JPS63117278A - Photomagnetic resonance magnetometer - Google Patents

Photomagnetic resonance magnetometer

Info

Publication number
JPS63117278A
JPS63117278A JP26332986A JP26332986A JPS63117278A JP S63117278 A JPS63117278 A JP S63117278A JP 26332986 A JP26332986 A JP 26332986A JP 26332986 A JP26332986 A JP 26332986A JP S63117278 A JPS63117278 A JP S63117278A
Authority
JP
Japan
Prior art keywords
absorption
lenses
absorption cells
light
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26332986A
Other languages
Japanese (ja)
Inventor
Makoto Kikuchi
誠 菊池
Takashi Fujisawa
藤沢 峻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26332986A priority Critical patent/JPS63117278A/en
Publication of JPS63117278A publication Critical patent/JPS63117278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable the maintaining of a high sensitivity, by mounting an aperture made up of a non-magnetic body having openings required for parallel light portions of a light beam. CONSTITUTION:In this magnetometer, apertures 12 are mounted between absorption cells 4 and lenses 2. Spectral lights from a light source lamp 1 are introduced to the apertures 12 through optical fibers 11, the lenses 2, circular polarization plates 3 and the absorption cells 4. Here, the apertures 12 are allowed to make a photomagnetic resonance curve axially symmetrical almost perfectly in clockwise and counter-clockwise circular polarization systems. Output lights from the apertures 12 are converted into electrical signals with a photo detector 5 through the lenses 2 and the optical fibers 11 and added up with an adder 7 through six amplifiers 6. A signal processor 8 sends out specified signals to three pairs of RF coils 9 set near three pairs of cells 4 by a signal from the adder 7. This system is made to lock-on at the optimum point of a photomagnetic resonance and a lock-on frequency is sent outside as output signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、海中の潜水艦の存在をビン・ポイント(P
in Po1nt )で探知する光磁気共鳴磁力計に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention detects the presence of submarines in the sea using bin points (P
The present invention relates to an optical magnetic resonance magnetometer that detects in Po1nt.

〔従来の技術〕[Conventional technology]

第4図は従来の光磁気共鳴磁力計の一爽施例を示す構成
間で、(1)は光源ランプ、(2)はレンズ、(3)は
円偏光板、(4)は吸収セル、(51は光検知器、(6
1は増幅器、(71は加算器、(8)は信号処理器、(
9)はRFコイル、 1Gは光軸方向の中心軸、αDは
光ファイバーである。図中、この発明に関連しない構成
品は省略しである。光源ランプ(11は約φ8mX1(
1mの円筒容器で主ガスきして気体ヘリウムを、イグニ
ッションガスとして微量のクリプトンガスを封入しであ
る。光ファイバーIはコアー径が約50μのSi(シリ
コンノ系の光ファイバーで長さは約85craで、上記
光源ランプ+11からのto6μmのスペクトル光をレ
ンズ(2)の焦点面に導く。レンズ(2)は上記元ファ
イバー(Iυからのスペクトル光を平行光にする。円偏
光板(3)は2 (1にの対の吸収セル(4]に対して
互いに逆極性で、一方は右廻り偏光板(σ+)で他方は
左廻り円偏光板(σ−9である。吸収セル(4)は約φ
40a+X40mの円筒容器で主ガスとして気体ヘリウ
ムを、イグニッションガスとして微量のキセノンガスを
到大しである。レンズ(2)は上記吸収セル(4)を透
過した光線を集光する。ft、ファイバーαυはその開
口面か上記レンズ(2)の焦点面に設置され、コアー径
が約50μのSi(シリコン)系の光ファイバーでその
長さは約85傭である。
Figure 4 shows a typical example of a conventional optical magnetic resonance magnetometer. (1) is a light source lamp, (2) is a lens, (3) is a circularly polarizing plate, (4) is an absorption cell, (51 is a photodetector, (6
1 is an amplifier, (71 is an adder, (8) is a signal processor, (
9) is an RF coil, 1G is the central axis in the optical axis direction, and αD is an optical fiber. In the figure, components not related to the present invention are omitted. Light source lamp (11 is approximately φ8mX1 (
A 1m cylindrical container is used to supply gaseous helium as the main gas, and a small amount of krypton gas as the ignition gas. The optical fiber I is a Si (silicon) optical fiber with a core diameter of about 50 μm and has a length of about 85 cra, and guides the 6 μm spectrum light from the light source lamp +11 to the focal plane of the lens (2). The spectral light from the original fiber (Iυ) is converted into parallel light.The circularly polarizing plate (3) has opposite polarity to the pair of absorption cells (4) in 2 (1), and one is a right-handed polarizing plate (σ + ) and the other is a left-handed circularly polarizing plate (σ-9).The absorption cell (4) is approximately φ
It is a cylindrical container measuring 40a+40m, with gaseous helium as the main gas and a trace amount of xenon gas as the ignition gas. The lens (2) collects the light beam that has passed through the absorption cell (4). ft, the fiber αυ is installed at its aperture surface or the focal plane of the lens (2), and is a Si (silicon) based optical fiber with a core diameter of about 50 μm and a length of about 85 mm.

光検知器(51は1. Of1μm帯で高感度な81(
シリコンノ系のA P D (Avalanche P
ho℃o Diode]で上記元ファイバーaυからの
出力光を電気信号lこ変換する。
Photodetector (51 is 1.81 (81 is highly sensitive in the Of1 μm band)
Silicon-based APD (Avalanche P
The output light from the source fiber aυ is converted into an electrical signal by a diode].

増幅器(6)は上記光検知器(51からの1気信号を所
要の信号対雑音比S / N比を維持して増幅するっ加
算器(7)は上記6伽の増幅器(6)からの電気信号を
加算する。信号処理器(81は加算器(7)からの信号
によって、上記3対の吸収セル(4)の近傍に設置され
ている3対のRFコイル(9)Iこ所定の信号を送出し
て上記吸収セル(4)において生ずる光磁気共鳴の最適
点にこの系をロックオン(LOCkOn)させると共に
、上記ロックオン周波数を外部へ出力信号として送出す
る。衆知のように、上記ロックオン周波数は吸収セル(
4)部基こおける磁界の強さに比例するので、ロックオ
ン周波数を計測することによって例えば地磁気の強さを
知ることかできる。気体ヘリウムの場會、28凪いeの
関係がある。
The amplifier (6) amplifies the signal from the photodetector (51) while maintaining the required signal-to-noise ratio (S/N). The signal processor (81) uses the signal from the adder (7) to add the three pairs of RF coils (9) installed near the three pairs of absorption cells (4). A signal is sent to lock the system to the optimal point of optical magnetic resonance occurring in the absorption cell (4), and the lock-on frequency is sent to the outside as an output signal. The lock-on frequency is the absorption cell (
4) Since it is proportional to the strength of the magnetic field at the base, by measuring the lock-on frequency, it is possible to know, for example, the strength of the earth's magnetism. In the field of gaseous helium, there is a relationship of 28 calm e.

第3図(1)) 、 fc)は1対の吸収セル(4)l
こ対応する元軸方向の中心軸αGを示しており、こ5で
はA軸。
Figure 3 (1)), fc) is a pair of absorption cells (4)l
This shows the central axis αG in the corresponding original axis direction, which is the A axis in this case.

B軸及びC軸と称することにする。水平面に対する各軸
のなす角度は第3図(B)#こ示すように45度。
They will be referred to as the B axis and the C axis. The angle formed by each axis with respect to the horizontal plane is 45 degrees as shown in Figure 3 (B).

水平面方向に対する各軸のなす角度は第3図(Q)に示
すように120度である。
The angle formed by each axis with respect to the horizontal direction is 120 degrees, as shown in FIG. 3(Q).

上述した光磁気共鳴磁力計はA F C(Aut。The above-mentioned optical magnetic resonance magnetometer is AFC (Aut.

Frequency  C0ntralJ方式と称され
るものでありその1軸の感度指同性Sは次式で表わされ
る。
This is called the Frequency C0ntralJ method, and its one-axis sensitivity finger synchrony S is expressed by the following equation.

9 = KC8b2θ        filK:定数 θ:光軸(中心@−と磁界とのなす角度第5図は第(1
1式の垂直面におけるパターンを示したものである。A
軸、B軸及びC軸を上述したように立体的に配置するこ
とによって、第(1)式の感度指向性パターンをオーバ
・ラップ(overRapJさせて、地磁気の伏角が一
90度〜+90度、つまり9世界全域で作動させるよう
にしている。
9 = KC8b2θ filK: Constant θ: Optical axis (The angle between the center @- and the magnetic field in Figure 5 is (1
1 shows a pattern in a vertical plane. A
By arranging the axes, B-axes, and C-axes three-dimensionally as described above, the sensitivity directivity pattern of equation (1) is overlapped (overRapJ), and the inclination angle of the geomagnetic field is 190 degrees to +90 degrees, In other words, it operates in all nine worlds.

〔発明が解決しようとしている問題点〕従来の″/l、
磁気共Sa力計は、その静止感度がQ、01nT以上と
高感度であったが、この磁力計を対潜硝口戒機等に搭載
して潜水艦探知のオペレーションに入ると、航空機等の
マヌーバ(Maneuver)により、0.01nTよ
り大きなスプリアス(,5prio−u13J償号か発
生し、上記の0.01nT以上の高感度を運用時fこ活
かせない難点があった。
[Problem to be solved by the invention] Conventional ″/l,
The magnetic co-Sa force meter has a high static sensitivity of Q,01nT or more, but when this magnetometer is mounted on an anti-submarine patrol aircraft and used for submarine detection operations, it becomes difficult to maneuver aircraft, etc. (Maneuver), a spurious signal larger than 0.01 nT was generated, and the above-mentioned high sensitivity of 0.01 nT or more could not be utilized during operation.

ゼーマンサブレベルを有する気体ヘリウムの光磁気共鳴
点は、光軸と外部磁界とのなす角度の変化によって微小
に変移することが知られている。
It is known that the optical magnetic resonance point of gaseous helium, which has a Zeeman sublevel, shifts minutely due to changes in the angle between the optical axis and the external magnetic field.

そこで、第3図で説明したよう蚤こ、2個の吸収セル(
4)に逆極性の円偏光板(3)を対応させて、第5図に
示したようIこ、右廻り円偏光(σ十)を用いる系の光
磁気共鳴曲線(共鳴点A)ご左廻り円偏光(σ−)を用
いる系の光磁気共鳴曲MA(共鳴点B)を加算器(7)
で加算して合成した光a気共鳴曲蛛の共鳴点Cで全系を
作動させることによって、上記の共鳴点の変移の低減を
図っている。しかし、光線の断面輝度分布の不均一さ2
日偏光板(31の偏光夏の不完全性と、e、収セル(4
;における陽、を注のプラズマ¥!!夏の不均一性さ及
び光挾出器(5)の面感夏の不均一性さによって、第5
図で示したような理想的な共鳴点を得て、航空機等のマ
ヌーバによって生ずるスプリアス信号を静止感度のレベ
ル程度に低減することは、笑用上不可能き断定してよい
Therefore, as explained in Figure 3, a flea and two absorption cells (
4) with a circularly polarizing plate (3) of opposite polarity, as shown in Figure 5, the optical magnetic resonance curve (resonance point A) of the system using right-handed circularly polarized light (σ0) is obtained. An adder (7) adds the optical magnetic resonance curve MA (resonance point B) of the system using circularly polarized light (σ-).
By operating the entire system at the resonance point C of the optical a-air resonance tuner that is added and synthesized in , the above-mentioned shift in the resonance point is reduced. However, the non-uniformity of the cross-sectional brightness distribution of the light 2
Sun polarizer (31 polarization summer imperfections, e, collection cell (4
;In the positive, the plasma ¥! ! Due to the non-uniformity of the summer and the surface feeling of the light holder (5), the fifth
It can be concluded that it is practically impossible to obtain an ideal resonance point as shown in the figure and to reduce spurious signals caused by maneuvers of an aircraft or the like to the level of static sensitivity.

この発明は上記のような問題点を解決するためiこなさ
れたもので、低コストな手段で、上記のスプリアス信号
を静止感度のレベル程度に低減することができる光磁気
共鳴磁力計を得ることを目的とする。
This invention has been accomplished in order to solve the above-mentioned problems, and it is an object of the present invention to obtain an optical magnetic resonance magnetometer that can reduce the above-mentioned spurious signals to the level of static sensitivity using low-cost means. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る光磁気共鳴磁力計は9元線の平行光な部
分に、夫々lこ必俊七される開口を有する非磁性体で形
成したアパーチャを装荷したものである。
The optical magnetic resonance magnetometer according to the present invention is equipped with apertures made of a non-magnetic material and each having an aperture that is parallel to the 9-element beam.

〔作用〕[Effect]

この発明における所要の開口を有するアパーチャは、右
廻り円偏光系における光磁気共鳴曲線と左廻り円偏光系
における光磁気共鳴曲線をはソ完全な軸対称な曲線とす
るこ七ができ、その合成光磁気共鳴曲線の共鳴点Cが航
空機等のマヌーバによっても変位しないようになった。
In this invention, the aperture having the required opening can make the optical magnetic resonance curve in the right-handed circularly polarized light system and the optical magnetic resonance curve in the left-handed circularly polarized light system into completely axially symmetrical curves, and their synthesis The resonance point C of the opto-magnetic resonance curve is now not displaced by maneuvers of aircraft or the like.

〔実施例〕〔Example〕

第1図(a)はこの発明の一実施例の構成図で、a3は
アパーチャである。なお、第1図(b) 、 (C)は
1対の吸収セル(4)に対応する光軸方向の中心軸01
を示す。アパーチャα2は吸収セル(4)とレンズ(2
+の間に装荷されている。以下にA軸を例におって説明
する。この実施例では、左廻り円偏光系に対するアパー
チャ(13の開口径はφ30mmであり、第2図の(a
) fζ示した光8i気共鳴曲線(σ−)が得られてい
る。第2図の(a)〜(C)に、右廻り円偏光系にヌ1
Tるアパーチャα2の開口径を、大々、φ30m、φ3
1謹、φ29■にしたときの光磁気共鳴曲線(σ+)を
示した。第2図のtc+において、上記のσ十とび−か
はソ軸対称な光磁気共鳴曲線となり、その合成光磁気共
鳴点Cが、第5図で説明したように、はソ、理想的な点
に設定されたことlこなる。B軸及びC軸についても、
A軸と同様な方法によって。
FIG. 1(a) is a block diagram of an embodiment of the present invention, and a3 is an aperture. Note that FIGS. 1(b) and (C) show the central axis 01 in the optical axis direction corresponding to the pair of absorption cells (4).
shows. Aperture α2 consists of absorption cell (4) and lens (2).
It is loaded between +. The A-axis will be explained below as an example. In this example, the opening diameter of the aperture (13) for the left-handed circularly polarized light system is φ30 mm, and (a
) The optical resonance curve (σ-) shown in fζ is obtained. Figure 2 (a) to (C) show that the clockwise circularly polarized system is
The opening diameter of the aperture α2 is approximately φ30m, φ3
1. The optical magnetic resonance curve (σ+) when the diameter is 29 mm is shown. At tc+ in Fig. 2, the above σ0 is an optical magnetic resonance curve that is symmetric about the x axis, and the composite optical magnetic resonance point C is an ideal point as explained in Fig. 5. The settings are as follows. Regarding the B axis and C axis,
By the same method as the A axis.

夫々の理想的な共鳴点を得ることができる。上述した。Each ideal resonance point can be obtained. As mentioned above.

アパーチャα旧こよる調Iiは、一般lこ、最長試験調
整の段階で貿施される。
The aperture aperture Ii is generally applied at the longest test adjustment stage.

〔・発明の効果〕〔·Effect of the invention〕

以上のように、この発明によれば簡単な手段で合成光磁
気共鳴油砂の共鳴点を航空機等のマヌーバt、、 Ma
nθuver月こよって変移しないようにしたので、5
を磁気共鳴磁力計のもつ高感度性を潜水艦探知の運用時
においても維持することが可能となりその効果は極めて
大きいと考えられる。
As described above, according to the present invention, the resonance points of synthetic optical magnetic resonance oil sand can be easily determined by maneuvers of aircraft, etc.
nθuber I made it so that it doesn't change depending on the moon, so 5
This makes it possible to maintain the high sensitivity of magnetic resonance magnetometers even during submarine detection operations, and the effect is considered to be extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す図、第2図はこの発
明lこよる理想的な合成光磁気共鳴点を得る過程の一例
を示す図、第3図は従来の光磁気共鳴磁力計を示す図、
第4図はAFC方式元磁気共鳴磁力計の感度指同注パタ
ーンを示す図、第5図は光磁気共鳴曲線を示T図である
。 図で、(1)は光源ランプ、(2)はレンズ、(3)は
円偏光板、(4)は吸収セル、(51は光検知器、(6
1は増幅器。 (7)は加算器、(81は信号処理器、(91はRFコ
イル。 αGは光軸方向の中心@、(lυは元ファイバー、α2
はアパーチャである。 図中、同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of the process of obtaining an ideal composite optical magnetic resonance point according to the present invention, and FIG. 3 is a diagram showing a conventional optical magnetic resonance magnetic field. Diagram showing meter,
FIG. 4 is a diagram showing a sensitivity finger co-injection pattern of an original AFC type magnetic resonance magnetometer, and FIG. 5 is a T diagram showing an optical magnetic resonance curve. In the figure, (1) is the light source lamp, (2) is the lens, (3) is the circularly polarizing plate, (4) is the absorption cell, (51 is the photodetector, and (6) is the light source lamp.
1 is an amplifier. (7) is an adder, (81 is a signal processor, (91 is an RF coil, αG is the center in the optical axis direction @, (lυ is the original fiber, α2
is the aperture. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 量子遷移を起すゼーマンサブレベルを有する物質を内蔵
した6個の吸収セルを有し、上記対の吸収セルにおける
光軸方向の中心軸を水平面に対して夫々45度、水平面
方向に対して夫々120度に設定した吸収セル部と所要
のスペクトルを発生する1個の光源ランプと、上記吸収
セルに上記光源ランプのスペクトル光を導く所要の長さ
を有する6本の光ファイバーと、上記光ファイバーから
のスペクトル光を上記吸収セルに平行光にして導く6個
のレンズと、上記6個の吸収セルの2個の吸収セルを対
として、上記対の吸収セルと上記対の吸収セルに対応す
る2個のレンズの間に設置する偏光特性が互いに逆極性
の2枚の円偏光板と、上記6本の光線の平行光の部分に
所要の開口を有する非磁性体で形成した6個のアパーチ
ャと、上記吸収セルを透過した光線を集光する6個のレ
ンズと、上記レンズの集光面に所要の開口を有し、所要
の長さを有する6本の光ファイバーと、上記光ファイバ
ーからの光線を電気信号に変換する6個の光検知器と、
上記光検知器からの信号を増幅する6個の増幅器と、上
記増幅器からの信号を加算する加算器と、上記吸収セル
に磁気共鳴を生ぜしめるために上記対の吸収セルの近傍
に設けた3対のRFコイルと、上記加算器からの電気信
号を処理する信号処理器と、上記信号処理器からの信号
を上記RFコイルに帰還する手段とを具備したことを特
徴とする光磁気共鳴磁力計。
It has six absorption cells containing substances having Zeeman sublevels that cause quantum transition, and the central axes in the optical axis direction of the pair of absorption cells are set at 45 degrees and 120 degrees, respectively, with respect to the horizontal plane. an absorption cell part set at the same time, one light source lamp that generates the required spectrum, six optical fibers having the required length to guide the spectrum light of the light source lamp to the absorption cell, and a spectrum from the optical fiber. Six lenses that guide the light into parallel light to the absorption cells, and two absorption cells of the six absorption cells are paired, and two absorption cells corresponding to the pair of absorption cells and the absorption cells of the pair of absorption cells are formed. Two circularly polarizing plates with polarization characteristics of opposite polarities installed between the lenses, six apertures formed of a non-magnetic material having required openings in the parallel light portion of the six light beams, and the above-mentioned Six lenses that condense the light beams that have passed through the absorption cell; six optical fibers that have the required apertures on the focusing surfaces of the lenses and have the required lengths; and convert the light beams from the optical fibers into electrical signals. 6 photodetectors that convert into
six amplifiers for amplifying the signals from the photodetectors; an adder for adding the signals from the amplifiers; An optical magnetic resonance magnetometer comprising a pair of RF coils, a signal processor for processing the electrical signal from the adder, and means for feeding back the signal from the signal processor to the RF coil. .
JP26332986A 1986-11-05 1986-11-05 Photomagnetic resonance magnetometer Pending JPS63117278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26332986A JPS63117278A (en) 1986-11-05 1986-11-05 Photomagnetic resonance magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26332986A JPS63117278A (en) 1986-11-05 1986-11-05 Photomagnetic resonance magnetometer

Publications (1)

Publication Number Publication Date
JPS63117278A true JPS63117278A (en) 1988-05-21

Family

ID=17387960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26332986A Pending JPS63117278A (en) 1986-11-05 1986-11-05 Photomagnetic resonance magnetometer

Country Status (1)

Country Link
JP (1) JPS63117278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705871A (en) * 1995-12-28 1998-01-06 Minebea Co., Ltd. Pulse generator having index angles formed by permanent magnet rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705871A (en) * 1995-12-28 1998-01-06 Minebea Co., Ltd. Pulse generator having index angles formed by permanent magnet rotor

Similar Documents

Publication Publication Date Title
CN108519565B (en) Low-intensity magnetic field intensity measurement analyzer and method based on quantum weak measurement
CN112444241B (en) Closed-loop atomic spin gyroscope based on optical frequency shift control
CN111929622B (en) Multichannel gradient magnetic field measuring device based on atomic spin effect
WO2021184839A1 (en) Full-polarization faraday magnetic field sensor based on sagnac interference system, and modulation method
US4327327A (en) All-angle gradient magnetometer
US10921191B2 (en) Atomic sensing method and chip-scale atomic sensor
CN112615251A (en) Laser frequency and power dual-stabilization method and device for atomic gyroscope
Fu et al. Effects of probe laser intensity on co-magnetometer operated in spin-exchange relaxation-free regime
CN115727829A (en) Control method and system for inhibiting influence of alkali metal polarization magnetic field
CN101144776A (en) Measuring system for enhancing magnetic circular polarization dichroism signal and promoting signal to noise ratio
US4403190A (en) Magnetic resonance gyroscope with spectral control
CN113532410A (en) Single-beam double-axis atomic spin gyroscope
JPS63117278A (en) Photomagnetic resonance magnetometer
US4544891A (en) Nuclear magnetic resonance gyroscope
US5751425A (en) Apparatus and method for detecting rotation rate, Faraday bias and cavity length in a ring laser gyroscope
CN114459454B (en) LCVR-based SERF atomic spin gyro detection light intensity error suppression method
CN114061558B (en) Nuclear magnetic resonance gyroscope
Ma et al. Relative intensity noise suppression methods for interferometric fiber optic gyroscopes
JPS63117279A (en) Photomagnetic resonance magnetometer
JPS6396580A (en) Magneto-optical resonance magnetometer
CA3122620A1 (en) Multi-channel atomic magnetic detector
JPS63124976A (en) Magneto-optical resonance magnetometer
CN114061557B (en) Nuclear magnetic resonance gyroscope and alignment correction method thereof
JPS6311879A (en) Magneto-optical resonance magnetometer
CN114895225B (en) Device and method for inhibiting atomic spin precession to detect optical power fluctuation