JPS63117251A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS63117251A
JPS63117251A JP61262530A JP26253086A JPS63117251A JP S63117251 A JPS63117251 A JP S63117251A JP 61262530 A JP61262530 A JP 61262530A JP 26253086 A JP26253086 A JP 26253086A JP S63117251 A JPS63117251 A JP S63117251A
Authority
JP
Japan
Prior art keywords
voltage
driving
heater
drive
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61262530A
Other languages
Japanese (ja)
Other versions
JPH0740008B2 (en
Inventor
Masakazu Ninomiya
正和 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61262530A priority Critical patent/JPH0740008B2/en
Publication of JPS63117251A publication Critical patent/JPS63117251A/en
Publication of JPH0740008B2 publication Critical patent/JPH0740008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To determine a voltage to be applied to a heating element accurately, by detecting a voltage at a connection point between the heating element and a driving means to be outputted as power source voltage during the non-driving of the driving means and as loss voltage during the driving thereof. CONSTITUTION:A heating element M1, a driving means M2 and a current detection means M3 are connected in series to a power source. A voltage detection means M4 detects a voltage at a connection point between the element M1 and the means M2 and outputs it as power source voltage during the non-driving of the means M2 and as loss voltage during the driving thereof. A control means M5 performs a feedback control of the driving and the non-driving of the means M2 so that power consumption of the element M1 determined by a voltage outputted from the means M4 and a current detected with the means M3 reaches a target power predetermined. Moreover, a power source voltage measuring means M6 and a loss voltage measuring means M7 output a command to the means M2 to make the means M2 non-driven or driven temporarily when the means M2 is driven or non-driven continuously for more than a specified time.

Description

【発明の詳細な説明】 発明の目的 [産業上の利用分野] 本発明は、例えば、内燃機関の排気系統に配設された酸
素センサもしくは空燃比センサ(酸素濃度センサ)を活
性化させるために加熱するヒータの発熱状態を所定状態
に制御するのに有効な温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Purpose of the Invention [Industrial Application Field] The present invention provides a method for activating an oxygen sensor or an air-fuel ratio sensor (oxygen concentration sensor) disposed in the exhaust system of an internal combustion engine, for example. The present invention relates to a temperature control device effective for controlling the heat generation state of a heater to a predetermined state.

[従来の技術] 従来より、例えば車載用内燃機関の排気系統に、空燃比
制御を行なうために配設された酸素センサもしくは空燃
比センサの活性化を目的とし、ヒータを用いて加熱する
技術が知られている。ここで、例えば酸素センサの場合
は400[’C]以上の温度に、空燃比センサの場合は
600 [’C]以上の温度に保つ必要がある。このた
めに、ヒータの消費電力を、そのときの内燃機関の運転
状態に応じて定まる目標電力とするように、ヒータ駆動
信号のデユーティ比をフィードバック制御して、ヒータ
の発熱状態を所定状態に維持するものが考えられている
。このような技術として、例えば、「温度制御装置」 
(特開昭61−68550号公報)等が提案されている
[Prior Art] Conventionally, there has been a technology that uses a heater to heat an oxygen sensor or an air-fuel ratio sensor installed in the exhaust system of a vehicle internal combustion engine, for example, to control the air-fuel ratio. Are known. Here, for example, in the case of an oxygen sensor, it is necessary to maintain the temperature at 400 ['C] or higher, and in the case of an air-fuel ratio sensor, it is necessary to maintain the temperature at 600 ['C] or higher. For this purpose, the duty ratio of the heater drive signal is feedback-controlled so that the power consumption of the heater is set to a target power determined according to the operating state of the internal combustion engine at that time, and the heating state of the heater is maintained at a predetermined state. Something is being considered. As such technology, for example, "temperature control device"
(Japanese Unexamined Patent Publication No. 61-68550) etc. have been proposed.

すなわち、電源に対して直列接続された゛発熱素子、駆
動スイッチ手段および電流検出手段と、発熱素子と駆動
スイッチ手段との接続点の電圧を取出す取出手段と、を
備え、駆動スイッチ手段のオン時には素子作動電圧(駆
動スイッチ手段および電流検出手段に印加される電圧)
を、一方、オフ時には電源電圧を得、両電圧差から求め
た発熱素子への印加電圧と、電流検出手段によるヒータ
電流とから発熱素子の発熱状態を検出し、該発熱状態が
所定の状態となるように駆動スイッチ手段のオン・オフ
デユーティを調整する技術である。このような従来技術
において、素子作動電圧(駆動スイッチ手段および電流
検出手段に印加される電圧[@失電圧])と電源電圧と
の検出は、ヒータのオン・オフ制御周期に比べて充分短
い時間間隔のタイマー処理の実行により、一定時間毎に
行なわれていた。
That is, it includes a heating element, a drive switch means, a current detection means, and an extraction means for extracting a voltage at a connection point between the heat generating element and the drive switch means, which are connected in series to a power source, and when the drive switch means is turned on, the element is Operating voltage (voltage applied to drive switch means and current detection means)
On the other hand, when it is off, the power supply voltage is obtained, and the heating state of the heating element is detected from the voltage applied to the heating element obtained from the difference between the two voltages and the heater current by the current detection means, and the heating state is determined to be a predetermined state. This is a technique to adjust the on/off duty of the drive switch means so that In such conventional technology, the detection of the element operating voltage (the voltage applied to the drive switch means and the current detection means [@loss voltage]) and the power supply voltage takes a sufficiently short time compared to the heater on/off control period. This was done at regular intervals due to the execution of interval timer processing.

[発明が解決しようとする問題点] とこ゛ろで、第6図に示すように、発熱素子駆動信号の
デユーティ比が30[%] (実線で示す。)〜70[
%コ (破線で示す。)の範囲にある場合は、発熱素子
と駆動手段との接続点の電圧を、発熱素子の駆動(ON
)・非駆動(OFF>デユーティ比制御周期(時間T)
より短かい時間間隔(時間t)で検出すれば、駆動(O
N)時における損失電圧と非駆動時(OFF>時におけ
る電源電圧とを共に得ることができる。しかし、第6図
に示すように、発熱素子駆動信号のデユーティ比が90
[%〕のように極めて大きい場合には、−定の時間間隔
(時間t)毎に接続点の電圧を検出しても、発熱素子の
駆動(ON)時における損失電圧しか検出できない。一
方、第6図に示すように、発熱素子駆動信号のデユーテ
ィ比が10[%]のように極めて小さい場合には、一定
の時間間隔(時間t)毎に接続点の電圧を検出しても、
発熱素子の非駆動(OFF)時における電源電圧しか検
出できない。このように、発熱素子駆動信号のデユーテ
ィ比の極めて大きい状態もしくは極めて小さい状態が連
続する場合には、一定時間間隔毎の検出では、損失電圧
あるいは電源電圧のいずれか一方しか測定できない。し
たがって、発熱素子に印加される電圧を常時正確に算出
できないという問題点があった。
[Problems to be Solved by the Invention] Now, as shown in FIG. 6, the duty ratio of the heating element drive signal is between 30% (indicated by a solid line) and 70%.
% (indicated by a broken line), the voltage at the connection point between the heating element and the driving means is set to
)・Non-drive (OFF>Duty ratio control cycle (time T)
If detected at a shorter time interval (time t), the drive (O
It is possible to obtain both the loss voltage at the time of N) and the power supply voltage at the time of non-drive (OFF>).However, as shown in FIG. 6, when the duty ratio of the heating element drive signal is 90
In the case of an extremely large value such as [%], even if the voltage at the connection point is detected at every - constant time interval (time t), only the loss voltage when the heating element is driven (ON) can be detected. On the other hand, as shown in Fig. 6, when the duty ratio of the heating element drive signal is extremely small such as 10%, even if the voltage at the connection point is detected at fixed time intervals (time t), ,
Only the power supply voltage when the heating element is not driven (OFF) can be detected. In this manner, when the duty ratio of the heat generating element drive signal continues to be extremely high or extremely low, only either the loss voltage or the power supply voltage can be measured by detection at regular time intervals. Therefore, there is a problem in that the voltage applied to the heating element cannot always be accurately calculated.

また、内燃機関の運転状態と発熱素子の目標電力との関
係は、例えば第7図に示すマツプのように規定されてい
る。すなわち、低負荷運転状態(アイドル運転時等)の
領域Xでは、排気は低温であるため発熱素子による加熱
が必要となり、発熱素子駆動信号のデユーティ比はほぼ
100[%]となる。一方、高負荷運転状態の領域Yで
は、排気は高温であるため発熱素子による加熱の必要が
なく、発熱素子駆動信号のデユーティ比はほぼO[%]
となる。しかし、上述したように、このようなデユーテ
ィ比が極めて大きい状態が連続する場合、あるいは極め
て小さい状態が連続する場合には、発熱素子に印加され
る電圧を正確に検出できないので、発熱素子の消費電力
を目標電力とするフィードバック制御を正確に実行でき
ないという問題もあった。このような不具合点は、多用
の加熱が必要な低負荷運転状態において、特に顕著に現
われた。
Further, the relationship between the operating state of the internal combustion engine and the target power of the heating element is defined, for example, as shown in the map shown in FIG. That is, in region X of a low-load operating state (such as during idling), the exhaust gas is at a low temperature, so heating by the heating element is necessary, and the duty ratio of the heating element drive signal is approximately 100%. On the other hand, in region Y of high-load operation, the exhaust gas is at a high temperature, so there is no need for heating by the heating element, and the duty ratio of the heating element drive signal is approximately O [%]
becomes. However, as mentioned above, when the duty ratio is extremely large or extremely small, the voltage applied to the heating element cannot be detected accurately, so the consumption of the heating element decreases. There was also the problem that feedback control using electric power as a target electric power could not be accurately executed. These problems were particularly noticeable in low-load operating conditions that required extensive heating.

本発明は、発熱素子駆動信号のデユーティ比が連続して
極めて大きい場合もしくは連続して極めて小さい場合で
も、発熱素子に印加される電圧を検出して発熱素子の消
費電力を目標電力とする制御を常時正確に実行できる温
度制御装置の提供を目的とする。
The present invention detects the voltage applied to the heating element and controls the power consumption of the heating element to the target power even when the duty ratio of the heating element drive signal is continuously extremely large or continuously extremely small. The purpose of the present invention is to provide a temperature control device that can be operated accurately at all times.

発明の構成 [問題点を解決するための手段] 上記問題を解決するためになされた本発明は、第1図に
例示するように、 電源に対して直列に接続された発熱素子M1、駆動手段
M2および電流検出手段M3と、上記発熱素子M1と上
記駆動手段M2との接続点における電圧を検出し、上記
駆動手段M2の非駆動時には電源電圧として、一方、上
記駆動手段M2の駆動時には損失電圧として各々出力す
る電圧検出手段M4と、 該電圧検出手段M4の出力した電源電圧および損失電圧
と上記電流検出手段M3の検出した電流とから求まる上
記発熱素子M1の消費電力が、予め定められた目標電力
となるように上記駆動手段M2の駆動・非駆動をフィー
ドバック制御する駆動信号を決定する制御手段M5と、 を具備した温度制御装置において、 ざらに、上記駆動手段M2が所定時間以上連続して駆動
状態にあるときは、上記駆動手段M2を一時的に非駆動
状態とする指令を該駆動手段M2’に出力すると共に、
該非駆動状態における前記接続点の電圧を検出する指令
を上記電圧検出手段M4に出力する電源電圧測定手段M
6と、上記駆動手段M2が所定時間以上連続して非駆動
状態にあるときは、上記駆動手段M2を一時的に駆動状
態とする指令を該駆動手段・M2に出力すると共に、該
駆動状態における前記接続点の電圧を検出する指令を上
記電圧検出手段M4に出力する損失電圧測定手段M7と
、 を備えたことを減少補正する温度制御装置を要旨とする
・ものである。
Structure of the Invention [Means for Solving the Problems] The present invention, which has been made to solve the above problems, as illustrated in FIG. M2 and current detection means M3, detect the voltage at the connection point of the heating element M1 and the driving means M2, and use it as a power supply voltage when the driving means M2 is not driven, and as a loss voltage when driving the driving means M2. The power consumption of the heating element M1, which is determined from the power supply voltage and loss voltage outputted by the voltage detection means M4 and the current detected by the current detection means M3, meets a predetermined target. A temperature control device comprising: a control means M5 that determines a drive signal for feedback controlling driving/non-driving of the drive means M2 so as to generate electric power; When in the driving state, it outputs a command to the driving means M2' to temporarily put the driving means M2 into a non-driving state, and
power supply voltage measuring means M for outputting a command to detect the voltage at the connection point in the non-driving state to the voltage detecting means M4;
6, when the driving means M2 is in the non-driving state continuously for a predetermined period of time or more, a command to temporarily put the driving means M2 into the driving state is output to the driving means M2, and when the driving means M2 is in the non-driving state, The gist of the present invention is a temperature control device that performs a reduction correction, comprising: loss voltage measuring means M7 that outputs a command for detecting the voltage at the connection point to the voltage detecting means M4.

発熱素子M1とは、例えば、酸素センサもしくは空燃比
センサの活性化を目的とし、電源からの給電に応じて発
熱するヒータのようなものである。
The heating element M1 is, for example, a heater that generates heat in response to power supply from a power source for the purpose of activating an oxygen sensor or an air-fuel ratio sensor.

駆動手段M2とは、−例えば、外部からの指令に従って
、上記発熱素子M1を駆動状態もしくは非駆動状態に切
り換える回路素子により構成できる。
The driving means M2 can be constituted by a circuit element that switches the heating element M1 into a driving state or a non-driving state according to an external command, for example.

例えば、トランジスタであってもよく、また例えば、そ
の他のスイッチング素子であってもよい。
For example, it may be a transistor, or it may be another switching element.

電流検出手段M3とは、上記発熱素子M1に通電される
電流を検出するものである。例えば、電流検出用抵抗器
等により実現できる。
The current detection means M3 detects the current flowing through the heating element M1. For example, it can be realized by a current detection resistor or the like.

電圧検出手段M4とは、発熱素子M1と駆動手段M2と
の接続点の電圧を検出し、駆動手段M2の非駆動時には
電源電圧として、一方、駆動時には損失電圧として出力
するものである。ここで損失電圧とは、駆動手段M2お
よび電流検出手段M3に印加される電圧である。例えば
、上記接続点の電圧を所定周期毎に検出し、駆動手段M
2の駆動・非駆動状態に応じて電源電圧もしくは損失電
圧として出力するよう構成できる。
The voltage detection means M4 detects the voltage at the connection point between the heating element M1 and the drive means M2, and outputs it as a power supply voltage when the drive means M2 is not driven, and as a loss voltage when the drive means M2 is driven. Here, the loss voltage is a voltage applied to the drive means M2 and the current detection means M3. For example, the voltage at the connection point is detected every predetermined period, and the driving means M
It can be configured to output as a power supply voltage or a loss voltage depending on the driving/non-driving state of No. 2.

制御手段M5とは、電源電圧および損失電圧と電流とか
ら求まる発熱素子M1の消費電力を予め定められた目標
電力とするよう駆動手段M2を制御する駆動信号を決定
するものである。例えば、電源電圧と損失電圧との電圧
差に電流を掛けて発熱素子M1の最大消費電力を算出し
、内燃機関の運転状態に基づいて定まる目標電力と該最
大消費電力との比に応じて駆動信号のデユーティ比を決
定するよう構成できる。
The control means M5 determines a drive signal for controlling the drive means M2 so that the power consumption of the heating element M1, which is determined from the power supply voltage, loss voltage, and current, becomes a predetermined target power. For example, the maximum power consumption of the heating element M1 is calculated by multiplying the voltage difference between the power supply voltage and the loss voltage by the current, and the heating element M1 is driven according to the ratio between the target power determined based on the operating state of the internal combustion engine and the maximum power consumption. It can be configured to determine the duty ratio of the signal.

また例えば、後述する電源電圧測定手段M6により駆動
手段M2が一時的に非駆動状態とされたときは、該非駆
動状態の継続時間に相当する時間だけ駆動信号を増加補
正し、一方、後述する損失電圧測定手段M7により駆動
手段M2が一時的に駆動状態とされたときは、該駆動状
態の継続時間に相当する時間だけ駆動信号を減少補正す
るものであってもよい。
Further, for example, when the driving means M2 is temporarily brought into a non-driving state by the power supply voltage measuring means M6, which will be described later, the driving signal is increased by a time corresponding to the duration of the non-driving state, and on the other hand, the driving signal is increased by a period corresponding to the duration of the non-driving state. When the driving means M2 is temporarily brought into a driving state by the voltage measuring means M7, the driving signal may be corrected by decreasing the driving signal for a time corresponding to the duration of the driving state.

電源電圧測定手段M6とは、駆動手段M2が所定時間以
上連続して駆動状態にあるときに、該駆動手段’M2を
一時的に非駆動状態として発熱素子M1と駆動手段M2
との接続点の電圧を検出する指令を出力するものである
。例えば、駆動信号のデユーティ比が極めて大きい場合
に、駆動手段M2を遮断して電源電圧を検出させるよう
構成できる。
The power supply voltage measuring means M6 means that when the driving means M2 is continuously in a driving state for a predetermined period of time or more, the driving means M2 is temporarily put into a non-driving state and the heating element M1 and the driving means M2 are set in a non-driving state.
It outputs a command to detect the voltage at the connection point. For example, when the duty ratio of the drive signal is extremely large, the drive means M2 can be shut off and the power supply voltage can be detected.

損失電圧測定手段M7とは、駆動手段M2が所定時間以
上連続して非駆動状態にあるときに、該駆動手段M2を
一時的に駆動状態として発熱素子M1と駆動手段M2と
の接続点の電圧を検出する指令を出力するものである。
The loss voltage measuring means M7 means that when the driving means M2 is continuously in a non-driving state for a predetermined period of time or more, the driving means M2 is temporarily driven and the voltage at the connection point between the heating element M1 and the driving means M2 is measured. It outputs a command to detect.

例えば、駆動信号のデユーティ比が極めて小さい場合に
、駆動手段M2を導通させて損失電圧を検出させるよう
構成できる。
For example, when the duty ratio of the drive signal is extremely small, the drive means M2 can be made conductive to detect the loss voltage.

上記電圧検出手段M4、制御手段M5、電源電圧測定手
段M6および損失電圧測定手段M7は、例えば、各々独
立したディスクリートな論理回路により実現できる。ま
た例えば、周知のCPLIを始めとしてROM、RAM
およびその他の周辺回路素子と共に論理演算回路として
構成され、予め定められた処理手順に従って、上記各手
段を実現するものであってもよい。
The voltage detection means M4, control means M5, power supply voltage measurement means M6, and loss voltage measurement means M7 can be realized, for example, by independent discrete logic circuits. For example, ROM, RAM, etc. including the well-known CPLI
It may also be configured as a logical operation circuit together with other peripheral circuit elements and implement the above-mentioned means according to a predetermined processing procedure.

[作用] 本発明の温度制御装置は、第1図に例示するように、発
熱素子M1と駆動手段M2との接続点の電圧を検出して
電圧検出手段M4の出力する電源電圧および損失電圧と
、電流検出手段M3の検出した電流とから求まる発熱素
子M1の消費電力が、予め定められた目標電力となるよ
うに制御手段M5は駆動手段M2をフィードバック制御
する駆動信号を決定するに際し、上記駆動手段M2が所
定時間以上連続して駆動状態にあるときは、電源電圧測
定手段M6が駆動手段M2を一時的に非駆動状態とする
指令を該駆動手段M2に出力すると共に、該非駆動状態
にお(プる前記接続点の電圧を検出する指令を上記電圧
検出手段M4に出力し、−方、上記駆動手段M2が所定
時間以上連続して非駆動状態にあるときは、損失電圧測
定手段M 71fi上記駆動手段M2を一時的に駆動状
態とする指令を該駆動手段M2に出力すると共に、該駆
動状態におけ゛る前記接続点の電圧を検出する指令を上
記電圧検出手段M4に出力するよう動く。
[Function] As illustrated in FIG. 1, the temperature control device of the present invention detects the voltage at the connection point between the heating element M1 and the drive means M2, and adjusts the power supply voltage and loss voltage output by the voltage detection means M4. , the control means M5 determines a drive signal for feedback controlling the drive means M2 so that the power consumption of the heating element M1 determined from the current detected by the current detection means M3 becomes a predetermined target power. When the means M2 is continuously in the driving state for a predetermined period of time or more, the power supply voltage measuring means M6 outputs a command to the driving means M2 to temporarily put the driving means M2 into the non-driving state, and at the same time outputs a command to the driving means M2 to temporarily put the driving means M2 into the non-driving state. (A command to detect the voltage at the connection point is outputted to the voltage detection means M4, and when the drive means M2 is continuously in a non-driving state for a predetermined period of time or more, the loss voltage measurement means M71fi It outputs to the driving means M2 a command to temporarily bring the driving means M2 into a driving state, and also outputs to the voltage detecting means M4 a command to detect the voltage at the connection point in the driving state. .

すなわら、駆動手段M2が所定時間以上連続して駆動状
態にあるときは、損失電圧を検出すると共に強制的に一
時的な非駆動状態に移行させて電源電圧を併せて検出し
、一方、駆動手段M2が所定時間以上連続して非駆動状
態にあるときは、電源電圧を検出すると共に強制的に一
時的な駆動状態に移行させて損失電圧を併せて検出する
のである。
In other words, when the driving means M2 is continuously in the driving state for a predetermined period of time or more, the loss voltage is detected and the power supply voltage is also detected by forcing the driving means to shift to a temporary non-driving state. When the driving means M2 is continuously in the non-driving state for a predetermined period of time or more, the power supply voltage is detected and the driving means is forcibly shifted to a temporary driving state, and the loss voltage is also detected.

従って本発明の温度制御装置は、駆動手段M2にいかな
る駆動信号が印加されているときでも電源電圧測定手段
M6と損失電圧測定手段M7とにより電源電圧および損
失電圧を検出でき、電流検出手段M3の検出した電流と
上記両型圧とに基づいて、発熱体M1の消費電力を目標
電力とする制御を常時正確に行なうよう働く。以上のよ
うに本発明の各構成要素が作用することにより、本発明
の技術的課題が解決される。
Therefore, the temperature control device of the present invention can detect the power supply voltage and the loss voltage by the power supply voltage measuring means M6 and the loss voltage measuring means M7 even when any drive signal is applied to the driving means M2, and the power supply voltage and the loss voltage can be detected by the power supply voltage measuring means M6 and the loss voltage measuring means M7. Based on the detected current and the above-mentioned pressures, the power consumption of the heating element M1 is always accurately controlled to the target power. The technical problems of the present invention are solved by each component of the present invention acting as described above.

[実施例] 次に、本発明の好適な実施例を図面に基づいて詳細に説
明する。本発明第1実施例である温度制御装置のシステ
ム構成を第2図に示す。
[Example] Next, a preferred example of the present invention will be described in detail based on the drawings. FIG. 2 shows a system configuration of a temperature control device according to a first embodiment of the present invention.

第2図に示すように、温度制御装置1は車載のバッテリ
2からイグニションスイッチ3を介して電力の供給を受
けて作動するヒータ4、インジェクタ5および該ヒータ
4、インジェクタ5を制御する電子制御装置(以下単に
ECUと呼ぶ。)6から構成されている。上記ヒータ4
は、図示しないエンジンの排気系統に配設されて排気中
の残存酸素濃度を検出する酸素センサに内蔵され、該酸
素センサの活性化を目的として加熱を行なう白金製のヒ
ータである。
As shown in FIG. 2, the temperature control device 1 includes a heater 4 and an injector 5 that are operated by receiving power from a vehicle-mounted battery 2 via an ignition switch 3, and an electronic control device that controls the heater 4 and the injector 5. (hereinafter simply referred to as ECU). Above heater 4
is a platinum heater that is built into an oxygen sensor that is disposed in the exhaust system of an engine (not shown) and detects the concentration of residual oxygen in the exhaust gas, and that heats the oxygen sensor for the purpose of activating the oxygen sensor.

上記ヒータ4には、ECU6内に設けられたヒータ駆動
用トランジスタ7、電流検出用抵抗8が直列に接続され
ている。ヒータ駆動用トランジスタ7は、ヒータ4の駆
動・非駆動を制御し、電流検出用抵抗8はヒータ4に流
れる電流を検出する。
A heater drive transistor 7 and a current detection resistor 8 provided in the ECU 6 are connected to the heater 4 in series. The heater driving transistor 7 controls driving/non-driving of the heater 4 , and the current detection resistor 8 detects the current flowing through the heater 4 .

また、インジェクタ5には、ECtJ6内に設けられた
インジェクタ駆動用トランジスタ9が直列に接続されて
いる。
Furthermore, an injector driving transistor 9 provided in the ECtJ 6 is connected in series to the injector 5 .

ECU6は、CPLJ6a、ROM6b、RAM6Cを
中心に論理演算回路として構成され、コモンバス6dを
介して入出カポ−トロe、出カポ−トロfに接続されて
、信号の入出力を行なう。上記ヒータ4とヒータ駆動用
トランジスタ7との接続点10の電圧および該ヒータ駆
動用トランジスタ7と電流検出用抵抗8との接続点11
の電圧は、マルチフレフサ6g、A/D変換器6hを介
して入出カポ−トロeからCPU6aに入力される。
The ECU 6 is configured as a logical operation circuit mainly including a CPLJ 6a, a ROM 6b, and a RAM 6C, and is connected to an input/output capotro e and an output capotro f via a common bus 6d to input and output signals. The voltage at the connection point 10 between the heater 4 and the heater drive transistor 7 and the connection point 11 between the heater drive transistor 7 and the current detection resistor 8
The voltage is input to the CPU 6a from the input/output capotro e via the multi-flex sensor 6g and the A/D converter 6h.

また、CPu6aは出力ポートロfを介して上記ヒータ
駆動用トランジスタ7および上記インジェクタ駆動用ト
ランジスタ9に制御信号を出力して、ヒータ4およびイ
ンジェクタ5の駆動を制御する。
Further, the CPU 6a outputs a control signal to the heater driving transistor 7 and the injector driving transistor 9 via the output port f, thereby controlling the driving of the heater 4 and the injector 5.

ここで、上記ヒータ駆動用トランジスタ7が非駆動状態
(OFF)にあるときは、上記ヒータ4とヒータ駆動用
トランジスタ7との接続点1oの電圧は、バッテリ2の
電圧に等しい電源電圧VH02となる。一方、上記ヒー
タ駆動用トランジスタ7が駆動状態(ON>にあるとき
は、上記ヒータ4とヒータ駆動用トランジスタ7との接
続点10の電圧は、ヒータ駆動用トランジスタ7および
電流検出用抵抗8に印加される損失電圧VHCIとなる
。また、このときの、上記ヒータ駆動用トランジスタ7
と電流検出用抵抗8との接続点11の電圧は、電流検出
用抵抗8の両端電圧VIHとなる。したがって、電源電
圧VHC2と損失電圧VHC1との差からヒータ4に印
加される電圧VHが求まり、一方、両端電圧VIHを電
流検出用抵抗8の抵抗値R1で割るとヒータ4に流れる
電流IHが求まる。このヒータ4に印加される電圧VH
と該ヒータ4を流れる電流IHからヒータ4の消費電力
を算出できる。
Here, when the heater driving transistor 7 is in a non-driving state (OFF), the voltage at the connection point 1o between the heater 4 and the heater driving transistor 7 becomes the power supply voltage VH02, which is equal to the voltage of the battery 2. . On the other hand, when the heater drive transistor 7 is in the drive state (ON>), the voltage at the connection point 10 between the heater 4 and the heater drive transistor 7 is applied to the heater drive transistor 7 and the current detection resistor 8. The loss voltage VHCI becomes the loss voltage VHCI.In addition, at this time, the heater driving transistor 7
The voltage at the connection point 11 between the current detection resistor 8 and the current detection resistor 8 becomes the voltage VIH across the current detection resistor 8. Therefore, the voltage VH applied to the heater 4 can be determined from the difference between the power supply voltage VHC2 and the loss voltage VHC1, and on the other hand, the current IH flowing through the heater 4 can be determined by dividing the voltage VIH between both ends by the resistance value R1 of the current detection resistor 8. . Voltage VH applied to this heater 4
The power consumption of the heater 4 can be calculated from the current IH flowing through the heater 4.

次に、上記ECU6の実行する温度制御処理を、第3図
に示すフローチャートに基づいて説明する。
Next, the temperature control process executed by the ECU 6 will be explained based on the flowchart shown in FIG. 3.

本温度制御処理は、ECU6の起動に伴って開始され、
120 [m5ec]毎に繰り帰して実行される。まず
ステップ100では、ヒータ4とヒータ駆動用トランジ
スタ7との接続点10の電圧が基準電圧(本実施例の場
合は5 [V] ’)未満であるか否・かに基づいてヒ
ータ駆動用トランジスタ7が駆動状態(ON)であるか
否かを判定し、前室判断されるとステップ105に、一
方、否定判断されるとステップ140に各々進む。ヒー
タ駆動用トランジスタ7が駆動状態(ON)であると判
定されたときに実行されるステップ105では、駆動カ
ウンタC1の値に1を加算すると共に、非駆動カウンタ
C2を値Oにリセットする処理が行なわれる。続くステ
ップ110では、駆動カウンタC1の値が10以上であ
るか否かを判定し、前室判断されるとステップ125に
、一方、否定判断されるとステップ115に各々進む。
This temperature control process is started with the activation of the ECU 6,
It is executed repeatedly every 120 [m5ec]. First, in step 100, the heater driving transistor 7 is in the driving state (ON), and if it is determined that the front chamber is determined, the process proceeds to step 105, and if the determination is negative, the process proceeds to step 140. In step 105, which is executed when it is determined that the heater drive transistor 7 is in the drive state (ON), 1 is added to the value of the drive counter C1, and the non-drive counter C2 is reset to the value O. It is done. In the following step 110, it is determined whether the value of the drive counter C1 is 10 or more, and if it is determined that the front chamber is determined, the process proceeds to step 125, and if the determination is negative, the process proceeds to step 115.

ヒータ駆動用トランジスタ7が駆動状態(ON)であっ
ていまだ充分な時間が経過していないときに実行される
ステップ115では、電流検出用抵抗8の両端電圧VI
HをA/D変換して入力する処理が行なわれる。続くス
テップ120では、損失電圧■HCIをA/D変換して
入力する処理が行なわれ、その後ステップ180に進む
。一方、ヒータ駆動用トランジスタ7が駆動状態(ON
)であって充分時間が経過したときに実行されるステッ
プ125では、駆動カウンタC1を値0にリセットする
処理が行なわれる。続くステップ130では、ヒータ駆
動用トランジスタ7を一時的に非駆動状態(OFF>と
する処理が行なわれる。次にステップ135に進み、上
記ステップ130の処理によりヒータ駆動用トランジス
タ7が非駆動状態(OFF)にある間に、電源電圧VH
02をA/D変換して入力する処理を行なった後、ステ
ップ180に進む。
In step 115, which is executed when the heater drive transistor 7 is in the drive state (ON) and sufficient time has not yet passed, the voltage VI across the current detection resistor 8 is
A process of A/D converting and inputting H is performed. In the following step 120, a process is performed in which the loss voltage ■HCI is A/D converted and inputted, and then the process proceeds to step 180. On the other hand, the heater driving transistor 7 is in the driving state (ON).
), which is executed when a sufficient amount of time has elapsed, in step 125, a process of resetting the drive counter C1 to the value 0 is performed. In the following step 130, the heater driving transistor 7 is temporarily brought into a non-driving state (OFF).Next, the process proceeds to step 135, where the heater driving transistor 7 is brought into a non-driving state (OFF) through the process in step 130. OFF), the power supply voltage VH
After A/D converting and inputting 02, the process proceeds to step 180.

一方、上記ステップ100で、ヒータ駆動用トランジス
タ7が駆動状態(ON>でないと判定ざ    ゛れた
ときに実行されるステップ140では、駆動カウンタC
1を値Oにリセットすると共に、非駆動カウンタC2の
値に1を加算する処理が行なわれる。続くステップ14
5では、非・駆動カウンタC2の値が10以上であるか
否かを判定し、前室判断されるとステップ155に、一
方、否定判断されるとステップ150に各々進む。ヒー
タ駆動用トランジスタ7が非駆動状態(OFF>であっ
ていま゛だ充分な時間が経過していないときに実行され
るステップ150では、電源電圧VHC2をA/D変換
して入力する処理を行なった後、ステップ180に進む
。一方、ヒータ駆動用トランジスタ7が非駆動状態(O
FF>であって充分時間が経過したときに実行されるス
テップ155では、非駆動カウンタC2を値Oにリセッ
トする処理が行なわれる。続くステップ160では、ヒ
ータ駆動用トランジスタ7を一時的に駆動状態(ON)
とする処理が行なわれる。次にステップ165に進み上
記ステップ160の処理によりヒータ駆動用トランジス
タ7が駆動状態(ON)にある間に、電流検出用抵抗8
0両端電圧VIHをA/D変換して入力する処理が行な
われる。続くステップ170では、損失電圧VH01を
A/D変換して入力する処理が行なわれ、その後ステッ
プ180に進む、 ステップ180では、上記ステップ135もしくはステ
ップ150で入力された電源電圧VHC2から上記ステ
ップ120もしくはステップ170で入力された損失電
圧VHCIを減算して、ヒータ4に印加される電圧VH
を算出する処理が行なわれる。続くステップ185では
、上記ステップ115もしくはステップ165で入力し
た両端電圧VIHを電流検出用抵抗8の抵抗値R1で割
ってヒータ4に流れる電流IHを算出する処理が行なわ
れる。次にステップ190に進み、上記ステップ180
で算出したヒータ4に印加される電圧VHと上記ステッ
プ185で算出したヒータ4に流れる電流IHとを掛け
て、デユーティ比100[%]の場合のヒータ4の最大
消費電力WIO○を算出する処理が行なわれる。続くス
テップ193では、エンジンの運転状態に応じて、第4
区に示すようなマツプに従い、ヒータ4の目標電力WM
8算出する処理が行なわれる。すなわち、第4図に示す
ように、エンジンの吸気管圧力PMや回転速度Neの低
い低負荷状態では、ヒータ4の目標電力WMは30[W
lのように大きな値となっている。一方、吸気管圧力P
Mや回転速度Neの高い高負荷状態では、ヒータ4の目
標電力WMはO[−Wlのように小さな値となっている
。ECU6は、第4図に示すようなマツプを予めROM
6b内に記憶しており、該マツプに基づいてヒータ4の
目標電力WMを算出するのである。次に、ステップ19
6に進み、上記ステップ193で算出した目標電力WM
を上記ステップ190で算出した最大消費電力W100
で割って、ヒータ駆動用トランジスタ7に出力する駆動
信号のデユーティ比DBを算出する処理を行なった後、
−日本温度制御’It!l理を終了する。以後、本温度
制御処理は、120 [m5ec]毎に繰り返して実行
される。
On the other hand, in step 140, which is executed when it is determined in step 100 that the heater drive transistor 7 is not in the drive state (ON>), the drive counter C
A process is performed in which 1 is reset to the value O and 1 is added to the value of the non-drive counter C2. Next step 14
In step 5, it is determined whether the value of the non-drive counter C2 is 10 or more, and if the judgment is made that the front room is determined, the process proceeds to step 155, and if the judgment is negative, the process proceeds to step 150. In step 150, which is executed when the heater drive transistor 7 is in a non-drive state (OFF>) and sufficient time has not elapsed, a process is performed in which the power supply voltage VHC2 is A/D converted and inputted. After that, the process proceeds to step 180. Meanwhile, the heater drive transistor 7 is in the non-drive state (O
FF> and a sufficient time has elapsed, in step 155, a process of resetting the non-drive counter C2 to the value O is performed. In the following step 160, the heater drive transistor 7 is temporarily driven (ON).
Processing is performed. Next, the process proceeds to step 165, and while the heater drive transistor 7 is in the drive state (ON) due to the processing in step 160, the current detection resistor 8
A process of A/D converting and inputting the voltage VIH across 0 is performed. In the following step 170, the process of A/D converting and inputting the loss voltage VH01 is performed, and then the process proceeds to step 180. The voltage VH applied to the heater 4 is obtained by subtracting the loss voltage VHCI input in step 170.
Processing to calculate is performed. In the subsequent step 185, the current IH flowing through the heater 4 is calculated by dividing the voltage VIH inputted in step 115 or step 165 by the resistance value R1 of the current detection resistor 8. Next, proceed to step 190, and proceed to step 180 described above.
A process of calculating the maximum power consumption WIO○ of the heater 4 when the duty ratio is 100 [%] by multiplying the voltage VH applied to the heater 4 calculated in step 185 by the current IH flowing through the heater 4 calculated in step 185 above. will be carried out. In the following step 193, the fourth
Target power WM of heater 4 according to the map shown in
8 calculation processing is performed. That is, as shown in FIG. 4, in a low load state where the intake pipe pressure PM and engine speed Ne of the engine are low, the target power WM of the heater 4 is 30 [W].
It has a large value like l. On the other hand, the intake pipe pressure P
In a high load state where M and rotational speed Ne are high, the target power WM of the heater 4 is a small value such as O[-Wl. The ECU 6 stores a map as shown in Fig. 4 in advance in the ROM.
6b, and the target power WM of the heater 4 is calculated based on the map. Next, step 19
Proceed to step 6 and calculate the target power WM calculated in step 193 above.
is the maximum power consumption W100 calculated in step 190 above.
After performing processing to calculate the duty ratio DB of the drive signal output to the heater drive transistor 7 by dividing by
-Japan Temperature Control'It! Finish the process. Thereafter, this temperature control process is repeatedly executed every 120 [m5ec].

なお本第1実施例において、ヒータ4が発熱素子M1に
、ヒータ駆動用トランジスタ7が駆動手段M2に、電流
検出用抵抗8が電流検出手段M3に各々該当する。また
ECU6および該ECtJ6の実行する処理のうち、(
ステップ120,150)が電圧検出手段M4として、
(ステップ180.185,190,193,196>
が制御手段M5として、(ステップ100,105,1
10.125,130,135>が電源電圧測定手段M
6として(ステップ100,140,145゜155.
160,170)が損失電圧測定手段M7として各々機
能する。
In the first embodiment, the heater 4 corresponds to the heating element M1, the heater drive transistor 7 corresponds to the drive means M2, and the current detection resistor 8 corresponds to the current detection means M3. Also, among the processes executed by the ECU 6 and the ECtJ6, (
Steps 120 and 150) serve as voltage detection means M4,
(Steps 180, 185, 190, 193, 196>
is the control means M5 (steps 100, 105, 1
10.125, 130, 135> is the power supply voltage measuring means M
6 (steps 100, 140, 145°155.
160, 170) each function as loss voltage measuring means M7.

以上説明したように本第1実施例は、ヒータ駆動用トラ
ンジスタ7に出力される駆動信号のデユーティ比が10
0[%]に近い状態が所定時間以上継続した場合には、
ヒータ駆動用トランジスタ7を一時的に非駆動状態とし
て電源電圧VHC2を検出し、一方、上記駆動信号のデ
ユーティ比がO[%]に近い状態が所定時間以上継続し
た場合にはヒータ駆動用トランジスタ7を一時的に駆動
状態として損失電圧VHC1および両端電圧v■Hを検
出するよう構成されている。このため、駆動信号のデユ
ーティ比が極めて大きいときあるいは極めて小さいとき
でも、電源電圧VHC2、損失電圧V)(CIおよび両
端電圧VIHを常時確実に検出することができる。
As explained above, in the first embodiment, the duty ratio of the drive signal output to the heater drive transistor 7 is 10.
If a state close to 0 [%] continues for more than a specified time,
The heater drive transistor 7 is temporarily put in a non-drive state and the power supply voltage VHC2 is detected. On the other hand, if the duty ratio of the drive signal remains close to O [%] for a predetermined time or longer, the heater drive transistor 7 is turned off. is temporarily in a driving state to detect the loss voltage VHC1 and the voltage VH between both ends. Therefore, even when the duty ratio of the drive signal is extremely large or extremely small, the power supply voltage VHC2, loss voltage V) (CI, and both-end voltage VIH) can always be reliably detected.

また、ヒータ4に印加される電圧とヒータ4を流れる電
流とを常時算出できるので、ヒータ4の消費電力を目標
電力WMとする制御を正確に行なうこと′ができる。
Further, since the voltage applied to the heater 4 and the current flowing through the heater 4 can be calculated at all times, it is possible to accurately control the power consumption of the heater 4 to the target power WM.

ざらに、エンジン運転中のバッテリ2の電圧変勅や温度
上昇に伴うヒータ4の抵抗値変化の影響を最小限に抑制
したヒータ4の安定な温度制御が可能となる。
In general, it is possible to perform stable temperature control of the heater 4 while minimizing the influence of changes in the resistance value of the heater 4 due to changes in the voltage of the battery 2 and temperature rises during engine operation.

また、エンジンの低負荷運転時のように駆動信号のデユ
ーティ比が100[%]に近い場合、もしくは、エンジ
ンの高負荷運転時のように駆動信号のデユーティ比がO
[%]に近い場合でも、ヒータ4の消費電力を目標電力
WMに維持できる。
In addition, when the duty ratio of the drive signal is close to 100 [%], such as when the engine is operating at low load, or when the duty ratio of the drive signal is O, such as when the engine is operating at high load.
Even if it is close to [%], the power consumption of the heater 4 can be maintained at the target power WM.

したがって、冷間始動時やアイドル運転時等のように、
ヒータ4の多口の加熱による酸素センサの活性化が必要
な場合に有効な制御を実現できる。
Therefore, such as during cold start or idling,
Effective control can be realized when the oxygen sensor needs to be activated by multiple heating of the heater 4.

このことは、活性化のための温度が600 [’C]以
上の空燃比センナ(酸素濃度センサ)の加熱用ヒータに
適用した場合には、特に顕著な効果を示す。
This is particularly effective when applied to a heater for an air-fuel ratio sensor (oxygen concentration sensor) whose activation temperature is 600 ['C] or higher.

次に、本発明の第2実施例を図面に基づいて詳細に説明
する。本第2実施例と既述した第1実施例との相違点は
、第2実施例では電源電圧もしくは損失電圧測定のため
に一時的にヒータ駆動用トランジスタの駆動・非駆動状
態を変更したことに起因するヒータの消費電力の変動を
補償することである。なお、システム(を成は既述した
第1実施例と同様のため、同様の部分は同一符号にて表
記し、説明を省略する。
Next, a second embodiment of the present invention will be described in detail based on the drawings. The difference between this second embodiment and the previously described first embodiment is that in the second embodiment, the drive/non-drive state of the heater drive transistor is temporarily changed in order to measure the power supply voltage or loss voltage. The aim is to compensate for fluctuations in heater power consumption caused by It should be noted that since the structure of the system is the same as that of the first embodiment described above, similar parts will be denoted by the same reference numerals and explanations will be omitted.

次に、本第2実施例の特徴をなす温度制御処理を第5図
のフローチャートに基づいて説明する。
Next, temperature control processing, which is a feature of the second embodiment, will be explained based on the flowchart shown in FIG.

本温度制御処理は、ECU6の起動に伴って開始され、
120 [m5ec]毎に繰り返して実行される。
This temperature control process is started with the activation of the ECU 6,
It is executed repeatedly every 120 [m5ec].

まず、ヒータ駆動用トランジスタ7が駆動状態にあって
、計数を続けている駆動カウンタC1の値が10未満の
ときは、両端電圧V I Hおよび損失電圧VHC1を
A/D変換して入力する(ステップ200,205,2
10,215,220)。
First, when the heater driving transistor 7 is in the driving state and the value of the driving counter C1 that continues counting is less than 10, the voltage across both ends V I H and the loss voltage VHC1 are A/D converted and input ( Steps 200, 205, 2
10, 215, 220).

一方、駆動カウンタC1の値が10以上のときは、該駆
動カウンタC1をリセットし、前回算出した損失デユー
ティ比DLO3Sを読み込み、ヒータ駆動用トランジス
タ7を一時的に非駆動状態(OFF)として電源電圧V
H02をA/D変換して入力する(ステップ200,2
05,210.225.230,235,240>。次
に、電源電圧VHC2と損失電圧VHCIとの差からヒ
ータ4に印加される電圧VHを算出しくステップ250
)、両端電圧VIHを電流検出用抵抗8の抵抗値R1で
割ってヒータ4に流れる電流IHを算出しくステップ2
55) 、ヒータ4の最大消費電力W100を算出しく
ステップ260) 、既述した第1実施例と同様なマツ
プに従ってヒータ4の目(集電力WMを算出しくステッ
プ265>、ヒータ駆動用トランジスタ7の駆動信号の
デユーティ比DBを算出する(ステップ270)。ざら
にデユーティ比DBと損失デユーティ比DLO3Sとを
加算して出力デユーティ比Doを算出する(ステップ2
75>、出力デユーティ比Doが100[%]を上回っ
たときは、出力デユーティ比り。
On the other hand, when the value of the drive counter C1 is 10 or more, the drive counter C1 is reset, the previously calculated loss duty ratio DLO3S is read, and the heater drive transistor 7 is temporarily turned off to the power supply voltage. V
H02 is A/D converted and input (step 200, 2
05,210.225.230,235,240>. Next, step 250 calculates the voltage VH applied to the heater 4 from the difference between the power supply voltage VHC2 and the loss voltage VHCI.
), calculate the current IH flowing through the heater 4 by dividing the voltage VIH between both ends by the resistance value R1 of the current detection resistor 8.Step 2
55) Calculate the maximum power consumption W100 of the heater 4 (Step 260); Calculate the collected power WM of the heater 4 according to the same map as in the first embodiment described above (Step 265); The duty ratio DB of the drive signal is calculated (step 270).The output duty ratio Do is calculated by roughly adding the duty ratio DB and the loss duty ratio DLO3S (step 2
75>, when the output duty ratio Do exceeds 100 [%], the output duty ratio.

と100[%コとの差から損失デユーティ比DLO8S
を算出し、出力デユーティ比を100[%]に設定する
(ステップ280,285.290>。
The loss duty ratio DLO8S is calculated from the difference between
is calculated, and the output duty ratio is set to 100 [%] (steps 280, 285, 290>).

その後、−日本温度制御処理を終了する。一方、出力デ
ユーティ比Doが100[%]以下のときは、損失デユ
ーティ比DLO3S80 [%]に設定する(ステップ
280,295)。その後、−日本温度制御処理を終了
する。
After that, -Japan temperature control processing is ended. On the other hand, when the output duty ratio Do is 100 [%] or less, the loss duty ratio DLO3S80 [%] is set (steps 280, 295). After that, -Japan temperature control processing is ended.

一方、ヒータ駆動用トランジスタ7が非駆動状態にあっ
て、計数を続けている非駆動カウンタC2の値が10未
満のときは、電源電圧VHC2をA/D変換して入力す
る(ステップ200,305.310,315)。一方
、非駆動カウンタC2の値が10以上のときは、該非駆
動カウンタC2をリセットし、前回算出したオーバデユ
ーティ比DOVERを読み込み、ヒータ駆動用トランジ
スタ7を一時的に駆動状態(ON)として損失電圧VH
CIおよび両端電圧VIHをA/D変換して入力する(
ステップ200,305,310゜325、330.3
35.340.345>。次にヒータ4に印加される電
圧VH8算出しくステップ350) 、ヒータ4に流れ
る電流IHを算出しくステップ355)、ヒータ4の最
大消費電力wiooを算出しくステップ360)、既述
した第1実施例と同様なマツプに従ってヒータ4の目標
電力WMを算出しく2テツプ365)、ヒータ駆動用ト
ランジスタ7の駆動信号のデユーティ比DBを算出する
(ステップ370)。ざらに、デユーティ比DBからオ
ーバデユーティ比DOVERを減算して出力デユーティ
比D○を算出する(ステップ375)。出力デユーティ
比DoがO[%]を下回ったときは、出力デユーティ比
り。
On the other hand, when the heater driving transistor 7 is in a non-driving state and the value of the non-driving counter C2 that continues counting is less than 10, the power supply voltage VHC2 is A/D converted and inputted (steps 200 and 305). .310,315). On the other hand, when the value of the non-driving counter C2 is 10 or more, the non-driving counter C2 is reset, the previously calculated overduty ratio DOVER is read, and the heater driving transistor 7 is temporarily driven (ON) to reduce the loss. Voltage VH
CI and both-end voltage VIH are A/D converted and input (
Steps 200, 305, 310° 325, 330.3
35.340.345>. Next, step 350) calculates the voltage VH8 applied to the heater 4, step 355) calculates the current IH flowing through the heater 4, step 360) calculates the maximum power consumption wioo of the heater 4, and the first embodiment described above. The target power WM of the heater 4 is calculated according to a map similar to the above (step 365), and the duty ratio DB of the drive signal of the heater drive transistor 7 is calculated (step 370). Roughly, the over duty ratio DOVER is subtracted from the duty ratio DB to calculate the output duty ratio D○ (step 375). When the output duty ratio Do is less than O [%], the output duty ratio.

をオーバデユーティ比DOVERとし、出力デユーティ
比DO@O[%]に設定する(ステップ380、’38
5,390)。その復、−量温度制御処理を終了する。
is set as the overduty ratio DOVER, and the output duty ratio is set as DO@O [%] (step 380, '38
5,390). Thereafter, the temperature control process ends.

一方、出力デユーティ比D○がO[31以上のときは、
オーバデユーティ比り。
On the other hand, when the output duty ratio D○ is O[31 or more,
Overduty comparison.

VERをO[%] に設定しくステップ380,395
)、その後、−量水温度制御処理を終了する。
Set VER to O [%] Steps 380, 395
), then the water temperature control process ends.

以後、本温度制御処理は、120[m5ec]毎に繰り
返して実行される。
Thereafter, this temperature control process is repeatedly executed every 120 [m5ec].

なお本第2実施例において、ヒータ4が発熱素子M1に
、ヒータ駆動用トランジスタ7が駆動手段M2に、電流
検出用抵抗8が電流検出手段M3に各々該当する。また
、ECU6および該ECU6の実行する処理のうち、(
ステップ220.315)が電圧検出手段M4として、
(ステップ250.255,260,265,270,
275゜280.285,290,295,350,3
55.360,365,370,375,380゜38
5.390,395>が制御手段M5として、(ステッ
プ200,205.21’0,225,235.240
>が電源電圧測定手段M6として、くステップ200,
305,310,325,335.340>が損失電圧
測定手段M7として各々機能する。
In the second embodiment, the heater 4 corresponds to the heating element M1, the heater drive transistor 7 corresponds to the drive means M2, and the current detection resistor 8 corresponds to the current detection means M3. Also, among the ECU 6 and the processing executed by the ECU 6, (
Steps 220 and 315) serve as voltage detection means M4,
(Steps 250, 255, 260, 265, 270,
275°280.285,290,295,350,3
55.360,365,370,375,380°38
5.390,395> is the control means M5, (step 200,205.21'0,225,235.240
> as the power supply voltage measuring means M6, step 200,
305, 310, 325, 335, and 340> each function as loss voltage measuring means M7.

以上説明したように本第2実施例によれば、既述した第
1実施例の各効果に加えて、次のような効果を奏する。
As explained above, according to the second embodiment, in addition to the effects of the first embodiment described above, the following effects are achieved.

すなわち、ヒータ4′を電源電圧■H02または11失
電圧Vl−(C1測定のために一時的に駆動もしくは非
駆動とした場合の消費電力の過不足を補償するので、ヒ
ータ4の消費電力を目標電力WMとするフィードバック
制御を速やかに、しかも′より一層正確に実行すること
ができる。このことは、空燃比センサの加熱用ヒータに
適用した場合に、特に有効である。
In other words, the power consumption of heater 4 is set as the target because it compensates for excess or deficiency in power consumption when heater 4' is temporarily driven or not driven for measurement of power supply voltage H02 or 11 lost voltage Vl- (C1). Feedback control of the electric power WM can be executed quickly and more accurately. This is particularly effective when applied to a heater for an air-fuel ratio sensor.

以上本発明のいくつかの実施例について説明したが、本
発明はこのような実施例に何等限定されるものではなく
、本発明の要旨を逸脱しない範囲内において種々なる態
様で実施し得ることは勿論である。
Although several embodiments of the present invention have been described above, the present invention is not limited to these embodiments in any way, and can be implemented in various ways without departing from the gist of the present invention. Of course.

発明の効果 以上詳記したように本発明の温度制御装置によれば、発
熱素子駆動信号のデユーティ比の極めて大きい状態もし
くは挽めて小さい状態が連続する場合でも、常に損失電
圧および電源電圧の両者を検出できるので、発熱素子に
印加される電圧を正確に求めることができるという優れ
た効果を奏する。
Effects of the Invention As detailed above, according to the temperature control device of the present invention, even when the duty ratio of the heating element drive signal is continuously extremely large or extremely small, both the loss voltage and the power supply voltage are always maintained. can be detected, so the excellent effect is that the voltage applied to the heating element can be accurately determined.

また、上記効果に伴い、内燃機関の低負荷運転状態ある
いは高負荷運転状態のように、発熱素子駆動信号のデユ
ーティ比が極めて大きい場合もしくは極めて小さい場合
にも、発熱素子の消費電力を目標電力とするフィードバ
ック制御を正確に実行できる。このことは、冷間始動時
あるいはアイドル運転時等の、発熱素子による多量の加
熱が必要な場合に、特に有効である。
In addition, with the above effect, even when the duty ratio of the heating element drive signal is extremely large or extremely small, such as when the internal combustion engine is in a low-load operating state or a high-load operating state, the power consumption of the heating element can be adjusted to the target power. It is possible to accurately perform feedback control. This is particularly effective when a large amount of heating by the heating element is required, such as during cold start or idling.

なお、例えば、制御手段を、電源電圧測定手段の出力す
る駆動手段を一時的に非駆動状態とする指令に応じて駆
動信号を増加補正し、一方、損失電圧測定手段の出力す
る駆動手段を一時的に駆動状態とする指令に応じて駆動
信号を減少補正するよう構成した場合には、発熱素子の
消費電力を目標電力とするフィードバック制御の応答性
・追従性を向上できると共に、その制御精度をより一層
高めることができる。このことは、特に温度制御精度を
要求される空燃比センサの温度制御に適用した場合に顕
著な効果を奏する。
Note that, for example, the control means may increase the drive signal in response to a command to temporarily put the drive means output from the power supply voltage measurement means into a non-drive state; If the drive signal is configured to be corrected to decrease in response to a command to set the heating element to the drive state, it is possible to improve the responsiveness and followability of feedback control that uses the power consumption of the heating element as the target power, and to improve the control accuracy. It can be further improved. This is particularly effective when applied to temperature control of an air-fuel ratio sensor that requires high temperature control accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の内容を例示した基本的構成図、第2図
は本発明第1実施例のシステム構成図、第3図は同じく
その制御を示すフローチャート、第4図は同じくそのマ
ツプを示すグラフ、第5図は本発明第2実施例の制御を
示すフローチャート、第6図はデユーティ比と電圧検出
時間間隔との関係を示すタイミングチャート、第7図は
内燃機関の運転状態と発熱素子の目標電力との関係を規
定したマツプを示すグラフである。 Ml・・・発熱素子 M2・・・駆動手段 M3・・・電流検出手段 M4・・・電圧検出手段 M5・・・制御手段 M6・・・電源電圧測定手段 Ml・・・損失電圧測定手段 1・・・温度制御装置 4・・・ヒータ 6・・・電子制御装置(ECtJ) 6a・・・CPU 7・・・ヒータ駆動用トランジスタ 8・・・電流検出用抵抗
Fig. 1 is a basic configuration diagram illustrating the content of the present invention, Fig. 2 is a system configuration diagram of the first embodiment of the invention, Fig. 3 is a flowchart showing its control, and Fig. 4 is a map thereof. 5 is a flow chart showing the control of the second embodiment of the present invention, FIG. 6 is a timing chart showing the relationship between duty ratio and voltage detection time interval, and FIG. 7 is a graph showing the operating state of the internal combustion engine and the heating element. 3 is a graph showing a map that defines the relationship between power consumption and target power. Ml... Heating element M2... Drive means M3... Current detection means M4... Voltage detection means M5... Control means M6... Power supply voltage measuring means Ml... Loss voltage measuring means 1. ... Temperature control device 4 ... Heater 6 ... Electronic control device (ECtJ) 6a ... CPU 7 ... Heater driving transistor 8 ... Current detection resistor

Claims (1)

【特許請求の範囲】 1 電源に対して直列に接続された発熱素子、駆動手段
および電流検出手段と、 上記発熱素子と上記駆動手段との接続点における電圧を
検出し、上記駆動手段の非駆動時には電源電圧として、
一方、上記駆動手段の駆動時には損失電圧として各々出
力する電圧検出手段と、該電圧検出手段の出力した電源
電圧および損失電圧と上記電流検出手段の検出した電流
とから求まる上記発熱素子の消費電力が、予め定められ
た目標電力となるように上記駆動手段の駆動・非駆動を
フィードバック制御する駆動信号を決定する制御手段と
、 を具備した温度制御装置において、 さらに、上記駆動手段が所定時間以上連続して駆動状態
にあるときは、上記駆動手段を一時的に非駆動状態とす
る指令を該駆動手段に出力すると共に、該非駆動状態に
おける前記接続点の電圧を検出する指令を上記電圧検出
手段に出力する電源電圧測定手段と、 上記駆動手段が所定時間以上連続して非駆動状態にある
ときは、上記駆動手段を一時的に駆動状態とする指令を
該駆動手段に出力すると共に、該駆動状態における前記
接続点の電圧を検出する指令を上記電圧検出手段に出力
する損失電圧測定手段と、 を備えたことを特徴とする温度制御装置。 2 上記制御手段が、上記電源電圧測定手段の出力する
上記駆動手段を一時的に非駆動状態とする指令に応じて
前記駆動信号を増加補正し、一方、上記損失電圧測定手
段の出力する上記駆動手段を一時的に駆動状態とする指
令に応じて前記駆動信号を減少補正する特許請求の範囲
第1項に記載の温度制御装置。
[Scope of Claims] 1. A heating element, a driving means, and a current detecting means connected in series to a power source, and detecting a voltage at a connection point between the heating element and the driving means, and determining whether the driving means is not driven. Sometimes as a power supply voltage,
On the other hand, when the driving means is driven, the power consumption of the heating element is determined from the voltage detecting means that outputs each as a loss voltage, the power supply voltage and loss voltage outputted by the voltage detecting means, and the current detected by the current detecting means. , a control means for determining a drive signal for feedback controlling driving/non-driving of the driving means so as to achieve a predetermined target power, further comprising: a temperature control device in which the driving means continues for a predetermined period of time or more; and outputs a command to temporarily put the driving means in a non-driving state to the driving means, and also outputs a command to the voltage detecting means to detect the voltage at the connection point in the non-driving state. When the power supply voltage measuring means to output and the driving means are continuously in a non-driving state for a predetermined period of time or more, a command to temporarily put the driving means into a driving state is outputted to the driving means, and the driving means A temperature control device comprising: loss voltage measuring means for outputting a command for detecting the voltage at the connection point to the voltage detecting means. 2 The control means increases the drive signal in response to a command output from the power supply voltage measurement means to temporarily put the drive means into a non-drive state, while increasing the drive signal output from the loss voltage measurement means. 2. The temperature control device according to claim 1, wherein the drive signal is corrected to decrease in response to a command to temporarily put the means into a drive state.
JP61262530A 1986-11-04 1986-11-04 Temperature control device Expired - Lifetime JPH0740008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61262530A JPH0740008B2 (en) 1986-11-04 1986-11-04 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262530A JPH0740008B2 (en) 1986-11-04 1986-11-04 Temperature control device

Publications (2)

Publication Number Publication Date
JPS63117251A true JPS63117251A (en) 1988-05-21
JPH0740008B2 JPH0740008B2 (en) 1995-05-01

Family

ID=17377075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262530A Expired - Lifetime JPH0740008B2 (en) 1986-11-04 1986-11-04 Temperature control device

Country Status (1)

Country Link
JP (1) JPH0740008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164125A (en) * 1997-04-23 2000-12-26 Denso Corporation Detection of malfunction in gas concentration detection system
JP2015061244A (en) * 2013-09-20 2015-03-30 日本特殊陶業株式会社 Duty ratio acquisition device, load drive device, and load drive system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164125A (en) * 1997-04-23 2000-12-26 Denso Corporation Detection of malfunction in gas concentration detection system
JP2015061244A (en) * 2013-09-20 2015-03-30 日本特殊陶業株式会社 Duty ratio acquisition device, load drive device, and load drive system

Also Published As

Publication number Publication date
JPH0740008B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
EP1028244B1 (en) Method of controlling and diagnosing the heater of an engine exhaust gas composition sensor
JPS6354887B2 (en)
JP3188579B2 (en) Air-fuel ratio sensor failure detection device
US4860712A (en) Method of controlling an oxygen concentration sensor
JP3607962B2 (en) Air-fuel ratio sensor deterioration determination device
JP3284862B2 (en) Active state determination device for air-fuel ratio sensor
JPH07122627B2 (en) Heater controller for oxygen concentration sensor
JP2600807B2 (en) Control device for internal combustion engine
JPS63117251A (en) Temperature controller
JPH08326587A (en) Active state deciding device for air-fuel ratio sensor
JP3524373B2 (en) Heater control device for air-fuel ratio sensor
JPH07198679A (en) Control device for oxygen concentration sensor
JP2006322426A (en) Diagnosis device for air-fuel ratio sensor
JPH02145954A (en) High temperature judging apparatus for gas detector
JPS6217657B2 (en)
JP2800453B2 (en) Heater control device for oxygen concentration detection sensor
JP3465604B2 (en) Energization control device
JPS62214247A (en) Device for controlling air-fuel ratio for internal combustion engine
JPH07197838A (en) Control device for internal combustion engine
JP2641828B2 (en) Air-fuel ratio control device for internal combustion engine
JPS60216255A (en) Controlling apparatus of heater for oxygen concentration sensor
JP2019007887A (en) A/f sensor control device
JPS6185549A (en) Oxygen concentration detection controller
JPH0236342A (en) Heater controller for oxygen sensor
JPH02204647A (en) Air-fuel ratio control method for internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term