JPS63115659A - Roll for continuous casting - Google Patents

Roll for continuous casting

Info

Publication number
JPS63115659A
JPS63115659A JP26110086A JP26110086A JPS63115659A JP S63115659 A JPS63115659 A JP S63115659A JP 26110086 A JP26110086 A JP 26110086A JP 26110086 A JP26110086 A JP 26110086A JP S63115659 A JPS63115659 A JP S63115659A
Authority
JP
Japan
Prior art keywords
roll
core material
corrosion resistance
continuous casting
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26110086A
Other languages
Japanese (ja)
Inventor
Kenichi Wada
健一 和田
Kazuo Fujiwara
藤原 和雄
Yasushi Torii
康司 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26110086A priority Critical patent/JPS63115659A/en
Publication of JPS63115659A publication Critical patent/JPS63115659A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1287Rolls; Lubricating, cooling or heating rolls while in use

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a roll for continuous casting provided with both of corrosion resistance and heat-cracking resistance by coating a material having excellent thermal conductivity as core material and a material having the coefficient of thermal expansion larger than that of the core material by the specific ratio and large corrosion resistance at the specific thickness on the surface of the roll. CONSTITUTION:One kind of steel selected among ferritic stainless, martensitic stainless, low alloy steel or carbon steel having excellent thermal conductivity is used as the core material 11 and on the other hand, one kind of material is selected between nickel-base alloy or austenitic stainless having the coefficient of thermal expansion larger than that of core material 11 by 5-30% and large corrosion resistance as the surface material 12 and coated by 0.1-5 mm thickness. Therefore, the heatcracking resistance is improved by using the difference of thermal expansions between both materials and at the same time, the corrosion resistance is satisfied.

Description

【発明の詳細な説明】 (産業上の利用分野) 厳しい腐食環境にある連鋳装置の鋳型直下で使用される
1鋳用ロールに関するしのである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) This paper relates to a single casting roll used directly below the mold of a continuous casting machine in a severely corrosive environment.

(従来技術とその問題点) 連続鋳造法では、溶鋼の酸化防止などによる品質保持の
ため、また鋳造時に鋳型の潤滑性を付与4゛るため、激
しい腐食性物質を含んだフラノゲスを使用するとともに
、さらに鋳片を冷却するため、水や水蒸気などをスプレ
ーしている。このため連鋳装置は激しく腐食して、部品
交換のための操業停止による機会損失あるいはメインテ
ナンスに費用がかかるという問題がある。とくに鋳型下
の装置において腐食が激しい。
(Prior art and its problems) In the continuous casting method, in order to maintain quality by preventing oxidation of molten steel, and to provide lubricity to the mold during casting, flano gas containing highly corrosive substances is used. Furthermore, water or steam is sprayed to cool the slab. As a result, the continuous casting equipment is severely corroded, resulting in lost opportunities due to shutdown of operations for parts replacement, and high maintenance costs. Particularly severe corrosion occurs in the equipment under the mold.

他方、連鋳装置か短寿命となる原因は、ロール表面が腐
食することの他に高温の鋳片と接触し、水冷されること
によるヒートクラックにもある。
On the other hand, the cause of the short life of continuous casting equipment is not only corrosion of the roll surface but also heat cracks caused by contact with hot slabs and water cooling.

ちなみに、φ380x2140のロールがスプレーなし
で1000°Cの鋳片に接触するときは、第2図(a)
に示すようなロール内部の温度分布を示し、最高温度は
850℃となる。また、φ160×310のロールがス
プレーなしで1220°Cの鋳片に接触するときは、第
2図(b)に示すロール内部の温度分布を示し最高温度
900°Cとなる。
By the way, when a roll of φ380 x 2140 comes into contact with a slab at 1000°C without spraying, as shown in Figure 2 (a)
The temperature distribution inside the roll is as shown in the figure, and the maximum temperature is 850°C. Further, when a roll of φ160×310 comes into contact with a slab at 1220°C without spraying, the temperature distribution inside the roll is shown in FIG. 2(b), and the maximum temperature is 900°C.

他方、φ250x2140のロール力月120℃の鋳片
に接触する場合で、スプレーすると第2図(c)に示す
ロール内部の温度分布を示し、最高温度は550°Cと
なる。したがって、単に、耐食性のみを改善しても寿命
を延ばすことができるとは限らず、耐ヒートクラツク性
も同時に改善することが必要である。
On the other hand, when a roll of diameter 250 x 2140 comes into contact with a slab at a temperature of 120°C, when sprayed, the temperature distribution inside the roll is shown in Fig. 2(c), and the maximum temperature is 550°C. Therefore, it is not always possible to extend the service life simply by improving corrosion resistance alone; it is also necessary to improve heat crack resistance at the same time.

ところで、耐ヒートクラツク性の改善にはステンレス以
上の耐熱合金が効果的とされているが耐食性も兼ね備え
るためには、かなり高合金とする必要がある。ところか
熱伝導性が低合金鋼などに比べて低いため鋳片を冷却す
る効果が減少するとともに表面温度が高くなって水冷に
よる温度変化によってヒートクラックを生じやすくなっ
て、寿命はやや延長できる程度の効果しか期待できない
By the way, it is said that a heat-resistant alloy higher than stainless steel is effective for improving heat crack resistance, but in order to have corrosion resistance as well, it is necessary to use a fairly high alloy. However, because its thermal conductivity is lower than that of low-alloy steel, the effectiveness of cooling the slab is reduced, and the surface temperature increases, making it more likely to cause heat cracks due to temperature changes due to water cooling, so its life can only be slightly extended. We can only expect the effects of

(発明の課題) 本発明は、連鋳装置の腐食現象を解明し、耐食性に優れ
ろと共に耐ヒートクラツク性をも改博した連鋳用ロール
を提供することを課題とする。
(Objectives of the Invention) An object of the present invention is to elucidate the corrosion phenomenon of continuous casting equipment, and to provide a roll for continuous casting that has excellent corrosion resistance and improved heat crack resistance.

(課題解決のための手段) 本発明は、フェライトあるいはマルテンサイト一体構造
型ロールでは、耐食性および耐ヒートクラツク性が不足
する一方、オーステナイト一体構造型ロールでは材料強
度および耐ヒートクラツク性がないことに鑑み、連鋳用
ロールとして要求される耐食性、耐ヒートクラツク性を
同時に満たずため、心材としてフェライト系材料を使用
しその表面にオーステナイト系材料を被覆し、温度変化
による材料間の熱膨張差を利用して、オーステナイト層
に圧縮応力を生じさせて、水冷あるいはミスト冷却によ
るヒートクラックに対する抵抗性を向上させるのが得策
であることに着目して完成したもので、「ロール心材と
して熱伝導性の優れた材料であるフェライトあるいはマ
ルテンサイト系ステンレス、低合金鋼又は炭素鋼から選
ばれる一種を使用し、その表面材として心材よりも熱膨
張率が5〜30%大きいニッケル基合金またはオーステ
ナイト系ステンレスの一種を選択使用し、0゜1mm〜
5mmの厚さで被覆したことを特徴とする耐ヒートクラ
ツク性と耐食性に優れた連鋳用ロール」を要旨とする。
(Means for Solving the Problems) The present invention has been developed in view of the fact that ferrite or martensite integral structure rolls lack corrosion resistance and heat crack resistance, while austenite integral structure rolls lack material strength and heat crack resistance. In order to simultaneously satisfy the corrosion resistance and heat crack resistance required for continuous casting rolls, we used a ferritic material as the core material and coated the surface with an austenitic material, taking advantage of the difference in thermal expansion between the materials due to temperature changes. It was developed based on the idea that it would be a good idea to create compressive stress in the austenite layer to improve its resistance to heat cracking caused by water or mist cooling. A type selected from ferritic or martensitic stainless steel, low alloy steel, or carbon steel is used, and a nickel-based alloy or austenitic stainless steel with a thermal expansion coefficient 5 to 30% larger than that of the core material is selected as the surface material. Used, 0゜1mm~
``A roll for continuous casting with excellent heat crack resistance and corrosion resistance, characterized by being coated with a thickness of 5 mm.''

本発明において、ロール心材としては、ロールとして要
求される機械的性質、熱的性質および経済性から熱伝導
性に優れたフェライト系材料とする必要があり、ロール
用フェライト系ステンレス、マルテンサイト系ステンレ
ス、低合金鋼あるいは炭素鋼から選ばれてよい。
In the present invention, the roll core material must be a ferritic material with excellent thermal conductivity due to the mechanical properties, thermal properties, and economic efficiency required for the roll, and ferritic stainless steel, martensitic stainless steel for rolls are , low alloy steel or carbon steel.

他方、ロール表面材としては、耐食性の大きい材料であ
るオーステナイト系材料、ニッケル基合金またはオース
テナイト系ステンレスの一種を使用ずろのがよい。ただ
、心材と表面材の熱膨張差を利用する必要上、フェライ
トあるいはマルテンサイトステンレスをロール心材とす
る場合はニッケル基合金を他方、低合金鋼あるいは炭素
鋼をロール心材とする場合にはオーステナイト系ステン
レス、例えば、316ステンレス、304ステンレスを
被覆ケるのが良い。複台に対し、ニッケル基合金を被覆
しても熱膨張率にほとんど差がないためヒートクラック
に対する改4g効果が小さいためである。なお、被覆材
と心付の熱膨張率に5〜30%差を与えることにしたの
は、被覆材にヒートクラック抵抗に有効な圧i11応力
を生じさせるためである。
On the other hand, as the roll surface material, it is preferable to use one type of austenitic material, nickel-based alloy, or austenitic stainless steel, which are highly corrosion resistant materials. However, because it is necessary to utilize the difference in thermal expansion between the core material and the surface material, nickel-based alloys are used when the roll core material is ferrite or martensitic stainless steel, and austenitic alloys are used when the roll core material is low alloy steel or carbon steel. It is preferable to coat it with stainless steel, such as 316 stainless steel or 304 stainless steel. This is because there is almost no difference in thermal expansion coefficient between two units even if they are coated with a nickel-based alloy, so the effect of modified 4g on heat cracking is small. The reason why it was decided to give a difference of 5 to 30% in the coefficient of thermal expansion between the sheathing material and the core is to generate pressure i11 stress in the sheathing material that is effective for heat crack resistance.

また、本発明は材料間の適度な熱膨張率の差を利用して
、被覆層の高温時における急激な温度変化で発生ずるヒ
ートクラックを防止するものであるから、肢覆厚さは高
温加熱時に必要十分な圧縮応力を生じる程度0.1〜5
mmの範囲がよい。5mm以上の厚さにするとロール心
材と離れ過ぎてしまい熱膨張率の差が有効に機能しなく
なるとともにコストアップにもなる。一方、0.1mm
以下は、小さなキズによって被覆層が破れるおそれがあ
るからである。
In addition, the present invention utilizes the appropriate difference in thermal expansion coefficient between materials to prevent heat cracks that occur due to rapid temperature changes in the coating layer at high temperatures. Occasionally, the degree of generating necessary and sufficient compressive stress is 0.1 to 5.
A range of mm is preferable. If the thickness is 5 mm or more, it will be too far away from the roll core material, and the difference in thermal expansion coefficient will not work effectively, and the cost will increase. On the other hand, 0.1mm
This is because the coating layer may be torn due to small scratches.

(実施例1) 第1図に示す連鋳用160mmロールを次の条件下に製
造し、稼動ヂャーン数とその損傷原因を検討した。
(Example 1) A 160 mm roll for continuous casting shown in FIG. 1 was manufactured under the following conditions, and the number of operating yarns and the cause of damage thereof were investigated.

なお、図面において、(+)は本発明に係る連鋳用ロー
ルで、心材11上に所定被覆厚さの表面材12を被覆し
、両端を軸受(2)、(2)にて支持されている。また
、上記ロール(1)の中心のパイプI3には、ロータリ
ージヨイント(3)から冷却水が供給されるようになっ
ている。
In the drawings, (+) is a continuous casting roll according to the present invention, which has a core material 11 covered with a surface material 12 of a predetermined coating thickness, and both ends of which are supported by bearings (2), (2). There is. Further, cooling water is supplied from the rotary joint (3) to the pipe I3 at the center of the roll (1).

心材:13Cr系ステンレス 被覆材:ニッケル基合金(インコネル625相当)被覆
方法:溶接肉盛+研削加二 被覆厚さ:4mm 熱膨張率の比:1.+62 (実施例2) 心材:低合金鋼、被覆材:316ステンレスとする以外
は実施例Iと同様にして連鋳用160mmロールを製造
し、試験した。
Core material: 13Cr stainless steel Coating material: Nickel-based alloy (equivalent to Inconel 625) Coating method: Welding + grinding Coating thickness: 4 mm Ratio of coefficient of thermal expansion: 1. +62 (Example 2) A 160 mm roll for continuous casting was manufactured and tested in the same manner as in Example I except that the core material was low alloy steel and the coating material was 316 stainless steel.

(実施例3) 心材:炭素鋼、被覆材:304ステンレスとする以外は
実施例1と同様にして連鋳用160mmロールを製造し
、試験した。
(Example 3) A 160 mm roll for continuous casting was manufactured and tested in the same manner as in Example 1 except that the core material was carbon steel and the coating material was 304 stainless steel.

(比較例1〜4) 13crステンレス、オーステナイト系ステンレス、炭
素鋼、ニッケル基合金を使用して160mm一体槽造型
ロールを製造し、実施例と同様に試験した。
(Comparative Examples 1 to 4) A 160 mm integral tank forming roll was manufactured using 13cr stainless steel, austenitic stainless steel, carbon steel, and nickel-based alloy, and tested in the same manner as in the examples.

結果は次の通りである。The results are as follows.

実施例1の結果に括づいて、本発明に係るロールの熱歪
を試算すれば、次の通りである。
Based on the results of Example 1, the thermal strain of the roll according to the present invention is estimated as follows.

(本発明ロールの場合) 前提条件; 心材の線膨張係数−9,9x 10−’/に被覆材の線
膨張係数−11,5xlO−’/に心材の熱伝導率−2
5,2W/(m・10被覆材の熱伝導率= 15 、 
 I W/(m−K)ロール径−160mm 通常稼υj時のロール表面温度=50〜560℃スプレ
ー水によるロール表面の瞬間的温度変化=210℃ ロール表面すなわち肢覆オ表面の熱歪を考えると下記の
ようになる。
(In the case of the roll of the present invention) Preconditions: Linear expansion coefficient of core material -9,9x 10-'/coating material linear expansion coefficient -11,5xlO-'/core material thermal conductivity -2
5,2W/(m・10 Thermal conductivity of coating material = 15,
I W/(m-K) Roll diameter - 160 mm Roll surface temperature during normal operation υj = 50 to 560°C Instantaneous temperature change on roll surface due to spray water = 210°C Consider thermal distortion of the roll surface, that is, the limb covering surface and as below.

熱歪=0.0000115x210=0.002415
すなわち、歪が0.2%を越えているため塑性変形を生
じることになる。
Thermal strain = 0.0000115x210 = 0.002415
That is, since the strain exceeds 0.2%, plastic deformation will occur.

しかしながら、心材との接合部では、 被覆厚さを3mmとJ−ると、その部分の温度変化は1
00〜500°Cてあり、そのときの被覆材の熱歪は、 被覆材の熱歪= 0.0000115X 210 X 
(500−100)/(56G−50)=0.0018
941 一方、心材の熱歪は、 心材の熱歪= 0.0000099 x 210(50
0−100)/(560−50)=0.0016305
となり、いずれら弾性限度内にある。
However, at the joint with the core material, if the coating thickness is 3 mm, the temperature change at that part is 1.
00 to 500°C, and the thermal strain of the covering material at that time is: Thermal strain of the covering material = 0.0000115X 210
(500-100)/(56G-50)=0.0018
941 On the other hand, the thermal strain of the core material is: Thermal strain of the core material = 0.0000099 x 210 (50
0-100)/(560-50)=0.0016305
Both are within the elastic limit.

また、相互間には、 心材の体積膨張による円周の変化 = (160/2−3) X 3.14 X O,00
00099X 2 X (500−100)=1.91
488 被覆材内面側の円周の変化 =(160/2−3)X3.14X0.00001+5
X2X(500−100) = 2.22432 したがって、500℃になったとき (483,56+ 2.22)/(483,56+ 1
.91)= 1.000640.064%の歪を生じる
Also, between them, the change in circumference due to volume expansion of the core material = (160/2-3) X 3.14 X O,00
00099X 2 X (500-100) = 1.91
488 Change in circumference on inner side of coating material = (160/2-3)X3.14X0.00001+5
X2X(500-100) = 2.22432 Therefore, when it reaches 500℃, (483,56+2.22)/(483,56+1
.. 91) = 1.000640.064% distortion.

これは、被覆材に対して圧縮応力として作用するため、
最初に求めた値0.002415の歪は、0.0017
75に減少することになる。これが本発明の特徴であり
、耐食性と耐ヒートクラツク性を兼ね備えたロールとな
る。
This acts as a compressive stress on the covering material, so
The distortion of the first value 0.002415 is 0.0017
It will be reduced to 75. This is a feature of the present invention, resulting in a roll that has both corrosion resistance and heat crack resistance.

実際には、被覆材に厚みがあるため接合部から離れるに
従って、この効果は減少するが、パ内市側に圧縮応力が
存在することによって発生してしまったクラック進展を
抑制する効果がある。
In reality, this effect decreases as the distance from the joint increases due to the thickness of the covering material, but it does have the effect of suppressing the propagation of cracks that occur due to the presence of compressive stress on the inner side of the pad.

他方、比較例における場合は次の通りである。On the other hand, the case in the comparative example is as follows.

(比較例1) 13Cr径ステンレス[1−ルの場合 前提条件。(Comparative example 1) 13Cr diameter stainless steel [1-ru case Prerequisites.

線膨張係数−9,9X I O−’/に熱膨張率−25
、2W/ (m−K) ロール径−160mm 通常稼動時のロール表面温度=50〜550’Cスプレ
ー水によるロール表面の瞬間的温度変化=200℃ 熱歪の試算 常温において残留歪のないロールが上記の稼動状態にな
るとき、高温の鋳片と直接接触する表面側の温度上昇が
内面側に比べてはやいため、表面に圧縮応力が発生する
。その場合の最大歪を、熱伝導ゼロのときの瞬間的温度
変化(200°C)として計算すると次のようになる。
Coefficient of linear expansion -9,9X I O-'/Coefficient of thermal expansion -25
, 2W/ (m-K) Roll diameter - 160mm Roll surface temperature during normal operation = 50-550'C Instantaneous temperature change on roll surface due to spray water = 200°C Trial calculation of thermal distortion Roll with no residual distortion at room temperature When the above-mentioned operating condition is reached, compressive stress is generated on the surface because the temperature rise on the surface side, which is in direct contact with the hot slab, is faster than on the inner surface side. The maximum strain in that case is calculated as follows as an instantaneous temperature change (200°C) when there is no heat conduction.

熱歪=0.0000099x200=0.001913
即ち、高温の鋳片に接触するロール表面とその内面の最
近接部には、表面側に圧縮応力が、また内面側には相対
的な引張応力が生じることになる。
Thermal strain = 0.0000099x200 = 0.001913
In other words, compressive stress is generated on the surface side and relative tensile stress is generated on the inner surface side of the roll surface and its inner surface that are in contact with the hot slab at the closest portion thereof.

しかし、そのときの歪は、0.198%すなわち0.2
%耐力の範囲内であり、塑性変形は生じないと考えられ
る。
However, the distortion at that time is 0.198% or 0.2
% proof stress, and no plastic deformation is considered to occur.

また、稼動状態でらスプレー水の冷却によって同様のこ
とか起こり、表面側に引張応力か、内面側に圧縮応力が
生じるが、瞬間的な温度変化は最大200℃と考えられ
るため、そのとき生じる歪は0.2%以下、すな4つら
、塑性変形には至らないと予想される。実際に、13c
r系ステンレスは耐ヒートクラツク性に優れた実用材料
であり、多用されている。しかし、現実には、繰り返し
応力による疲労の問題があるため耐久限かある。
Also, during operation, a similar thing occurs when spray water is cooled, and tensile stress is generated on the surface side or compressive stress is generated on the inner surface side, but the instantaneous temperature change is thought to be up to 200 degrees Celsius, so this occurs at that time. It is expected that the strain will be less than 0.2%, or less than 4%, and will not lead to plastic deformation. Actually, 13c
R-series stainless steel is a practical material with excellent heat crack resistance and is widely used. However, in reality, there is a durability limit due to the problem of fatigue caused by repeated stress.

(比較例2) オーステナイト系ステンレスロールの場合前提条件: 線膨張係数−17,3X I O−”/に熱伝導率−1
6,4W/(m−K) ロール径=160mm 通常稼動時のロール表面温度−50〜570℃スプレー
水によるロール表面の瞬間的温度変化=220℃ 熱歪の試算 比較例1と同様な考え方から試算すると下記のようにな
る。ただし、熱(云導率が小さいためロール表面温度お
よび瞬間的な温度変化は20°C大きいと仮定した。
(Comparative Example 2) In the case of austenitic stainless steel roll Prerequisites: Coefficient of linear expansion -17.3X I O-''/Thermal conductivity -1
6,4W/(m-K) Roll diameter = 160mm Roll surface temperature during normal operation -50 to 570°C Instantaneous temperature change on roll surface due to spray water = 220°C Trial calculation of thermal distortion Based on the same concept as Comparative Example 1 The calculation will be as follows. However, it was assumed that the roll surface temperature and instantaneous temperature change were 20°C larger because the thermal conductivity was small.

熱歪−0,0000173x220=0.003806
すなわち発生ずる歪は、0.38%であり、昇温時及び
冷却時に塑性変形が発生して、ヒートクラJりが発生ず
る。
Thermal strain - 0,0000173x220=0.003806
That is, the generated shear strain is 0.38%, and plastic deformation occurs during heating and cooling, resulting in heat cracking.

(比較例3) 炭素鋼ロールの場合 前提条件。(Comparative example 3) For carbon steel rolls Prerequisites.

線膨張係数−] 1.6xl O−6/に熱伝導率=4
2.8W/(m−K) ロール径=160mm 通常稼動時のロール表面温度−50〜530°Cスプレ
ー水によるロール表面の瞬間的温度変化=180°C 熱歪の試算 比較例1と同様な考え方から試算すると下記のようにな
る。ただし、熱伝導率が大きいためロール表面温度およ
び瞬間的な温度変化は20℃小さいと仮定した。
Linear expansion coefficient -] 1.6xl O-6/ thermal conductivity = 4
2.8W/(m-K) Roll diameter = 160mm Roll surface temperature during normal operation -50 to 530°C Instantaneous temperature change on roll surface due to spray water = 180°C Trial calculation of thermal strain Same as Comparative Example 1 Based on this idea, the calculation is as follows. However, since the thermal conductivity is high, it was assumed that the roll surface temperature and instantaneous temperature change were 20°C smaller.

熱歪−0,0000116x180=0.002088
すなわち発生ずる歪は、0.2%であり、はぼ弾性限度
内にあると言える。
Thermal strain - 0,0000116x180=0.002088
That is, the shear strain generated is 0.2%, which can be said to be within the elastic limit.

たたし、実際には、疲労が発生ずるため、割れを生じる
However, in reality, cracking occurs due to fatigue.

(比較例・1) ニッケル基合金ロールの場合 !17j提条件: 線膨張係数−11,5X10−’/に 熱伝導率−15、1W/(m−K) ロール径=160mm 通常稼動時のロール表面温度−50〜570℃スプレー
水によるロール表面の瞬間的温度変化=220°C 熱歪の試算 比較例1と同様な考え方から試算すると下記のようにな
る。ただし、熱伝導率が小さいためロール表面温度およ
び瞬間的な温度変化は20℃大きいと仮定した。
(Comparative example 1) In case of nickel-based alloy roll! 17j Prerequisites: Linear expansion coefficient -11.5X10-'/thermal conductivity -15, 1W/(m-K) Roll diameter = 160mm Roll surface temperature during normal operation -50~570℃ Roll surface with spray water Instantaneous temperature change = 220°C Trial calculation of thermal strain Using the same concept as Comparative Example 1, the trial calculation is as follows. However, it was assumed that the roll surface temperature and instantaneous temperature change were 20° C. higher due to the lower thermal conductivity.

熱歪=0.0000115x220=0.00253す
なわち発生する歪は、0125%であり、昇温時及び冷
却時に微量の塑性変形が発生して、次第にヒートクラッ
クが発生するようになる。
Thermal strain=0.0000115x220=0.00253, that is, the generated strain is 0.125%, and a small amount of plastic deformation occurs during heating and cooling, and heat cracks gradually occur.

(発明の作用効果) 以上の説明で明らかなように、本発明によれば、連鋳用
ロールとして、熱伝導性の優れたフェライト系材料をロ
ール心材とする一方、その表面を心材よりし熱膨張率が
大きく、かつ耐食性の大きいオーステナイト系材料を使
用して被覆構成するので、両材料の特性を有効利用しつ
つ、両材料間の熱膨張差を利用して耐ヒートクラツク性
を向上させることができる。したがって、連鋳用ロール
として要求される耐食性、耐ヒートクラツク性を同時に
満たすことができ、すこぶる有用性の高いしのである。
(Operations and Effects of the Invention) As is clear from the above explanation, according to the present invention, as a roll for continuous casting, a ferritic material with excellent thermal conductivity is used as the core material of the roll, while the surface is made from the core material and Since the coating is constructed using an austenitic material with a high coefficient of expansion and high corrosion resistance, it is possible to effectively utilize the characteristics of both materials and improve heat crack resistance by utilizing the difference in thermal expansion between the two materials. can. Therefore, it can simultaneously satisfy the corrosion resistance and heat crack resistance required for continuous casting rolls, making it an extremely useful roll.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る連鋳用ロールの一部破断正面図、
第2図(a)〜(c)は従来のロールの内部温度分布を
示すものである。 (+)・・・ロール、(11)・・・心材、(12)・
・・表面材。
FIG. 1 is a partially cutaway front view of a continuous casting roll according to the present invention;
FIGS. 2(a) to 2(c) show the internal temperature distribution of a conventional roll. (+)...Roll, (11)...Heartwood, (12)...
...Surface material.

Claims (1)

【特許請求の範囲】[Claims] (1)ロール心材として、熱伝導性の優れたフェライト
系ステンレス、マルテンサイト系ステンレス、低合金鋼
または炭素鋼から選ばれる一種を使用する一方、その表
面材として心材よりも熱膨張率が5〜30%大きくかつ
耐食性の大きいニッケル基合金またはオーステナイト系
ステンレスの一種を選択し、0.1mm〜5mmの厚さ
で被覆してなることを特徴とする連鋳用ロール。
(1) As the roll core material, one selected from ferritic stainless steel, martensitic stainless steel, low alloy steel, or carbon steel with excellent thermal conductivity is used, while the surface material has a thermal expansion coefficient of 5 to 50% higher than that of the core material. A roll for continuous casting, characterized in that it is coated with a type of nickel-based alloy or austenitic stainless steel that is 30% larger and has higher corrosion resistance and has a thickness of 0.1 mm to 5 mm.
JP26110086A 1986-10-31 1986-10-31 Roll for continuous casting Pending JPS63115659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26110086A JPS63115659A (en) 1986-10-31 1986-10-31 Roll for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26110086A JPS63115659A (en) 1986-10-31 1986-10-31 Roll for continuous casting

Publications (1)

Publication Number Publication Date
JPS63115659A true JPS63115659A (en) 1988-05-20

Family

ID=17357080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26110086A Pending JPS63115659A (en) 1986-10-31 1986-10-31 Roll for continuous casting

Country Status (1)

Country Link
JP (1) JPS63115659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010137A1 (en) * 1994-09-29 1996-04-04 Leading Edge, Incorporated Method of treating brake pads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010137A1 (en) * 1994-09-29 1996-04-04 Leading Edge, Incorporated Method of treating brake pads

Similar Documents

Publication Publication Date Title
CA2393264C (en) Water-cooling jackets for electric arc furnaces
US4086104A (en) Method of preventing oxidation of austenitic stainless steel material in high temperature steam
JPS63115659A (en) Roll for continuous casting
Saha et al. Failure investigation of a final super heater tube in a 140 MW thermal power plant
JP2004174600A (en) High alloy build-up welding roll grooved for continuous casting
JP2010189723A (en) Guide roll device
JP2944904B2 (en) Roll for transporting high-temperature steel
JP3715184B2 (en) Stave cooler and manufacturing method of double pipe used therefor
JP4360971B2 (en) Water-cooled steel pipe structure excellent in high-temperature corrosion resistance, high-temperature wear resistance, dew condensation corrosion resistance and film peeling resistance, and method for producing the same
JPH08193257A (en) Metallic sheet for lining for high temperature atmospheric furnace
US20010037877A1 (en) Device and method for cooling fume intakes
JPH1087072A (en) Abrasion prevention device for bend part of powder transport pipe
CN116240335A (en) Oxygen lance for steelmaking
Kokini et al. Transient thermal load effects on coatings bonded to cylindrical substrates and containing circumferential cracks
RU2085612C1 (en) Coating for protection of a part of stem turbine from corrosion and erosion wear and method of manufacturing thereof
JPS6268666A (en) Roller for which heat resistance is required such as roller for continuous casting
JPS57131998A (en) Sulfuric acid and dew-point corrosion resisting heat exchanger
JPS643487Y2 (en)
JPH04124255A (en) Continuously cast roll excellent in heat crack resistance
JPS6322226A (en) Water cooled roll
Bernasovský Atypical Cases of Welded Structure Failures
RU2158888C2 (en) Heat exchanger
JPH041595A (en) Repairing method for atomic reactor nozzle duplex tube part
Kawahara et al. Advanced Coating Technologies for Aggressive Corrosion Environments in WTE and Power Plants
Boyd Jr et al. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.