JPS63115008A - Magnetic encoder - Google Patents

Magnetic encoder

Info

Publication number
JPS63115008A
JPS63115008A JP26061486A JP26061486A JPS63115008A JP S63115008 A JPS63115008 A JP S63115008A JP 26061486 A JP26061486 A JP 26061486A JP 26061486 A JP26061486 A JP 26061486A JP S63115008 A JPS63115008 A JP S63115008A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic signal
signal generator
signal generation
generation body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26061486A
Other languages
Japanese (ja)
Inventor
Shoichi Kubo
久保 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26061486A priority Critical patent/JPS63115008A/en
Publication of JPS63115008A publication Critical patent/JPS63115008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To improve the resolution of a magnetic signal generation body per turn by forming the magnetic signal generation body of a soft material, facilitating lathe machining to improve the dimension accuracy of the surface, and further narrowing down the gap with a magnetic sensor. CONSTITUTION:The magnetic signal generation body 1 is made of sintered metal formed by mixing Al powder and magnet powder half-and-half, its outer peripheral wall surface is rough cut, and the body is fitted to a support shaft 3 through a flange 2. The support shaft 3 is fixed to a bearing 5 by a bearing pre-loading ring 6 and thus fitted rotatably to a base 4. Then, the magnetic signal generation body 1 is lathed so that the clearance of a circumferential surface is, for example, 5mum; and then a magnetizing mark 2 for an origin and a magnetizing mark 13 for a signal are magnetized on the surface. Further, when the gap length of the magnetic signal generation body 1 and magnetic sensor 7 is set to 25mum and the thickness of the protection film of a magneto- resistance element 10 of a ferromagnetic thin film is set to 10mum, the magnetization pitch of the magnetized mark 13 for the signal can be 40mum. Thus, resolution which is five times as high as before is easily obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高分解能を有するロータリー式の磁気エンコ
ーダに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rotary magnetic encoder having high resolution.

(従来の技術) 近年、数値制御工作機械等のように、機械装置の自動化
、高機能化或いは高品質化の進展に伴い、長さ9位置、
角度等の計測センサとしてのロータリーエンコーダへの
需要が急増すると共に、ロータリーエンコーダに対する
要求も多様化しているが、特に、小型化、高分解能に対
する要求が強くなっている。
(Prior art) In recent years, with the advancement of automation, higher functionality, and higher quality of mechanical devices such as numerically controlled machine tools, the length of 9 positions,
As the demand for rotary encoders as sensors for measuring angles and the like is rapidly increasing, the demands on rotary encoders are also diversifying, and in particular, there is a strong demand for miniaturization and high resolution.

(発明が解決しようとする問題点) ところで、従来のロータリー式磁気エンコーダの磁気信
号発生体には、磁性粉末とプラスチックとを混合して成
型したプラスチック磁石が使用されている。
(Problems to be Solved by the Invention) By the way, a plastic magnet formed by mixing magnetic powder and plastic is used as a magnetic signal generator of a conventional rotary magnetic encoder.

しかしながら、このプラスチックに6−6ナイロンを使
用すると、温度、湿度等の環境条件の変化に伴って磁気
信号発生体の寸法も変化するので、磁気信号発生体と磁
気センサとの間のギ、ヤップを大きくしておかなければ
ならなかった。ところが、ギャップを大きくすると、磁
界を強くするために、磁気信号発生体に配設する多数の
磁化マークのそれぞれの寸法を大きくしなければならな
いので、着磁ピッチが大きくなって、ロータリー式磁気
エンコーダの1回転当りの分解能が低下するという問題
があった。
However, if 6-6 nylon is used for this plastic, the dimensions of the magnetic signal generator will change with changes in environmental conditions such as temperature and humidity, so there will be gaps between the gear and the magnetic sensor. had to be made larger. However, if the gap is made larger, the dimensions of each of the many magnetization marks placed on the magnetic signal generator must be increased in order to strengthen the magnetic field, which increases the magnetization pitch and makes it difficult to use a rotary magnetic encoder. There has been a problem in that the resolution per rotation is reduced.

又、磁気信号発生体として金属磁石或いはフェライト磁
石を使用しても、磁気信号発生体をベースに回転可能に
取り付けたときの取付寸法のバラツキを考慮して、磁気
信号発生体と磁気センサとの間のギャップを大きくしな
ければならないので、前述のプラスチック磁石と同様に
1着磁ピッチが大きくなって、ロータリー式磁気エンコ
ーダの1回転当りの分解能が低下するという問題があっ
た。
Furthermore, even if a metal magnet or ferrite magnet is used as the magnetic signal generator, the relationship between the magnetic signal generator and the magnetic sensor should be adjusted in consideration of variations in mounting dimensions when the magnetic signal generator is rotatably mounted on the base. Since the gap between the magnets must be increased, the pitch of one magnetization increases, similar to the plastic magnet described above, resulting in a problem in that the resolution per revolution of the rotary magnetic encoder decreases.

そこで、この問題を解決するために、金属磁石或いはフ
ェライト磁石を使用した磁気信号発生体の円周を、磁気
信号発生体をベースに回転自在に取り付けた後に加工す
れば、磁気信号発生体の寸法精度を向上させることがで
きる。ところが、アルニコ磁石、 Fe−Cr−Co磁
石、フェライト磁石等は磁石自体が硬いため、旋盤加工
でなく、研磨加工で行ねなければならなくなって、製造
原価が非常に高くなるという問題があった。
Therefore, in order to solve this problem, if the circumference of the magnetic signal generator using a metal magnet or ferrite magnet is processed after the magnetic signal generator is rotatably attached to the base, the dimensions of the magnetic signal generator can be adjusted. Accuracy can be improved. However, since the magnets themselves are hard for alnico magnets, Fe-Cr-Co magnets, ferrite magnets, etc., they have to be processed by polishing instead of lathe processing, which poses the problem of extremely high manufacturing costs. .

本発明は、このような問題に鑑みてなされたもので、磁
気信号発生体の円周を真円に加工して、磁気信号発生体
と磁気センサとの間のギャップを狭くすることにより、
着磁ピッチを小さくして、磁気信号発生体の1回転当り
の分解能を高くしたロータリー式の磁気エンコーダを提
供することを目的としている。
The present invention was made in view of such problems, and by processing the circumference of the magnetic signal generator into a perfect circle and narrowing the gap between the magnetic signal generator and the magnetic sensor,
It is an object of the present invention to provide a rotary magnetic encoder in which the magnetization pitch is reduced and the resolution per rotation of a magnetic signal generator is increased.

(問題点を解決するための手段) 本発明は、磁気信号発生体を軟質材料で形成して、磁気
信号発生体の旋盤加工を容易にすることにより、磁気信
号発生体の表面の寸法精度を向上させて、磁気信号発生
体と磁気センサとの間のギャップを狭くしたものである
(Means for Solving the Problems) The present invention improves the dimensional accuracy of the surface of the magnetic signal generator by forming the magnetic signal generator from a soft material and facilitating lathe processing of the magnetic signal generator. The gap between the magnetic signal generator and the magnetic sensor is narrowed.

(作 用) アルミニウム粉と磁石粉とを混合圧縮成型した焼結金属
で磁気信号発生体を形成すれば、磁石粉のバインダーが
軟質なアルミニウムであるため、ベースに回転自在に取
り付けた後の磁気信号発生体の旋盤加工が容易になって
、製造原価が安くなると共に、磁気信号発生体の表面の
仕上げ寸法精度が高くなる。
(Function) If the magnetic signal generator is made of sintered metal made by mixing and compression-molding aluminum powder and magnet powder, since the binder of the magnet powder is soft aluminum, the magnetic signal generated after being rotatably attached to the base is Lathe machining of the signal generator becomes easier, manufacturing costs are lowered, and the finished dimensional accuracy of the surface of the magnetic signal generator is increased.

(実施例) 以下、図面を参照しながら、本発明の実施例を詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

図は本発明の一実施例の構成を示すもので、1はアルミ
ニウム粉と磁石粉との比が50 : 50の焼結金属(
以下磁性アルミ合金という)からなる磁気信号発生体、
2は磁気信号発生体1を支持軸3の先端部に固着するフ
ランジ、4は支持軸3を回動自在に保持するベアリング
5を中心部に設けたベース、6は支持軸3をベアリング
5に取り付けるベアリング予圧リング、7は原点用セン
サ部8及び信号用センサ部9を設けた低磁界感度のよい
強磁性薄膜の磁気抵抗素子10を取付金具11に接着し
てなる磁気センサで、この磁気センサ7は磁気信号発生
体1との間のギャップ長が所定の間隔になるようにベー
ス4の上に固着される。
The figure shows the structure of one embodiment of the present invention, and 1 is a sintered metal (with a ratio of aluminum powder and magnet powder of 50:50).
A magnetic signal generator made of magnetic aluminum alloy (hereinafter referred to as magnetic aluminum alloy),
2 is a flange that fixes the magnetic signal generator 1 to the tip of the support shaft 3; 4 is a base provided with a bearing 5 in the center that rotatably holds the support shaft 3; 6 is a flange that fixes the support shaft 3 to the bearing 5; The bearing preload ring 7 to be attached is a magnetic sensor made by adhering a ferromagnetic thin film magnetoresistive element 10 with good low magnetic field sensitivity to a mounting bracket 11, which is provided with an origin sensor part 8 and a signal sensor part 9. 7 is fixed on the base 4 so that the gap length between the magnetic signal generator 1 and the magnetic signal generator 1 is a predetermined distance.

このように構成された本実施例において、先ず、外周壁
面が粗加工された磁気信号発生体1を、支持軸3にフラ
ンジ2で取り付けた後、支持軸3をベアリング5にベア
リング予圧リング6で固定することにより、ベース4に
回転自在に取り付ける。
In this embodiment configured in this way, first, the magnetic signal generator 1 whose outer circumferential wall surface has been roughly machined is attached to the support shaft 3 with the flange 2, and then the support shaft 3 is attached to the bearing 5 with the bearing preload ring 6. By fixing it, it is rotatably attached to the base 4.

次に、磁性アルミ合金からなる磁気信号発生体1を1例
えば、直径が25.5mmで、円周表面のブレが5μm
となるように旋盤加工した後、磁気信号発生体1の表面
に、着磁機(図示しない)によって着磁して、原点用磁
化マーク12及び信号用磁化マーク13を設ける。
Next, a magnetic signal generator 1 made of a magnetic aluminum alloy is used, for example, with a diameter of 25.5 mm and a circumferential surface wobble of 5 μm.
After machining with a lathe so that the magnetic signal generator 1 becomes , the surface of the magnetic signal generator 1 is magnetized by a magnetizing machine (not shown) to provide an origin magnetization mark 12 and a signal magnetization mark 13 .

この結果、本実施例によれば、磁気信号発生体1の円周
表面のブレを5μI、磁気信号発生体1と磁気センサ7
とのギャップ長を25μm、強磁性薄膜の磁気抵抗素子
lOの保護膜の厚みを10μmとすると。
As a result, according to this embodiment, the vibration of the circumferential surface of the magnetic signal generator 1 is reduced by 5 μI, and the magnetic signal generator 1 and the magnetic sensor 7 are
Assuming that the gap length with respect to the ferromagnetic thin film magnetoresistive element 10 is 25 μm, and the thickness of the protective film of the ferromagnetic thin film magnetoresistive element IO is 10 μm.

信号用磁化マーク13の着磁ピッチを40μlにするこ
とができる。
The magnetization pitch of the signal magnetization mark 13 can be set to 40 μl.

ところで、従来の磁気信号発生体に着磁するときには、
環境条件、加工精度等から、磁気信号発生体と磁気セン
サとのギャップ長は200μm程度が限界である上1着
磁ピッチは磁気信号発生体1と磁気センサ7とのギャッ
プ長と同程度までが限界なので、着磁ピッチも200μ
m程度が限界である。
By the way, when magnetizing a conventional magnetic signal generator,
Due to environmental conditions, processing accuracy, etc., the gap length between the magnetic signal generator 1 and the magnetic sensor 7 is limited to about 200 μm. Since this is the limit, the magnetization pitch is also 200μ.
The limit is approximately m.

そこで、直径が25.5mmの本発明の磁気信号発生体
1と直径が25.5+mの従来の磁気信号発生体とを比
較すると、本発明の磁気信号発生体1には1回転当り2
000パルス分の信号用磁化マーク13を設けることが
できるが、従来の磁気信号発生体には1回転当り400
パルス分の信号用磁化マークしか設けられない。即ち、
本発明の磁気信号発生体1を用いることにより、従来の
磁気信号発生体に較べて5倍の分解能が容易に得られる
ようになる。
Therefore, when comparing the magnetic signal generator 1 of the present invention with a diameter of 25.5 mm and a conventional magnetic signal generator with a diameter of 25.5+ m, it is found that the magnetic signal generator 1 of the present invention has a
The signal magnetization mark 13 for 000 pulses can be provided, but the conventional magnetic signal generator has 400 pulses per rotation.
Only the signal magnetization marks for pulses can be provided. That is,
By using the magnetic signal generator 1 of the present invention, a resolution five times that of conventional magnetic signal generators can be easily obtained.

尚、本実施例においては、磁気信号発生体1の材質をア
ルミニウムで説明したが、亜鉛、錫又はそれ等の合金粉
等の加工性のよい軟質金属であれば他の金属を用いても
よい。
In this embodiment, aluminum is used as the material of the magnetic signal generator 1, but other metals may be used as long as they are soft metals with good workability, such as zinc, tin, or their alloy powders. .

又、ベース4に磁気信号発生体1の熱線膨張率に近似し
ているアルミニウム製のものを使用すれば、環境条件が
変化しても、磁気信号発生体1と磁気センサ7との間の
ギャップ長がほとんど変化しなくなる。
Furthermore, if the base 4 is made of aluminum whose coefficient of linear thermal expansion approximates that of the magnetic signal generator 1, the gap between the magnetic signal generator 1 and the magnetic sensor 7 can be maintained even if the environmental conditions change. The length will hardly change.

更に、どんなに低磁界感度のよい強磁性薄膜の磁気抵抗
素子IOを用いても、着磁ピッチは磁気信号発生体1と
磁気センサ7とのギャップ長と同程度までが限界なので
、分解能の限界は磁気信号発生体1と磁気センサ7との
ギャップ長によって事実上決定される。
Furthermore, no matter how good the ferromagnetic thin film magnetoresistive element IO with low magnetic field sensitivity is used, the limit of the magnetization pitch is the same as the gap length between the magnetic signal generator 1 and the magnetic sensor 7, so the resolution limit is It is practically determined by the gap length between the magnetic signal generator 1 and the magnetic sensor 7.

(発明の効果) 以上説明したように、本発明によれば、磁気信号発生体
に設けることができる信号用磁化マークの数で従来のも
のと比較すると、従来のものの5倍の分解能を有する磁
気エンコーダを容易且つ安価に製造でき、又、信号用磁
化マークの数を従来のものと同じ数にすると、従来のも
のより小型の磁気エンコーダを容易且つ安価に製造でき
るという効果がある。
(Effects of the Invention) As explained above, according to the present invention, when compared with the conventional one in terms of the number of signal magnetization marks that can be provided on the magnetic signal generator, the magnetic signal generator has a resolution five times that of the conventional one. The encoder can be easily and inexpensively manufactured, and if the number of signal magnetization marks is the same as the conventional one, there is an effect that a smaller magnetic encoder can be easily and inexpensively manufactured than the conventional one.

更に、ベースに磁気信号発生体の材質の熱線膨張率に近
似している材質の軟質金属を使用すれば、環境条件が変
化しても、磁気信号発生体と磁気センサとの間のギャッ
プ長がほとんど変化しなくなって1分解能を更に向上さ
せることができるようになるという効果がある。
Furthermore, if a soft metal with a thermal expansion coefficient similar to that of the material of the magnetic signal generator is used for the base, the gap length between the magnetic signal generator and the magnetic sensor can be maintained even if the environmental conditions change. This has the effect that there is almost no change, making it possible to further improve the 1-resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の構成図である。 1 ・・・磁気信号発生体、 3・・・支持軸、4 ・
・・ベース、 7・・・磁気センサ、12・・・原点用
磁化マーク、13・・・信号用磁化マーク。 特許出願人 松下電器産業株式会社 1・ 亀気侘号発℃俗 3  灸竹軸 4、べ一人 7 ・ 区大ゼソザ
The figure is a configuration diagram of an embodiment of the present invention. 1...Magnetic signal generator, 3...Support shaft, 4.
... Base, 7... Magnetic sensor, 12... Magnetized mark for origin, 13... Magnetized mark for signal. Patent Applicant: Matsushita Electric Industrial Co., Ltd. 1. ℃ 3. Moxibustion Bamboo Axis 4. Beitone 7.

Claims (3)

【特許請求の範囲】[Claims] (1)外周壁面に磁化マークを設けた磁気信号発生体と
、前記磁化マークを検出する磁気検出素子とからなる磁
気エンコーダにおいて、前記磁気信号発生体は、軟質金
属粉末と磁性粉末とを混合して焼結した焼結合金磁性体
からなることを特徴とする磁気エンコーダ。
(1) In a magnetic encoder comprising a magnetic signal generator having a magnetized mark on an outer peripheral wall surface and a magnetic detection element that detects the magnetized mark, the magnetic signal generator is a mixture of soft metal powder and magnetic powder. A magnetic encoder characterized in that it is made of a sintered alloy magnetic material.
(2)前記軟質金属粉末は、アルミニウム、亜鉛、錫若
しくはそれ等の合金粉末であることを特徴とする特許請
求の範囲第(1)項記載の磁気エンコーダ。
(2) The magnetic encoder according to claim (1), wherein the soft metal powder is aluminum, zinc, tin, or an alloy powder thereof.
(3)前記磁気検出素子には、磁気抵抗素子が用いられ
ることを特徴とする特許請求の範囲第(1)項記載の磁
気エンコーダ。
(3) The magnetic encoder according to claim (1), wherein a magnetoresistive element is used as the magnetic detection element.
JP26061486A 1986-11-04 1986-11-04 Magnetic encoder Pending JPS63115008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26061486A JPS63115008A (en) 1986-11-04 1986-11-04 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26061486A JPS63115008A (en) 1986-11-04 1986-11-04 Magnetic encoder

Publications (1)

Publication Number Publication Date
JPS63115008A true JPS63115008A (en) 1988-05-19

Family

ID=17350372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26061486A Pending JPS63115008A (en) 1986-11-04 1986-11-04 Magnetic encoder

Country Status (1)

Country Link
JP (1) JPS63115008A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4090509C1 (en) * 1989-04-13 1993-02-04 Hitachi Metals, Ltd., Tokio/Tokyo, Jp
EP1296144A3 (en) * 2001-09-25 2004-02-04 Ntn Corporation Magnetic encoder and wheel bearing assembly using the same
JP2005099048A (en) * 2004-12-13 2005-04-14 Ntn Corp Magnetic encoder and bearing equipped with it
EP1452871A3 (en) * 2003-02-25 2005-12-21 Ntn Corporation Magnetic encoder and wheel support bearing assembly using the same
JP2006330004A (en) * 2006-09-01 2006-12-07 Ntn Corp Magnetic encoder and bearing for wheel equipped with the same
US7592799B2 (en) 2004-09-10 2009-09-22 Ntn Corporation Magnetic encoder and wheel support bearing assembly using the same
EP3023746A1 (en) * 2013-07-16 2016-05-25 NTN Corporation Magnetic encoder device and rotation detection device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4090509C1 (en) * 1989-04-13 1993-02-04 Hitachi Metals, Ltd., Tokio/Tokyo, Jp
EP1296144A3 (en) * 2001-09-25 2004-02-04 Ntn Corporation Magnetic encoder and wheel bearing assembly using the same
US6789948B2 (en) 2001-09-25 2004-09-14 Ntn Corporation Magnetic encoder and wheel bearing assembly using the same
KR100924717B1 (en) * 2001-09-25 2009-11-04 엔티엔 가부시키가이샤 Magnetic encoder and wheel bearing assembly using the same
US7374343B2 (en) 2003-02-25 2008-05-20 Ntn Corporation Magnetic encoder and wheel support bearing assembly using the same
EP1452871A3 (en) * 2003-02-25 2005-12-21 Ntn Corporation Magnetic encoder and wheel support bearing assembly using the same
CN100447569C (en) * 2003-02-25 2008-12-31 Ntn株式会社 Magnetic encoder and wheel support bearing assembly using the same
US7592799B2 (en) 2004-09-10 2009-09-22 Ntn Corporation Magnetic encoder and wheel support bearing assembly using the same
JP2005099048A (en) * 2004-12-13 2005-04-14 Ntn Corp Magnetic encoder and bearing equipped with it
JP2006330004A (en) * 2006-09-01 2006-12-07 Ntn Corp Magnetic encoder and bearing for wheel equipped with the same
JP4498330B2 (en) * 2006-09-01 2010-07-07 Ntn株式会社 Magnetic encoder and wheel bearing provided with the same
EP3023746A1 (en) * 2013-07-16 2016-05-25 NTN Corporation Magnetic encoder device and rotation detection device
EP3023746A4 (en) * 2013-07-16 2017-04-26 NTN Corporation Magnetic encoder device and rotation detection device
US9976874B2 (en) 2013-07-16 2018-05-22 Ntn Corporation Magnetic encoder device and rotation detection device

Similar Documents

Publication Publication Date Title
JPWO2003036237A1 (en) Multi-rotation encoder
EP1610097A1 (en) Magnetic type angle sensor
US4998084A (en) Multipolar magnetic ring
US8664944B2 (en) Angle measuring system and method for producing an angle measuring system
JPS63115008A (en) Magnetic encoder
US7023202B2 (en) Magnetic rotary position sensor
US8604778B2 (en) Angle measuring system
JP2000065599A5 (en) Multi-rotation absolute value encoder and motor with multi-rotation absolute value encoder
US20200141761A1 (en) Magnetic Encoder and Apparatus Having the Same
CN205352419U (en) Magnetic resistance absolute encoder
JPH0242372A (en) Detection piece of magnetic sensor
JPS62225909A (en) Magnetic rotary encoder
CN217560657U (en) Be applied to cavity magnetic encoder of automation production line arm
JP2001165946A (en) Rotational speed detector and rotary shaft used for the same
JPH069311Y2 (en) Magnetic encoder
JPH0381631A (en) Rotary sensor
WO2022209747A1 (en) Absolute encoder
JPH0614915U (en) Disc for encoder
JPH01189517A (en) Magnetic encoder
JPS6333880A (en) Magnetoresistance effect element
JPS631344A (en) Rotation detector
JPH0447614Y2 (en)
JPH1019603A (en) Magnetic encoder
JP2023174372A (en) absolute magnetic encoder
JPS61243320A (en) Magnetic encoder