JPS63116171A - Electrostatic recording system - Google Patents

Electrostatic recording system

Info

Publication number
JPS63116171A
JPS63116171A JP26221786A JP26221786A JPS63116171A JP S63116171 A JPS63116171 A JP S63116171A JP 26221786 A JP26221786 A JP 26221786A JP 26221786 A JP26221786 A JP 26221786A JP S63116171 A JPS63116171 A JP S63116171A
Authority
JP
Japan
Prior art keywords
layer
switching element
potential
conductive state
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26221786A
Other languages
Japanese (ja)
Other versions
JP2677988B2 (en
Inventor
Eiichiro Tanaka
栄一郎 田中
Akio Takimoto
昭雄 滝本
Koji Akiyama
浩二 秋山
Kyoko Onomichi
尾道 京子
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26221786A priority Critical patent/JP2677988B2/en
Publication of JPS63116171A publication Critical patent/JPS63116171A/en
Application granted granted Critical
Publication of JP2677988B2 publication Critical patent/JP2677988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)

Abstract

PURPOSE:To obtain a small-sized inexpensive printer by using an electrostatic recording body provided with a switching element, which is set to a high conductive state by a high electric field and is kept in this state, and an electric charge transport layer or a photoconductive layer on a conductive supporting body. CONSTITUTION:A switching element layer 3 which is set to a high conductive state by a high electric field and is kept in this state, an electric charge transport layer or a photoconductive layer 2, and a surface protective layer 4 are provided on a conductive supporting body 1. A potential higher than Vth is induced in the switching element layer by a high corona potential as shown in a figure A to set the whole of this layer to a high conductive state. For example, a thermal head 5 is used to apply heat in accordance with a signal as shown in a figure B. The switching element layer 3 is restored to a low conductive state by heating. Next, the switching element layer 3 is electrified again with a surface potential lower than Vth. At this time, only parts of the switching element layer 3 restored to the low conductive state are electrified with a high potential but the potential of the other parts is low to form a latent image.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真法を用いた静電記録方式に関し、プ
リンタ、ファクシミリ等に用いられる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrostatic recording method using electrophotography, and is used in printers, facsimile machines, and the like.

従来の技術 プリンタ、ファクシミリに用いられる主要な記録技術と
して、感熱記録法、電子写真法がある。
BACKGROUND OF THE INVENTION The main recording techniques used in printers and facsimiles include thermal recording and electrophotography.

後者にはLEDアレイ、半導体レーザを用いた光プリン
タ、静電記録方式を用いたものが実用化されている。
For the latter, optical printers using LED arrays, semiconductor lasers, and electrostatic recording methods have been put into practical use.

前者の感熱記録法は、小型で保守も簡単で安価である反
面、記録画の保存性が問題である。一方、後者の電子写
真法は記録画の保存性に優れるものの装置も大きく高価
である。
The former thermal recording method is compact, easy to maintain, and inexpensive, but has the problem of storage stability of recorded images. On the other hand, although the latter electrophotographic method has excellent preservation of recorded images, the equipment is large and expensive.

電子写真法の中で、光プリンタは高速で高画質であるこ
とから、高速ファクシミリ、プリンタに利用される。し
かし、記録光源であるLEDアレイ、半導体レーザと走
査用ポリゴンミラー等高価な部品を必要とするため、装
置も高額で信頼性維持するため多くの保守を必要とする
Among electrophotographic methods, optical printers are used for high-speed facsimiles and printers because they are fast and provide high image quality. However, since it requires expensive parts such as an LED array as a recording light source, a semiconductor laser, and a scanning polygon mirror, the device is also expensive and requires a lot of maintenance to maintain reliability.

このため、よりプロセスが簡単で小型、低価格な記録方
式への要求は根強いものがある。
For this reason, there is a strong demand for a recording method that has a simpler process, is more compact, and is less expensive.

発明が解決しようとする問題点 静電記録方式は光プリンタに比較しで、プロセスも簡単
で、小型で保守も容易で安価である反面、記録のための
記録電極にそれぞれ駆動回路を必要とし、しかも記録電
圧が高いため駆動回路の小型化が困難であった。
Problems that the invention aims to solve Compared to optical printers, the electrostatic recording method has a simpler process, is smaller, easier to maintain, and is cheaper, but on the other hand, it requires a drive circuit for each recording electrode for recording. Moreover, since the recording voltage is high, it has been difficult to miniaturize the drive circuit.

本発明は、このような欠点を解決し得る、小型で安価な
静電記録方式を提案することを目的とする。
An object of the present invention is to propose a compact and inexpensive electrostatic recording method that can solve these drawbacks.

問題点を解決するための手段 導電性支持体上に高電界で高導電状態となり且つ高専?
を収態を維持するスイッチング素子層と少なくとも電荷
輸送層あるいは光導電層とを備えた静電記録体を用い、
前記スイッチング素子に高電界を印加して高導電状態と
する工程と、加熱により前記高導電状態を局部的に解除
して2次元像を形成する工程と、帯電処理により前記2
次元像から電荷密度の異なる潜像を形成する工程とを含
む。
Means to solve the problem A conductive support is brought into a highly conductive state in a high electric field and is a technical college?
using an electrostatic recording body comprising a switching element layer that maintains the state of conductivity and at least a charge transport layer or a photoconductive layer,
a step of applying a high electric field to the switching element to bring it into a highly conductive state; a step of locally canceling the high conductive state by heating to form a two-dimensional image;
forming latent images with different charge densities from the dimensional images.

作用 小型で簡易な構成であり、しかも記録が加熱により行な
われるため、静電記録方式のような高い記録電圧を必要
としない。
Function: It has a small size and simple structure, and since recording is performed by heating, it does not require a high recording voltage unlike the electrostatic recording method.

実施例 第2図のように、導電性支持体1上に電荷移動層2、ス
イッチング素子層3、表面保護層4を形成し記録記録媒
体とする。
EXAMPLE As shown in FIG. 2, a charge transfer layer 2, a switching element layer 3, and a surface protection layer 4 are formed on a conductive support 1 to prepare a recording medium.

ここで、各層の静電容量をそれぞれ、電荷移動層:01
、スイッチング素子層:02、表面保護層二03とする
Here, the capacitance of each layer is calculated as charge transfer layer: 01
, switching element layer: 02, and surface protection layer 203.

この記録記録媒体にコロナ帯電処理をすることにより、
上記の各層の静電容量に逆比例する電位が印荷される。
By subjecting this recording medium to corona charging treatment,
A potential is applied that is inversely proportional to the capacitance of each layer.

スイッチング素子層は、第3図に示すように、強電界収
態(スイッチング層に印加される電位がvth以上)で
あれば低導電収態(I)から高導電状態(II)に転移
する。
As shown in FIG. 3, the switching element layer transitions from a low conductivity state (I) to a high conductivity state (II) if it is in a strong electric field convergence (the potential applied to the switching layer is equal to or higher than vth).

低導電収態での層の比抵抗は1011〜1014Ω・e
m、高導電状態の比抵抗は108〜109Ω・cmが望
ましい。
The specific resistance of the layer in the low conductivity state is 1011 to 1014 Ω・e
m, and the specific resistance in a high conductive state is preferably 108 to 109 Ω·cm.

この時の比抵抗の比率は103〜106Ω・emで優れ
たコントラストが得られる。
At this time, the ratio of specific resistance is 10 3 to 10 6 Ω·em, and excellent contrast can be obtained.

第1図(A)のように、高いコロナ電位でスイッチング
層にvth以上の電位を誘起し、全体を高導電状態とす
る。次に同図(B)のように、例えばサーマルヘッドを
用いて、信号に従い熱を加える。スイッチング層は加熱
により、低導電状態に復帰する0次に、スイッチング層
にvth以下の電位の表面電位で再度帯電処理を施す。
As shown in FIG. 1(A), a potential higher than vth is induced in the switching layer by a high corona potential, and the entire layer is brought into a highly conductive state. Next, as shown in FIG. 3B, heat is applied according to the signal using, for example, a thermal head. The switching layer returns to a low conductivity state by heating, and then the switching layer is charged again at a surface potential of vth or less.

この時、スイッチング層が低導電収態に復帰している場
所のみ高い電位に帯電し、他の電位は低く、潜像が形成
される。
At this time, only the portion where the switching layer has returned to the low conductivity state is charged to a high potential, and the remaining potential is low, forming a latent image.

この潜像に、通常の2成分現像方式、あるいは1成分現
像方式を用い現像処理を施す。
This latent image is developed using a normal two-component development method or a one-component development method.

ボテンバー(Potember)等は、ジャーナル オ
ブ アメリカン ソサイエティー(J。
Potember et al., Journal of American Society (J.

Amer、Soc、)第102巻3659頁(1980
)、あるいは、シンセティック メタルズ(Synth
etlc  Metals)第4巻371頁(1982
)において、Cu−TCNQ(7,7,8,8−テトラ
シアノキノジ8メエタン)電荷移動錯体結晶薄膜が、約
104V/cm程度の電界強度で低導電収態から高導電
8態へのスイッチング現象を示すことを見だし、有機メ
モリー材料としての新しい用途展開の可能性を報告して
いる。
Amer, Soc, ) Vol. 102, p. 3659 (1980
), or synthetic metals (Synth
etlc Metals) Volume 4, page 371 (1982
), a Cu-TCNQ (7,7,8,8-tetracyanoquinodi8meethane) charge transfer complex crystal thin film switched from a low conductivity state to a high conductivity 8 state at an electric field strength of about 104 V/cm. They found that this phenomenon occurs and reported the possibility of developing new applications as an organic memory material.

スイッチング素子としては、テトラシアノエチレン(T
CNE)、テトラシアフシ9メタン(TCN Q ) 
、2,3,5.6−テトラフルオロー7、7.8.8−
テトラシアフシ8メタン(TCNQF4 )等の電子受
容性物質と銅または銀の錯体が用いられるが、同様な特
性を有する他のスイッチング素子を用いることが出来る
As a switching element, tetracyanoethylene (T
CNE), tetracyafushi9methane (TCN Q)
, 2,3,5.6-tetrafluoro7,7.8.8-
A complex of copper or silver with an electron-accepting substance such as tetracyafushi-8-methane (TCNQF4) is used, but other switching elements with similar properties can be used.

上記の錯体は、蒸着等の手段により結晶あるいは多結晶
薄膜を直接に用いることもできるが、微結晶状態のもの
をバインダー中に分散させて導電性支持体上に形成させ
た電荷移動層の上に設けることができる。バインダーと
しては電気絶縁性の樹脂、例えばポリエステル樹脂、ア
クリル樹脂、スチレン樹脂、ポリカーボネート樹脂、エ
ポキシ樹脂、シリコン樹脂、アルキド樹脂等が用いられ
る。この際の、樹脂と微結晶錯体の混合比は、低導電収
態の比抵抗が1011〜1014Ω・cmとなるように
調整する。
The above complex can be used directly as a crystalline or polycrystalline thin film by means such as vapor deposition, but it is also possible to use a charge transfer layer formed on a conductive support by dispersing a microcrystalline complex in a binder. It can be provided in As the binder, electrically insulating resins such as polyester resins, acrylic resins, styrene resins, polycarbonate resins, epoxy resins, silicone resins, and alkyd resins are used. At this time, the mixing ratio of the resin and the microcrystalline complex is adjusted so that the specific resistance of the low conductivity state is 1011 to 1014 Ω·cm.

電荷移動層には、上記のスイッチング素子層からの電子
の注入効率の優れた材料が選択される。
For the charge transfer layer, a material with excellent injection efficiency of electrons from the above-mentioned switching element layer is selected.

好適な材料としては、非晶質カーボン(以下a −C:
Hと記す)、非晶質シリコン(以下a−5l:Hと記す
)、非晶質シリコンと炭素、窒素、酸素の化合物(以下
a  S I   C%a  S I 1−XNXsl
−x   x a−8l 1−x Ox k記す)等を主成分とする非
晶質無機化合物、あるいは2−ニトロ−9−フルオレノ
ン、2,7−シ8ニトロ−9−フルオレノン、2,4,
7−ドリニトロー9−フルオレノン、2.4.5.7−
テトラニトロ−9−フルオレノン、2−ニトロベンツ8
チオフエン、2,4.8−)リニトロチオキサントン、
シ1ニトロアントラキノン、テトラシアノキノジメタン
等の有機化合物からなる電子輸送物質をポリ−N−ヒ8
ニルカルA”ソ8−ルとの錯体を直接に塗布するか、あ
るいは混合物を樹脂パイングーの溶液中に分散させ、こ
れを塗布し電荷移動層を形成する。
Suitable materials include amorphous carbon (hereinafter referred to as a-C:
Amorphous silicon (hereinafter referred to as a-5l:H), a compound of amorphous silicon, carbon, nitrogen, and oxygen (hereinafter referred to as a SI C%a SI 1-XNXsl)
-x
7-dolinitro 9-fluorenone, 2.4.5.7-
Tetranitro-9-fluorenone, 2-nitrobenz8
thiophene, 2,4.8-)linitrothioxanthone,
Poly-N-H8
The complex with Nilcal A" Sol 8-ol is applied directly, or the mixture is dispersed in a solution of resin paint and applied to form a charge transport layer.

表面保護層には、耐熱性に優れたa−C:Hla−S 
I   C、a−S 1l−XNX%a−311−。
The surface protective layer is made of a-C:Hla-S, which has excellent heat resistance.
I C,a-S 1l-XNX%a-311-.

1−x   x O等を主成分とする非晶質無機化合物が好適である。1-x x An amorphous inorganic compound containing O or the like as a main component is suitable.

本発明に用いる静電記録媒体において、スイッチング素
子層の膜厚は、0.5〜5μm好適には1〜3μm、電
荷移動層の膜厚は、5〜50μm好適には10〜25μ
m、表面保護層の膜厚は、0.01〜1μm好適には0
.1〜0.3μmが望ましい。
In the electrostatic recording medium used in the present invention, the thickness of the switching element layer is 0.5 to 5 μm, preferably 1 to 3 μm, and the thickness of the charge transfer layer is 5 to 50 μm, preferably 10 to 25 μm.
m, the thickness of the surface protective layer is 0.01 to 1 μm, preferably 0
.. A thickness of 1 to 0.3 μm is desirable.

また、導電性支持体と電荷移動層との間に、電荷注入を
阻止する目的で、あるいは導電性支持体との密着性を向
上させる目的で、中間層を設けても良い。
Further, an intermediate layer may be provided between the conductive support and the charge transfer layer for the purpose of blocking charge injection or improving the adhesion to the conductive support.

中間層としては上記の目的で、Al2O3、BaO1B
aOBe01Bi203、Cab、Ce2ゝ 02゛002°3% L a 2°3’ Dy2.’3
’ Lu2°3゛Cr2O3、Cub、Cu2O,Fe
d、PbO。
As the intermediate layer, for the above purpose, Al2O3, BaO1B
aOBe01Bi203, Cab, Ce2ゝ02゛002°3% L a 2°3' Dy2. '3
' Lu2°3゛Cr2O3, Cub, Cu2O, Fe
d, PbO.

MgO5SrO1Ta203、ThO2、Z r O2
、HfO2、TlO2、TIO,5102、G e 0
2.510%Ge01等の金属酸化物、T I N 、
 A IN%SnN、NbN%TaN、GaN、等の金
属窒化物、WC,SnC,T Ic、等の金属炭化物、
S Ic、S IN、GeC,GeN、BC,BN等の
絶縁物、あるいは、ポリエチレン、ポリカーボネート、
ポリウレタン、ポリパラキシレン、シリコン樹脂、ポリ
イミド等の有機化合物が使用される。
MgO5SrO1Ta203, ThO2, Z r O2
, HfO2, TlO2, TIO, 5102, G e 0
2. Metal oxides such as 510% Ge01, T I N ,
Metal nitrides such as A IN% SnN, NbN% TaN, GaN, metal carbides such as WC, SnC, T Ic, etc.
Insulators such as S Ic, S IN, GeC, GeN, BC, BN, or polyethylene, polycarbonate,
Organic compounds such as polyurethane, polyparaxylene, silicone resin, and polyimide are used.

印字手段としては、高導電状態から低導電状態に復帰さ
せるための加熱手段を必要とする。加熱温度は、50〜
150℃であり、第3図のようにサーマルヘッド5を用
いることが出来るが、それ以外にもレーザー光等による
加熱でも印字できる。
The printing means requires heating means to return the high conductivity state to the low conductivity state. The heating temperature is 50~
The temperature is 150° C., and a thermal head 5 as shown in FIG. 3 can be used, but printing can also be performed by heating with a laser beam or the like.

電荷移動層である非晶質無機化合物を形成する手段とし
てプラズマCVD法を使用した場合、a−C:Hを形成
するには原料ガスとして、CH4゜C2H4”C2H6
°C2H2゛C3H8?C6H6゛などのガスが使用可
能であり、a  S l 1−XCX−a−5I   
N、あるいはa  S l □−x OXを形成する−
x  x 場合には、SIH512H6,513H8、S14ゝ F   5ICI   5IHF   5IH2F2、
S14ゝ        4ゝ        3ゝH
F、5IHCI   5IHCI   5IH3C13
3’22ゝ 等の51原子の原料ガスを用いたプラズマCVD法が用
いられる。
When a plasma CVD method is used as a means to form an amorphous inorganic compound that is a charge transfer layer, CH4°C2H4''C2H6 is used as a raw material gas to form a-C:H.
°C2H2゛C3H8? Gases such as C6H6゛ can be used, and a S l 1-XCX-a-5I
N, or form a S l □−x OX−
In the case of x x, SIH512H6, 513H8, S14ゝF 5ICI 5IHF 5IH2F2,
S14ゝ 4ゝ 3ゝH
F, 5IHCI 5IHCI 5IH3C13
A plasma CVD method using a raw material gas of 51 atoms such as 3'22'' is used.

または多結晶シリコンをターゲットとし、ArとH(さ
らにF2又はC12を混合しても良い)の混合ガス中で
の反応性スパッタ法が用いられる。
Alternatively, a reactive sputtering method using polycrystalline silicon as a target in a mixed gas of Ar and H (F2 or C12 may also be mixed) is used.

また、a  S I 1−yCy (” ’ X ) 
(0< y < 1 )、a  S l □−yOy(
” H: X ) (0<y<1)、あるいはa  S
 l 1−、Ny (’ H’ X ) (0< y 
< 1 )の作成には、更に炭素源として、CH4、C
2H6,C3H8,C4H10”2H4”3H6”4H
8”2H2”3H4’CHCH等の炭化水素、CH3F
、、CH346’66ゝ CI、CH1%C2H5C11C2H5Br1等のハロ
ゲン化アリル、CClF3.CF4、CHF3゜C2F
6,03F8等のフロンガス、Ca H6m F m(
m=1〜6)の弗化ベンゼン等のC原子の原料ガスをプ
ラズマCVD法に用いるシリコン原料ガスと混合して用
いる。あるいは、反応性スパッタ法にはAr等のスパッ
タガスと混合して用いる。また、酸素源としてはOCo
、Co2.No、N2′ 0等、また、窒素源としてはN2、NH3、NO等を混
合して用いる。あるいはこれらの膜中に、不純物を添加
することにより伝導性を制御し、所望の電荷移動特性を
得ることができる。p型伝導性を与えるp型不純物とし
ては、周期律表第m族すに属するB、AI、Ga、In
等があり、好適にはB+AI、Gaが用いられ、n型伝
導性を与えるn型不純物としては、周期律表第■族すに
属するN、P、As%sb等が有り、好適にはP。
Also, a SI 1-yCy (”'X)
(0<y<1), a S l □−yOy(
"H: X) (0<y<1), or a S
l 1-, Ny ('H'X) (0< y
<1) In addition, CH4, C
2H6, C3H8, C4H10"2H4"3H6"4H
Hydrocarbons such as 8"2H2"3H4'CHCH, CH3F
, , CH346'66ゝCI, CH1%C2H5C11C2H5Br1, etc., allyl halides, CClF3. CF4, CHF3゜C2F
Freon gas such as 6,03F8, Ca H6m F m (
A raw material gas of C atoms such as fluorinated benzene (m=1 to 6) is used by mixing it with a silicon raw material gas used in the plasma CVD method. Alternatively, in the reactive sputtering method, it is used in combination with a sputtering gas such as Ar. In addition, as an oxygen source, OCo
, Co2. No, N2' 0, etc., and as a nitrogen source, a mixture of N2, NH3, NO, etc. is used. Alternatively, conductivity can be controlled by adding impurities to these films to obtain desired charge transfer characteristics. Examples of p-type impurities that provide p-type conductivity include B, AI, Ga, and In, which belong to group m of the periodic table.
B+AI, Ga are preferably used, and as n-type impurities that provide n-type conductivity, there are N, P, As%sb, etc. belonging to Group Ⅰ of the periodic table, and P is preferably used. .

Asが用いられる。電子伝導性をよくするにはP、As
が好適である。
As is used. P, As to improve electronic conductivity
is suitable.

n型不純物の場合、N   N H3、N0%N20.
2ゝ NOPHPHPHI%PF3、PF5.2ゝ  3′2
4ゝ  4 PCI   PCI   PBr3.PBr3、PI3
.3′5′ A s HA s F   A s CI   A s
 B r 3、sb3ゝ   3′3′ HSbF   SBF   5bCI3.5bC153
ゝ   3ゝ   5ゝ 等のガスを、あるいはこれらのガス’i: H2HHe
 sArで希釈したガスを、プラズマCvD法では、そ
れぞれの膜形成時において、使用する上記のC原子、5
1!子等の原料ガスと混合して用いれば良い、あるいは
、反応性スパッタ法にはAr等のスパッタガスと混合し
て用いる。
In the case of n-type impurities, N N H3, N0%N20.
2ゝNOPHPHPHHI%PF3, PF5.2ゝ 3'2
4ゝ 4 PCI PCI PBr3. PBr3, PI3
.. 3'5' A s HA s FA s CI A s
B r 3, sb3ゝ 3'3' HSbF SBF 5bCI3.5bC153
Gases such as ゝ 3ゝ 5ゝ, or these gases'i: H2HHe
In the plasma CVD method, gas diluted with sAr is used to form the above C atoms, 5
1! It may be used by mixing with a raw material gas such as carbon, or in the case of reactive sputtering, it may be used by mixing with a sputtering gas such as Ar.

以下実施例について述べる。Examples will be described below.

実施例1 アルミニウムドラムを、長さ45cm、内’%116c
mφの円筒型の放電電極を有する容量結合方式プラズマ
CVD装置内に配置し9反応容器内@ 5 X 1O−
6Torr以下に排気後、アルミニウムドラム基板ホル
ダを250 N200℃に加熱した− C2H2を35
0〜600scamを導入し、圧力を0.2〜1 、0
Torrに調整した後、高周波電力100〜250Wで
a−C:H層を15〜20 μm形成した。
Example 1 An aluminum drum was made with a length of 45 cm and an inner diameter of 116 cm.
Arranged in a capacitively coupled plasma CVD apparatus with a cylindrical discharge electrode of mφ in 9 reaction vessels @ 5 x 1O-
After evacuation to 6 Torr or less, the aluminum drum substrate holder was heated to 250 N200°C - 35 C2H2
Introducing 0-600scam and increasing the pressure to 0.2-1,0
After adjusting to Torr, a 15 to 20 μm thick a-C:H layer was formed using high frequency power of 100 to 250 W.

その後、1度取り出し以下の手順によりスイッチング素
子層を形成した。
Thereafter, a switching element layer was formed by taking it out once and following the steps below.

ボールミルにより粉砕したCu・テトラシアノキノジメ
タン(Cu−TCNQ)錯体5重量部を、ポリアクリレ
ート樹脂10重量部、ポリエチレングリコール0.5重
量部、クロロホルム90重量部の組成からなる溶液とを
混合し、20分超音波分散した後、塗布、乾燥した。膜
厚は1.5μmであった。
5 parts by weight of Cu-tetracyanoquinodimethane (Cu-TCNQ) complex pulverized by a ball mill was mixed with a solution consisting of 10 parts by weight of polyacrylate resin, 0.5 parts by weight of polyethylene glycol, and 90 parts by weight of chloroform. After 20 minutes of ultrasonic dispersion, it was applied and dried. The film thickness was 1.5 μm.

更に、上記のCVD装置にて5IH4を10〜30sC
CIl、C2H4を20〜40secm導入し、圧力0
.2〜1.0TOrr+高周波電力50〜150WでS
 I 1−XCX” H(0<x〈1)を表面被覆層と
して基板加熱温度100〜150℃にて0.28〜0.
3μm形成し静電記録媒体を作成した。
Furthermore, 5IH4 was heated at 10 to 30 sC using the above CVD equipment.
CIl, C2H4 was introduced for 20 to 40 sec, and the pressure was 0.
.. S at 2-1.0 TOrr + high frequency power 50-150W
I1-XCX''H (0<x<1) as a surface coating layer at a substrate heating temperature of 100 to 150°C and a heating temperature of 0.28 to 0.
A thickness of 3 μm was formed to prepare an electrostatic recording medium.

このようにして得られた静電記録媒体を、コロトロン帯
電器を用いてa−C:Hのみでは一1000Vの電位と
なるようなコロナ電位で帯電処理を行った。この時、ス
イッチング素子層には2v以上の電位が印加され、高導
電状態に転移するため実際には〜−100V程度の残留
電位のみであった。
The electrostatic recording medium thus obtained was charged using a corotron charger at a corona potential such that aC:H alone had a potential of -1000V. At this time, a potential of 2 V or more was applied to the switching element layer, and the layer transitioned to a highly conductive state, so in reality, only a residual potential of about -100 V was present.

次に、サーマルヘッドを用いて印字した。その後、再度
スコロトロン帯電器を用いて、表面電位が一600Vと
なるコロナ電位にて帯電処理を行った。サーマルヘッド
により低導電状態に復帰した場所のみが、−600Vの
電位に帯電していた。
Next, printing was performed using a thermal head. Thereafter, charging treatment was performed again using the Scorotron charger at a corona potential such that the surface potential was 1600V. Only the locations that had been returned to a low conductivity state by the thermal head were charged to a potential of -600V.

この状態の静電記録媒体を2成分現像装置を用いて現像
を行い、記録紙に転写後、加熱定着を行った。
The electrostatic recording medium in this state was developed using a two-component developing device, transferred to recording paper, and then heat-fixed.

その後、AC除電、クリーニングを経て、再度上記の処
理を繰り返した。このような繰り返し使用においても、
残留電位の変化は極めて少なく、またキズもつきに<<
8O万枚以上の使用にも耐える。
Thereafter, after AC static elimination and cleaning, the above process was repeated again. Even in such repeated use,
There is very little change in residual potential, and there are no scratches.
Can withstand use of over 80,000 sheets.

実施例2 スイッチング素子層として、ポリビニルカルバゾール1
0重量部にテトラヒドロフラン90重量部を加えたPV
K溶液に、2,4,5.7−テトラニトロ−9−フルオ
レノン1重量部を加えたPVK−TNF錯体溶液を、超
音波分散器で十分溶解させた後、アルミニウムドラム基
板上に乾燥後の膜厚が20μmとなるように塗布し、乾
燥させた。
Example 2 Polyvinylcarbazole 1 as a switching element layer
PV with 90 parts by weight of tetrahydrofuran added to 0 parts by weight
A PVK-TNF complex solution prepared by adding 1 part by weight of 2,4,5.7-tetranitro-9-fluorenone to a K solution was sufficiently dissolved using an ultrasonic disperser, and then a dried film was placed on an aluminum drum substrate. It was applied to a thickness of 20 μm and dried.

次に、実施例1と同様に、スイッチング素子層を2μm
形成した。
Next, as in Example 1, the switching element layer was formed to a thickness of 2 μm.
Formed.

表面保護層として、反応性スパッタ法にて硬質のカーボ
ン股を0.1μm形成し、静電記録媒体とした。
As a surface protective layer, a hard carbon layer having a thickness of 0.1 μm was formed using a reactive sputtering method to prepare an electrostatic recording medium.

このようにして得られた静電記録媒体を、コロトロン帯
電器を用いてPVK−TNFのみでは一800Vの電位
となるようなコロナ電位で帯電処理を行った。この時、
スイッチング素子層には2v以上の電位が印加され、高
導電状態に転移するため実際には〜−200V程度の残
留電位のみであった。
The electrostatic recording medium thus obtained was charged using a corotron charger at a corona potential such that PVK-TNF alone had a potential of -800V. At this time,
Since a potential of 2 V or more was applied to the switching element layer and the layer transitioned to a highly conductive state, there was actually only a residual potential of about -200 V.

次に、サーマルヘッドを用いて印字する。その後、再度
スコロトロン帯電器を用いて表面電位が一500■とな
るコロナ電位にて帯電処理を行った。
Next, printing is performed using a thermal head. Thereafter, charging treatment was performed again using a Scorotron charger at a corona potential such that the surface potential was 1,500 μm.

サーマルヘッドにより低導電8態に復帰した場所のみが
、−500Vの電位に帯電していた。
Only the locations that had returned to the low conductivity 8 state by the thermal head were charged to a potential of -500V.

この状態の静電記録媒体を2成分現像装置を用いて現像
を行い、記録紙に転写後、加熱定着を行った。
The electrostatic recording medium in this state was developed using a two-component developing device, transferred to recording paper, and then heat-fixed.

その後、AC除電、クリーニングを経て、再度上記の処
理を繰り返した。このような繰り返し使用においても、
8万枚の使用にも耐える。
Thereafter, after AC static elimination and cleaning, the above process was repeated again. Even in such repeated use,
Can withstand use of 80,000 sheets.

発明の効果 本発明によれば、導電性支持体上に、高電界で高導電状
態となり且つ高導電状態を維持するスイッチング素子層
と少なくとも電荷輸送層あるいは光導電層とを備えた静
電記録体を用い、前記スイッチング素子に高電界を印加
して高導電状態とする工程と、加熱により前記高導電状
態を局部的に解除して2次元像を形成する工程と、帯電
処理により前記2次元像から電荷密度の異なる潜像を形
成する工程とを含むことにより、従来になく小型で安価
な静電記録プリンタを提供することが出来る。
Effects of the Invention According to the present invention, there is provided an electrostatic recording material comprising, on a conductive support, a switching element layer that becomes highly conductive in a high electric field and maintains a highly conductive state, and at least a charge transport layer or a photoconductive layer. applying a high electric field to the switching element to bring it into a highly conductive state; locally canceling the high conductivity state by heating to form a two-dimensional image; and charging the switching element to form a two-dimensional image. By including the step of forming latent images having different charge densities from the above, it is possible to provide an electrostatic recording printer that is smaller and cheaper than ever before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における静電記録方式の記録
プロセスを示す断面図、第2図は本発明の一実施例にお
ける静電記録媒体の断面図、第3図は本発明に用いたス
イッチング素子層の■−I特性とスイッチング現象を示
すグラフである。 1−m−支持体、2−m−電荷移動層、3−−−スイッ
チング素子層、4−m−表面保護層、5−m−サーマル
ヘッド。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 第2図 第3図
FIG. 1 is a cross-sectional view showing the recording process of an electrostatic recording method in an embodiment of the present invention, FIG. 2 is a cross-sectional view of an electrostatic recording medium in an embodiment of the present invention, and FIG. 3 is a graph showing the -I characteristics and switching phenomenon of the switching element layer. 1-m-support, 2-m-charge transfer layer, 3--switching element layer, 4-m-surface protection layer, 5-m-thermal head. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)導電性支持体上に高電界で高導電状態となり且つ
高導電状態を維持するスイッチング素子層と少なくとも
電荷輸送層あるいは光導電層とを備えた静電記録体を用
い、前記スイッチング素子に高電界を印加して高導電状
態とする工程と、加熱により前記高導電状態を局部的に
解除して2次元像を形成する工程と、帯電処理により前
記2次元像から電荷密度の異なる潜像を形成する工程と
を含む静電記録方式。
(1) Using an electrostatic recording material having a switching element layer that becomes highly conductive and maintains a highly conductive state in a high electric field and at least a charge transport layer or a photoconductive layer on a conductive support, A step of applying a high electric field to create a highly conductive state, a step of locally canceling the high conductive state by heating to form a two-dimensional image, and a latent image with a different charge density from the two-dimensional image by charging treatment. An electrostatic recording method including a step of forming a.
(2)加熱の手段として、サーマルヘッドを用いること
を特徴とする特許請求の範囲第1項記載の静電記録方式
(2) The electrostatic recording method according to claim 1, characterized in that a thermal head is used as the heating means.
JP26221786A 1986-11-04 1986-11-04 Electrostatic recording method Expired - Lifetime JP2677988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26221786A JP2677988B2 (en) 1986-11-04 1986-11-04 Electrostatic recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26221786A JP2677988B2 (en) 1986-11-04 1986-11-04 Electrostatic recording method

Publications (2)

Publication Number Publication Date
JPS63116171A true JPS63116171A (en) 1988-05-20
JP2677988B2 JP2677988B2 (en) 1997-11-17

Family

ID=17372703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26221786A Expired - Lifetime JP2677988B2 (en) 1986-11-04 1986-11-04 Electrostatic recording method

Country Status (1)

Country Link
JP (1) JP2677988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454869A1 (en) * 1989-11-17 1991-11-06 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording/reproducing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454869A1 (en) * 1989-11-17 1991-11-06 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording/reproducing method
EP0454869A4 (en) * 1989-11-17 1993-02-24 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording/reproducing method

Also Published As

Publication number Publication date
JP2677988B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US4634648A (en) Electrophotographic imaging members with amorphous carbon
US4760005A (en) Amorphous silicon imaging members with barrier layers
US4418132A (en) Member for electrostatic photocopying with Si3 N4-x (0&lt;x&lt;4)
EP0219982B1 (en) Overcoated amorphous silicon imaging members
EP0217623B1 (en) Overcoated amorphous silicon imaging members
US4613556A (en) Heterogeneous electrophotographic imaging members of amorphous silicon and silicon oxide
JPS63116171A (en) Electrostatic recording system
JPS6063541A (en) Amorphous silicon photosensitive body
US4853309A (en) Photoreceptor for electrophotography with a-Si layers having a gradient concentration of doped atoms and sandwiching the photoconductive layer therebetween
US4698288A (en) Electrophotographic imaging members having a ground plane of hydrogenated amorphous silicon
US5464721A (en) Amorphous silicon photoreceptor and electrophotographic process using the same
JPH01179166A (en) Bipolarly electrified electrophotographic sensitive body
JPS5624356A (en) Electrophotographic receptor
JP2929862B2 (en) Electrophotographic photoreceptor and electrophotographic method
JPS5646237A (en) Electrophotographic receptor
JPS632054A (en) Electrophotographic sensitive body and electrophotography
JPS61275852A (en) Electrophotographic sensitive body
JPH0682216B2 (en) Photoconductive member
JPS62178974A (en) Electrophotographic sensitive body
JPS63116161A (en) Laminated photosensitive body
JPS60254044A (en) Electrophotographic sensitive body
JPS61275854A (en) Electrophotographic sensitive body
JPS60198547A (en) Electrophotographic sensitive body
JP2002258500A (en) Electrophotographic receptor
JPS63250653A (en) Electrophotographic sensitive body