JPS63117126A - Blast furnace gas fired gas turbine plant - Google Patents

Blast furnace gas fired gas turbine plant

Info

Publication number
JPS63117126A
JPS63117126A JP26231186A JP26231186A JPS63117126A JP S63117126 A JPS63117126 A JP S63117126A JP 26231186 A JP26231186 A JP 26231186A JP 26231186 A JP26231186 A JP 26231186A JP S63117126 A JPS63117126 A JP S63117126A
Authority
JP
Japan
Prior art keywords
gas
blast furnace
exhaust gas
gas turbine
combustion air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26231186A
Other languages
Japanese (ja)
Inventor
Hideki Takano
英樹 高野
Kanji Kobayashi
小林 侃二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26231186A priority Critical patent/JPS63117126A/en
Publication of JPS63117126A publication Critical patent/JPS63117126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively utilize the sensible heat of exhaust gas by connecting the exhaust gas pipe of a gas turbine through directional control valves to the combustion air supply pipe of an air-heating furnace and a hot blast supply pipe to a blast furnace respectively. CONSTITUTION:The exhaust gas pipe 14 of a gas turbine 6 is connected through directional control valves 21, 21a to the combustion air supply pipe 18 of an air-beating furnace 25 and a hot blast supply pipe 17 to a blast furnace respectively. When the exhaust gas of said gas turbine 6 can not be supplied as the combustion air for the air-heating furnace 25, it is mixed into the hot blast to the blast furnace by opening said directional control valve 21a for its use. Thus the sensible heat of the exhaust gas can be effectively utilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高炉ガス焚きガスタービンプラントに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a blast furnace gas-fired gas turbine plant.

〔従来の技術〕[Conventional technology]

従来の高炉ガスを用いるガスタービンの排ガスはそのま
ま大気に放散していた。しかし、オイル・ショック以降
省エネルギ一対策が飛躍的に進み、ガスタービンによる
発電はコンバインドタイプが開発され一般的に使用され
るようになってきた。これは、第2図に示すようにガス
タービン6の排ガスをボイラー7に導き蒸気を発生させ
、この蒸気により蒸気タービン2を駆動し排ガス顕熱を
排熱ボイラーにより蒸気サイクルで電力として回収する
システムである。
Exhaust gas from gas turbines that use conventional blast furnace gas is directly emitted into the atmosphere. However, since the oil crisis, energy-saving measures have progressed dramatically, and combined-type gas turbine power generation has been developed and is now commonly used. As shown in Figure 2, this is a system in which exhaust gas from a gas turbine 6 is guided to a boiler 7 to generate steam, the steam drives the steam turbine 2, and the sensible heat of the exhaust gas is recovered as electricity in a steam cycle using a waste heat boiler. It is.

このコンバインドシステムに関する技術としては、特開
昭58−57027号、特開昭58−57012号など
が既に実用化されている。またこの技術の熱回収効率の
向上を図るため、特開昭56−52512号に開示され
ているように、排熱ボイラーとして流動層ボイラーを用
いて熱効率を改善している事例がある。
Techniques related to this combined system have already been put into practical use, such as in Japanese Patent Laid-Open Nos. 58-57027 and 58-57012. In order to improve the heat recovery efficiency of this technology, there is a case where a fluidized bed boiler is used as an exhaust heat boiler to improve thermal efficiency, as disclosed in Japanese Patent Laid-Open No. 56-52512.

しかし、これらの技術はすべて排ガスの熱を利用し、蒸
気として回収しようとするものであり蒸気サイクルとし
て電力で回収しており、その熱効率は極めて低い。
However, all of these technologies utilize the heat of exhaust gas and recover it as steam, which is recovered using electricity as a steam cycle, and their thermal efficiency is extremely low.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

高炉ガス焚きガスタービンプラントにおける従来技術で
は、蒸気サイクルとして熱の回収を行っているため熱効
率が悪いという問題があった。
Conventional technology for blast furnace gas-fired gas turbine plants has a problem of poor thermal efficiency because heat is recovered as a steam cycle.

本発明は上述の問題点を解決することを目的とし、ター
ビンの燃焼排ガスの顕熱を有効に利用して省エネルギー
を図る高炉ガス焚きガスタービンプラントを提案するも
のである。
The present invention aims to solve the above-mentioned problems and proposes a blast furnace gas-fired gas turbine plant that effectively utilizes the sensible heat of combustion exhaust gas of the turbine to save energy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点を解決するもので、高炉ガス焚き
ガスタービンプラントに適用され、次の技術手段を採っ
た。すなわち、 ガスタービンの排ガス配管を熱風炉燃焼室の燃焼空気供
給配管と、高炉への熱風供給配管のそれぞれに切替弁を
介して接続した。
The present invention solves the above-mentioned problems and is applied to a blast furnace gas-fired gas turbine plant, and employs the following technical means. That is, the exhaust gas piping of the gas turbine was connected to the combustion air supply piping of the hot blast furnace combustion chamber and the hot air supply piping to the blast furnace, respectively, via switching valves.

〔作用〕[Effect]

高炉ガス焚きガスタービンの排ガスは500℃前後の高
温排ガスであり、排ガス屯に未燃の酸素分が15%程度
含有されている。
The exhaust gas of a blast furnace gas-fired gas turbine is a high-temperature exhaust gas of around 500° C., and the exhaust gas tonne contains about 15% of unburned oxygen.

高炉の熱風炉は高炉、コークス炉ガスを燃焼させ蓄熱方
式によりそのときの排ガスと熱交換器によって熱風炉の
燃焼用空気を予熱している。
A blast furnace hot blast furnace burns blast furnace or coke oven gas, and uses the heat storage method to preheat the combustion air of the hot blast furnace using the exhaust gas from that time and a heat exchanger.

本発明はガスタービンの排ガスを熱風炉の燃焼用空気と
して使用することにより、排ガスの顕熱をそのまま回収
することができ、かつ、未燃の酸素分も燃焼用空気とし
て使用することを特徴とするものである。
The present invention is characterized in that by using exhaust gas from a gas turbine as combustion air for a hot stove, the sensible heat of the exhaust gas can be recovered as is, and unburned oxygen is also used as combustion air. It is something to do.

酸素量が不足する場合は、空気の補充あるいは、酸素ガ
スの富化など適宜処置すればよい。
If the amount of oxygen is insufficient, appropriate measures such as replenishing air or enriching oxygen gas may be taken.

本発明の基本工程図を第1図に示す、ガスタービン6出
口のガスタービン排ガス配管14は切替弁21.21a
を介してそれぞれ熱風炉25の燃焼空気供給配管18お
よび高炉19の熱風供給配管17に接続される。
The basic process diagram of the present invention is shown in FIG.
are connected to the combustion air supply pipe 18 of the hot blast furnace 25 and the hot air supply pipe 17 of the blast furnace 19, respectively.

ガスタービン6の高温かつ、未燃の排ガスは、ガスター
ビン排ガス配管14および燃焼空気供給配管18を介し
熱風炉25の燃焼室20へ送込まれ、燃料ガス供給配管
15から送られる燃料ガスと混合して燃焼させる。この
場合、従来例では燃焼空気温度は150℃であったのに
比べ、本発明での燃焼空気温度は若干酸素分は薄いが約
500℃の高温であるために、極めて効率的に燃焼し、
その顕熱は燃料を燃焼させるとともに、その排ガス顕熱
が蓄熱室13に持込まれるため、燃料ガスはコークス炉
ガスと、高炉ガスの混合ガスを使用することにより、燃
料ガスを140.00ONm3/)(から120.OO
ONm3/Hに節約することができた。
The high-temperature, unburned exhaust gas of the gas turbine 6 is sent to the combustion chamber 20 of the hot air stove 25 via the gas turbine exhaust gas pipe 14 and the combustion air supply pipe 18, and mixed with the fuel gas sent from the fuel gas supply pipe 15. and burn it. In this case, the combustion air temperature in the conventional example was 150°C, but the combustion air temperature in the present invention is a high temperature of about 500°C, although the oxygen content is slightly thinner, so combustion is extremely efficient.
The sensible heat burns the fuel, and the sensible heat of the exhaust gas is brought into the heat storage chamber 13. Therefore, by using a mixed gas of coke oven gas and blast furnace gas, the fuel gas is reduced to 140.00 ONm3/). (from 120.OO
It was possible to save on ONm3/H.

また燃焼空気ファン26(点線で示す)は運転停止する
ことができた。
Also, the combustion air fan 26 (indicated by the dotted line) could be shut down.

このときのガスタービンの排ガスは250゜00ONm
3/Hで酸素分は12%のものを全量燃焼用空気として
使用したので従来の燃焼用空気量は不要となり、従って
、その分の燃焼空気ファン26の動力費を節減すること
ができた。
The exhaust gas from the gas turbine at this time was 250°00ONm.
Since 3/H with an oxygen content of 12% was used as the entire combustion air, the conventional combustion air amount was not required, and the power cost of the combustion air fan 26 could be reduced accordingly.

なお本発明では、熱風炉25の設備上の問題から、ター
ビンの排ガスを燃焼用空気として供給できなくなった場
合、あるいは、熱風炉25の運転状況により排ガスが余
剰となった場合には切替弁21aを開とし、昇圧機(ブ
ースタコンプレッサー)23を介して高炉送風用熱風供
給配管17に供給し、通常1000〜1200℃の高温
熱風と混合して供給できるようにしている。この場合昇
圧機23を設置する分の動力費の増分は、高炉送風a2
4の動力費減分と相設されるので問題はない。
In addition, in the present invention, when the exhaust gas of the turbine cannot be supplied as combustion air due to a problem with the equipment of the hot blast stove 25, or when there is a surplus of exhaust gas due to the operating status of the hot blast stove 25, the switching valve 21a is opened and supplied to the hot air supply pipe 17 for blowing blast furnace air via a booster compressor 23, so that it can be mixed with high temperature hot air of usually 1000 to 1200°C and supplied. In this case, the increase in power cost for installing the booster 23 is as follows:
There is no problem because it is combined with the reduction in power costs in step 4.

〔実施例〕〔Example〕

本発明の実施例と従来例との運転データの比較を第1表
に示す、この結果で見る如く、ガスタービンプラント効
率は蒸気タービンの出力がなくなった分45%から30
%に低下したが、熱風炉の燃料ガスが20.00ONm
3/H1!i約できた。これを同一ベースで比較するた
めに仮に他の発電プラントに供給して電力に変換すると
すれif、12,0OOKWの電力を発生させ得るので
、ガスタービンと蒸気タービンの合計出力40.0OO
KWに対し、現ガスタービン出力30.0OOKWに前
記12,0OOKWが加算され、差引き2,0OOKW
の出力増となり、総合的にはエネルギー使用効率を増大
させることとなる。その上、燃焼空気ファンの動力節減
分300KWを加味すると更にその効果は大となる。
Table 1 shows a comparison of operation data between the embodiment of the present invention and the conventional example. As seen from the results, the gas turbine plant efficiency has increased from 45% to 30% due to the loss of steam turbine output.
%, but the fuel gas in the hot stove was 20.00ONm.
3/H1! I was able to make an appointment. In order to compare this on the same basis, if we were to supply this to another power generation plant and convert it into electricity, it would be possible to generate 12,0OOKW of electricity, so the total output of the gas turbine and steam turbine would be 40.0OOKW.
For KW, the above 12,0OOKW is added to the current gas turbine output of 30.0OOKW, and the difference is 2,0OOKW.
This results in an increase in output, and overall increases energy usage efficiency. Furthermore, if you take into account the power savings of 300 kW from the combustion air fan, the effect becomes even greater.

〔発明の効果〕〔Effect of the invention〕

本発明の高炉ガス焚きガスタービンプラントは、製鉄所
のエネルギー需給効率の向上に次のような優れた効果を
奏する。
The blast furnace gas-fired gas turbine plant of the present invention has the following excellent effects on improving the energy supply and demand efficiency of a steelworks.

0500℃前後のガスタービンの排ガスを直接熱風炉の
燃焼用空気として供給するので、熱風炉の投入燃料およ
び従来の燃焼用空気ファンの動力費を節減することがで
きる。従って、蒸気タービンやボイラーを新しく設置す
ることなくタービンの燃焼排ガスの顕熱を有効に利用す
ることができる。
Since the exhaust gas of the gas turbine at around 0,500° C. is directly supplied as combustion air to the hot blast stove, it is possible to reduce the fuel input to the hot blast stove and the power cost of the conventional combustion air fan. Therefore, the sensible heat of the combustion exhaust gas of the turbine can be effectively utilized without installing a new steam turbine or boiler.

■熱風炉の設備上の問題で、タービンの排ガスを燃焼用
空気として供給できなくなった場合、あるいは、熱風炉
の運転状況により排ガスが余剰となった場合でも、高炉
送風用熱風に混合して供給使用できるよう切替弁を設け
たのでタービンの排ガス顕熱を有効に回収利用すること
ができる。
■If the turbine exhaust gas cannot be supplied as combustion air due to a problem with the hot blast furnace equipment, or if there is surplus exhaust gas due to the operating status of the hot blast furnace, it will be mixed with the hot air for blowing the blast furnace and supplied. Since a switching valve is provided so that the exhaust gas sensible heat of the turbine can be effectively recovered and used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本工程図、第2図は従来例のコンバ
インドシステムの一般的工程図を示す。 1・・・ガス圧縮機   2・・・蒸気タービン3・・
・発電機(ガスタービン) 4・・・空気圧縮機   5・・・燃焼機6・・・ガス
タービン  7・・・排熱回収ボイラー8・・・煙突 
  11・・・発電機(蒸気タービン)12・・・蒸気
入口弁  13・・・蓄熱室14・・・ガスタービン排
ガス配管 15・・・燃料ガス供給配管 16・・・送風空気供給配管
FIG. 1 shows a basic process diagram of the present invention, and FIG. 2 shows a general process diagram of a conventional combined system. 1... Gas compressor 2... Steam turbine 3...
- Generator (gas turbine) 4...Air compressor 5...Combustor 6...Gas turbine 7...Exhaust heat recovery boiler 8...Chimney
11... Generator (steam turbine) 12... Steam inlet valve 13... Regenerator chamber 14... Gas turbine exhaust gas piping 15... Fuel gas supply piping 16... Blowing air supply piping

Claims (1)

【特許請求の範囲】 1 高炉ガス焚きガスタービンプラントにおいて、 前記ガスタービンの排ガス配管を熱風炉燃 焼室の燃焼空気供給配管と、高炉への熱風供給配管のそ
れぞれに切替弁を介して接続したことを特徴とする高炉
ガス焚きガスタービンプラント。
[Scope of Claims] 1. In a blast furnace gas-fired gas turbine plant, the exhaust gas pipe of the gas turbine is connected to the combustion air supply pipe of the hot blast furnace combustion chamber and the hot air supply pipe to the blast furnace, respectively, via a switching valve. A blast furnace gas-fired gas turbine plant featuring:
JP26231186A 1986-11-04 1986-11-04 Blast furnace gas fired gas turbine plant Pending JPS63117126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26231186A JPS63117126A (en) 1986-11-04 1986-11-04 Blast furnace gas fired gas turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26231186A JPS63117126A (en) 1986-11-04 1986-11-04 Blast furnace gas fired gas turbine plant

Publications (1)

Publication Number Publication Date
JPS63117126A true JPS63117126A (en) 1988-05-21

Family

ID=17374017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26231186A Pending JPS63117126A (en) 1986-11-04 1986-11-04 Blast furnace gas fired gas turbine plant

Country Status (1)

Country Link
JP (1) JPS63117126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517953B1 (en) * 1996-10-10 2005-09-30 어드벤스드 프로덕션 앤드 로딩 에이에스 A method in supplying combustion air to a combustion chamber, arrangements in said combustion chamber as well as use of oxygen-containing exhaust from a gas tuebine and process plant using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517953B1 (en) * 1996-10-10 2005-09-30 어드벤스드 프로덕션 앤드 로딩 에이에스 A method in supplying combustion air to a combustion chamber, arrangements in said combustion chamber as well as use of oxygen-containing exhaust from a gas tuebine and process plant using the same

Similar Documents

Publication Publication Date Title
US7621133B2 (en) Methods and apparatus for starting up combined cycle power systems
JPH03151505A (en) Gas/steam electric power generating facility
CN111271702A (en) Parallel steam extraction energy level lifting system of steam turbine
JP3882107B2 (en) Gas turbine built-in boiler
US5435123A (en) Environmentally acceptable electric energy generation process and plant
CN201858904U (en) Waste heat recovery system for rear of sintering machine
CN216409021U (en) Flue gas recycling system of waste heat boiler of gas turbine
CN102997691A (en) System and method for generating electricity by using residual heat generated in transformation of coke oven flue waste gas into high-quality waste gas
JPS63117126A (en) Blast furnace gas fired gas turbine plant
CN204829896U (en) Low heat value gas high temperature air who takes water -cooling wall fires burning furnace
Coelho et al. Cogeneration—the development and implementation of a cogeneration system for a chemical plant, using a reciprocating heavy fuel oil engine with a supplementary fired boiler
JP2001173457A (en) Gas turbine power generation system
CN212744162U (en) Gas turbine combined heating furnace system
CN208456681U (en) One kind being used for Distribution of Natural formula energy source station exhaust-heat boiler flue gas recirculating system
CN218001548U (en) Boiler tail flue UNICOM feedwater heating system
CN218912983U (en) Combined cycle system
CN216192076U (en) Afterburning device of dry quenching system
CN214120111U (en) System for replacing coal mill hot primary air with flue gas discharged by internal combustion engine
CN208456682U (en) A kind of cogenerator using tail of semi coke
CN215336453U (en) Coal-fired magnetofluid S-CO2Dual function boiler for combined cycle power generation system
JPH04321704A (en) Fuel cell compound generating plant
JPS59191809A (en) Method for reducing production of nox in steam-gas composite cycle and device thereof
CN206989182U (en) The flue gas heat regenerative system of Turbo-generator Set efficiency can be improved
RU2248452C2 (en) Steam-gas power plant with simultaneous combustion of solid and gaseous fuel
SU1142649A1 (en) Steam=gas plant