun assembly with good accuracy by reducing the initial color shift at the time of switch-on.

次に本発明の電子銃構体の一実施例を説明する
が、電子銃構体としての構造は第1図及び第2図
と略同様であるので省略し、第1格子電極につい
て第10図乃至第15図によつて説明する。
Next, one embodiment of the electron gun structure of the present invention will be described. However, since the structure as the electron gun structure is substantially the same as that shown in FIGS. This will be explained with reference to FIG.

即ち第10図及び第11図は第1格子電極43
の組立図であり、第12図及び第13図に示す従
来とほぼ同一構造の浅皿状の第1格子電極本体4
3aと第14図及び第15図に示す第1格子電極
支持体43bとを溶接点40にて固定して組立て
られている。
That is, FIGS. 10 and 11 show the first grid electrode 43.
This is an assembly diagram of the shallow dish-shaped first grid electrode body 4 having almost the same structure as the conventional one shown in FIGS. 12 and 13.
3a and a first grid electrode support 43b shown in FIGS. 14 and 15 are assembled by fixing them at welding points 40.

この第1格子電極支持体43bの説明をする
と、植設部44a,44bは中央の緑用電子ビー
ム通過孔部Gと両側の赤,青用電子ビーム通過孔
部R,Bの中心を結ぶ直線に直角な方向の両側の
中心部に設けられており、この植設部44a,4
4bは絶縁支持体に植設される。更にこの植設部
44a,44bの両側に低い段部45a,45
b,45c,45dを有し、この低い段部は植設
部44a,44bが絶縁支持体に植設される際
に、この植設部44a,44bよりも浅く保持さ
れ、且つ、絶縁支持体の横幅は低い段部45aと
45b及び45cと45dの外幅46a,46b
より狭くしておく、この場合第1格子電極本体4
3aについても第1格子電極支持体43bの低い
段部45a,45b,45c,45dに相当する
段部を設けてもかまわない。
To explain the first grid electrode support 43b, the implanted parts 44a and 44b are straight lines connecting the center green electron beam passage hole G and the centers of the red and blue electron beam passage holes R and B on both sides. The planting portions 44a, 4 are provided at the center on both sides in the direction perpendicular to the
4b is implanted in an insulating support. Furthermore, low step portions 45a, 45 are provided on both sides of the planted portions 44a, 44b.
b, 45c, and 45d, and this low step portion is held shallower than the implanted portions 44a, 44b when the implanted portions 44a, 44b are implanted on the insulating support, and The width is the outer width 46a, 46b of the lower step portions 45a and 45b and 45c and 45d.
keep it narrower, in this case the first grid electrode body 4
3a may also have stepped portions corresponding to the low stepped portions 45a, 45b, 45c, and 45d of the first grid electrode support 43b.

この様な構造の第1格子電極43を絶縁支持体
に植設する場合、植設部44a,44bを深く植
設し、浅い突起部45a,45b,45c,45
dも同時に絶縁支持体に浅く保持する。
When the first grid electrode 43 having such a structure is implanted in an insulating support, the implanted portions 44a and 44b are implanted deeply, and the shallow protrusions 45a, 45b, 45c, 45 are implanted deeply.
d is also held shallowly on an insulating support at the same time.

この様な構造にする利点は次のようである。即
ち、植設部44a,44bで第1格子電極43の
中心部近くを確実に固定し、低い段部45a,4
5b及び45c,45dで電極の平行度を確実に
する。即ち、両側の電子銃の電子ビーム通過孔部
は低い段部45a,45b,45c,45dが絶
縁支持体にやや浅く保持されており、第1格子電
極、第2格子電極、陰極及びヒータ、他の格子電
極を組立てステムに接続し、一般的な封止排気工
程を経てカラーブラウン管を完成し、ヒータを再
点火した時の中央及び両側の各電子銃の陰極電流
比(IK比)(安定時を100%とする)は第16図
の破線51で示す中央電子銃のものと、実線52
で示す両側電子銃のものとに分離して変化する。
The advantages of such a structure are as follows. That is, the planting portions 44a, 44b securely fix the first grid electrode 43 near the center, and the low step portions 45a, 4
5b, 45c, and 45d ensure the parallelism of the electrodes. That is, in the electron beam passage holes of the electron guns on both sides, low step portions 45a, 45b, 45c, and 45d are held slightly shallowly by an insulating support, and the first grid electrode, second grid electrode, cathode, heater, etc. Connect the grid electrodes to the assembled stem, complete the color cathode ray tube through the general sealing and evacuation process, and then relight the heater.The cathode current ratio (IK ratio) of each electron gun at the center and both sides (when stable) 100%) are those of the central electron gun indicated by the broken line 51 in Fig. 16, and the solid line 52.
It changes separately from that of the double-sided electron gun shown in .

即ち、ヒータ点火から10秒乃至3分位は陰極寸
法が伸び、第1格子電極43と陰極の寸法は縮ま
るので電流IKは大きくなりうるが、陰極温度が
上昇するとともに第1格子電極43にも熱輻射な
どにより熱が伝えられ、第1格子電極43の温度
が上がり、第1格子電極43の支持体43bの熱
膨張による寸法差が安定するまで電流はやや下が
るが、第1格子電極43の変形がないため電流が
低下する率はきわめて少ない。また第2格子電極
も同様な構造とすることにより、その影響は電流
的に検出できない程度となる。
That is, for about 10 seconds to 3 minutes after ignition of the heater, the cathode size increases, and the dimensions of the first grid electrode 43 and the cathode decrease, so the current IK can increase, but as the cathode temperature rises, the first grid electrode 43 also increases. Heat is transferred by thermal radiation, the temperature of the first grid electrode 43 rises, and the current decreases slightly until the dimensional difference due to thermal expansion of the support 43b of the first grid electrode 43 becomes stable. Since there is no deformation, the rate at which the current decreases is extremely low. Furthermore, by providing the second grid electrode with a similar structure, the effect thereof becomes undetectable in terms of current.

この理由は植設部44a,44bが中心部近く
で絶縁支持体に植設されていることと、低い段部
45a,45b,45c,45dが絶縁支持体に
浅く保持されており、この低い段部は植設部より
絶縁支持体に対する固定力が弱く、且つ、絶縁支
持体9より外にはみ出す構造となつているため、
熱膨張による第1格子電極43の寸法の膨張は植
設部44a,44bを中心として低い段部が絶縁
支持体と摺動して幅方向の両側に逃げることが可
能なため、固定点が植設部44a,44bそれぞ
れの1点となり、第1格子電極43にそりを生じ
ることがない。従つて第1格子電極43は常に平
坦度が保たれるので陰極との寸法差が生じない。
特に中央電子銃と両側電子銃との特性の差がなく
なり、スイツチオン時の色ずれを発生しない。ま
た第2格子電極も同様な構造とすればこの電極に
よる寸法差もなくなる。
The reason for this is that the planting parts 44a and 44b are planted on the insulating support near the center, and the low step parts 45a, 45b, 45c, and 45d are held shallowly on the insulating support. The part has a weaker fixing force to the insulating support than the implanted part, and has a structure that protrudes from the insulating support 9.
The expansion of the dimensions of the first grid electrode 43 due to thermal expansion is caused by the fact that the lower steps around the implanted portions 44a and 44b slide on the insulating support and can escape to both sides in the width direction. There is one point for each of the provided portions 44a and 44b, and the first grid electrode 43 does not warp. Therefore, the flatness of the first grid electrode 43 is always maintained, so that no dimensional difference occurs between the first grid electrode 43 and the cathode.
In particular, there is no difference in characteristics between the central electron gun and the electron guns on both sides, and color shift does not occur during switch-on. Moreover, if the second grid electrode has a similar structure, the dimensional difference due to this electrode will also be eliminated.

前記実施例では第1格子電極43の支持体43
bの両側に植設部44a,44b及び低い段部4
5a,45b,45c,45dをつけたものにつ
いて説明したが、これは支持体に植設部を設け、
本体に低い段部を振り分けして第1格子電極を形
成してもよい。
In the embodiment, the support 43 of the first grid electrode 43
Planted parts 44a, 44b and low step part 4 on both sides of b
5a, 45b, 45c, and 45d have been described, but in this case, a planting part is provided on the support,
The first grid electrode may be formed by distributing low steps on the main body.

この様な電極構造は第2格子電極にも同様に適
用することが望ましいが、通常第2格子電極は一
枚の板状体で良く、第1格子電極に使用したよう
な支持体は一般には不要である。従つて第2格子
電極の場合には直接植設部及び低い段部をつけれ
ば良いことになる。また第1格子電極において第
1格子電極支持体を設ける理由は第1格子電極本
体に設けられた電子ビーム通過孔部の周辺の板厚
を薄くするため、第1格子電極本体を薄板で形成
しているために強度的に第1格子電極支持体を設
けたものである。従つて電子ビーム通過孔部周辺
の板厚が極薄を望まないものであれば必ずしも本
体と支持体にわけることなく、第10図及び第1
1図の第1格子電極を一枚の板体または浅皿体で
形成し得ることは勿論であり、この場合には植設
部を中心にして両側に低い段部を設ければよいこ
とになる。
It is desirable to apply this kind of electrode structure to the second grid electrode as well, but normally the second grid electrode can be a single plate-shaped body, and the support used for the first grid electrode is generally Not necessary. Therefore, in the case of the second grid electrode, it is sufficient to provide a directly planted portion and a low step portion. The reason why the first grid electrode support is provided in the first grid electrode is that the first grid electrode body is formed of a thin plate in order to reduce the thickness of the plate around the electron beam passage hole provided in the first grid electrode body. The first grid electrode support is provided for strength. Therefore, if the thickness of the plate around the electron beam passage hole is not desired to be extremely thin, it is not necessarily necessary to separate the plate thickness into the main body and the support, and the thickness shown in FIGS.
Of course, the first grid electrode shown in Figure 1 can be formed from a single plate or a shallow dish, and in this case, it is sufficient to provide low steps on both sides of the implanted part. Become.

更に電子銃構体としては補助レンズ及び主レン
ズを有する高性能のものを代表として示したが、
これは通常のバイポテンシヤル形電子銃構体、ユ
ニポテンシヤル形電子銃構体、トライポテンシヤ
ル形電子銃構体、その他の電子銃構体にもそのま
ま適用出来ることは勿論である。
Furthermore, as a representative example of the electron gun structure, a high-performance one with an auxiliary lens and a main lens is shown.
Of course, this can also be applied to ordinary bipotential electron gun structures, unipotential electron gun structures, tripotential electron gun structures, and other electron gun structures.

上述の様に本発明の電子銃構体によれば簡単な
構造でありながらスイツチオン時から安定時の
IKの変動を極めて少なくすることが可能であり、
色ずれのない画面を得ることが出来るので、その
工業的価値は極めて大である。
As mentioned above, the electron gun structure of the present invention has a simple structure, but it can be used from switch-on to stable state.
It is possible to extremely reduce IK fluctuations,
Since a screen without color shift can be obtained, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は電子銃構体の一例を示す図
であり、第1図は側面図、第2図は正面図、第3
図乃至第8図は従来の第1格子電極を示す図であ
り、第3図は第1格子電極の平面図、第4図は第
1格子電極の正面図、第5図は第1格子電極本体
の平面図、第6図は第5図をX1―X1線に沿つて
切断して見た断面図、第7図は第1格子電極支持
体の平面図、第8図は第1格子電極支持体の正面
図、第9図は第3図及び第4図の第1格子電極を
使用した時のスイツチオンから安定時までのIK
変化を示す曲線図、第10図乃至第15図は本発
明の電子銃構体の一実施例に適応する第1格子電
極を示す図であり、第10図は第1格子電極の平
面図、第11図は第1格子電極の正面図、第12
図は第1格子電極本体の平面図、第13図は第1
2図をX2―X2線に沿つて切断して見た断面図、
第14図は第1格子電極支持体の平面図、第15
図は第1格子電極支持体の正面図、第16図は第
10図及び第11図の第1格子電極を使用した時
のスイツチオンから安定時までのIK変化を示す
曲線図である。 3,43……第1格子電極、3a,43a……
第1格子電極本体、3b,43b……第1格子電
極支持体、31a,31b,31c,31d,4
4a,44b……植設部、45a,45b,45
c,45d……低い段部。
1 and 2 are diagrams showing an example of an electron gun assembly, in which FIG. 1 is a side view, FIG. 2 is a front view, and FIG.
8 to 8 are diagrams showing conventional first grid electrodes, FIG. 3 is a plan view of the first grid electrode, FIG. 4 is a front view of the first grid electrode, and FIG. 5 is a diagram of the first grid electrode. A plan view of the main body, FIG. 6 is a cross-sectional view of FIG. 5 taken along the line X 1 - X 1 , FIG. 7 is a plan view of the first grid electrode support, and FIG. A front view of the grid electrode support, and Figure 9 shows the IK from switch-on to stability when using the first grid electrode shown in Figures 3 and 4.
10 to 15 are curve diagrams showing changes, and are diagrams showing a first grid electrode adapted to an embodiment of the electron gun structure of the present invention. FIG. 10 is a plan view of the first grid electrode, and FIG. Figure 11 is a front view of the first grid electrode, and Figure 12 is a front view of the first grid electrode.
The figure is a plan view of the first grid electrode body, and Figure 13 is a plan view of the first grid electrode body.
A cross-sectional view of Figure 2 taken along the line X 2 - X 2 ,
FIG. 14 is a plan view of the first grid electrode support;
The figure is a front view of the first grid electrode support, and FIG. 16 is a curve diagram showing the IK change from switch-on to stable state when the first grid electrode of FIGS. 10 and 11 is used. 3, 43...first grid electrode, 3a, 43a...
First grid electrode body, 3b, 43b...first grid electrode support, 31a, 31b, 31c, 31d, 4
4a, 44b...planted part, 45a, 45b, 45
c, 45d...Low step.

Claims (1)

【特許請求の範囲】 1 複数の絶縁支持体間に陰極、第1格子電極、
第2格子電極及び他の格子電極が植設部を介して
互いに所定間隔をもつように配設され、かつ少な
くとも前記第1格子電極及びまたは第2格子電極
が板状、浅皿状または板状と浅皿状の組合せ体に
3個の電子ビーム通過孔部が一列配設された一体
化構造の電極からなるカラーブラウン管用電子銃
構体において、前記第1格子電極及びまたは第2
格子電極の前記電子ビーム通過孔部の中心を結ぶ
直線に直角な方向の両側の中心部にそれぞれ前記
絶縁支持体に深く植設される一対の植設部と、こ
の一対の植設部のそれぞれの両側に前記絶縁支持
体に浅く保持される低い段部を設け、前記低い段
部と前記絶縁支持体の摺動により前記第1格子電
極及びまたは第2格子電極のそりを防止し得るよ
うになされていることを特徴とするカラーブラウ
ン管用電子銃構体。 2 植設部の両側に設けられる低い段部の外幅が
絶縁支持体の幅より大であることを特徴とする特
許請求の範囲第1項記載のカラーブラウン管用電
子銃構体。
[Claims] 1. Between a plurality of insulating supports, a cathode, a first grid electrode,
A second grid electrode and another grid electrode are arranged at a predetermined distance from each other via the implanted part, and at least the first grid electrode and/or the second grid electrode are plate-shaped, shallow dish-shaped, or plate-shaped. In the electron gun assembly for a color cathode ray tube, the electron gun assembly for a color cathode ray tube is composed of an electrode of an integrated structure in which three electron beam passage holes are arranged in a row in a shallow dish-like combination body.
A pair of implanted portions deeply implanted into the insulating support at the center of each side in a direction perpendicular to a straight line connecting the centers of the electron beam passage holes of the grid electrode, and each of the pair of implanted portions. A low step portion that is held shallowly by the insulating support is provided on both sides of the electrode, and the sliding of the low step portion and the insulating support prevents the first grid electrode and/or the second grid electrode from warping. An electron gun structure for a color cathode ray tube. 2. The electron gun assembly for a color cathode ray tube according to claim 1, wherein the outer width of the low stepped portions provided on both sides of the implanted portion is larger than the width of the insulating support.
JP5632980A 1980-04-30 1980-04-30 Electron gun frame for color cathode-ray tube Granted JPS56153652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5632980A JPS56153652A (en) 1980-04-30 1980-04-30 Electron gun frame for color cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5632980A JPS56153652A (en) 1980-04-30 1980-04-30 Electron gun frame for color cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS56153652A JPS56153652A (en) 1981-11-27
JPS6311744B2 true JPS6311744B2 (en) 1988-03-15

Family

ID=13024141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5632980A Granted JPS56153652A (en) 1980-04-30 1980-04-30 Electron gun frame for color cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS56153652A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486685A (en) * 1982-05-14 1984-12-04 Rca Corporation Electron gun assembly with bead strap having an angulated grasping member
DE3334242A1 (en) * 1983-09-22 1985-04-04 Standard Elektrik Lorenz Ag, 7000 Stuttgart ELECTRONIC RADIATOR GENERATION SYSTEM FOR MULTIPLE-CATHODE RAY TUBES, LIKE COLOR IMAGE TUBES

Also Published As

Publication number Publication date
JPS56153652A (en) 1981-11-27

Similar Documents

Publication Publication Date Title
US4886997A (en) Color picture tube with shadow mask support assembly
JPS6311744B2 (en)
JPS59141150A (en) Shadow mask-type color picture tube
KR100319085B1 (en) Hook spring of shadow mask frame assembly and color cathode ray tube using it
US6265819B1 (en) Electron gun structure
KR100198580B1 (en) A bead-glass supporter structure of electrode of the electron-gun used in the crt
Seelen et al. Development of the rca 21-inch metal-envelope color kinescope
US5944571A (en) Method of making color picture tubes having a mix of electron guns
KR100342041B1 (en) Cathode ray tube having shadow mask frame assembly
US5063326A (en) Dynamic focus electron gun
EP0500312A1 (en) Shadow mask assembly for color cathode ray tube
JPH11195376A (en) Manufacture of electrode of electron gun for cathode-ray tube and electrode therefor
JP3466760B2 (en) Color picture tube
KR910000390B1 (en) Electron gun having blackened grids used in-line type color crt and color crt using the same
US5872423A (en) Color cathode ray tube having an improved first grid electrode
US5341064A (en) Cathode assembly of an electron gun for a color cathode ray tube
JP2834906B2 (en) Shadow mask type color picture tube
KR100347408B1 (en) Method for making colour television tubes with a combination of electron guns
JPH0749724Y2 (en) Electron gun for color CRT
KR0158472B1 (en) Electron gun for cathode ray tube
KR910000755B1 (en) Electron gun of cathode ray tube
JP2964939B2 (en) Color cathode ray tube
KR100405751B1 (en) A electron gun for cathode tube
JPS63239752A (en) Color picture tube
KR20010017108A (en) the grid-structure of the electron gun in a braun-tube