JPS63113947A - Multi-wavelength write type optical element - Google Patents

Multi-wavelength write type optical element

Info

Publication number
JPS63113947A
JPS63113947A JP61258533A JP25853386A JPS63113947A JP S63113947 A JPS63113947 A JP S63113947A JP 61258533 A JP61258533 A JP 61258533A JP 25853386 A JP25853386 A JP 25853386A JP S63113947 A JPS63113947 A JP S63113947A
Authority
JP
Japan
Prior art keywords
wavelength
light
optical element
recording
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61258533A
Other languages
Japanese (ja)
Inventor
Akira Morinaka
森中 彰
Norihiro Funakoshi
宣博 舩越
Masami Kakuchi
覚知 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61258533A priority Critical patent/JPS63113947A/en
Publication of JPS63113947A publication Critical patent/JPS63113947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily attain simultaneous or time division write by receiving the rays of light having plural wavelengths simultaneously or in time division from a light source and focusing the light of each wavelength onto the optical recording layer of a recording medium corresponding to the light of each wavelength independently. CONSTITUTION:A collimated pulse light having different wavelength emitted from laser light sources 35-36 via a collimate lens is reflected in half mirrors 32-34 and focused 44, 43, 42 onto optical recording layers 38-40 corresponding to the light of each wavelength of the optical recording medium 41 through the optical element (e.g., Fresnel plate) 31. Thus, simultaneous recording or quick time division recording is applied to the multi-layer recording medium by using a wavelength multiplex light.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多波長書込み型光学素子に関し、特に、多層
構造を有し、かつその各層が各々異なった波長域にエネ
ルギ吸収効率の最大値を持ち、光照射によフて各層の反
射率、透過率に変化を生じて光記録を行なうことができ
る波長多重型多層光記録媒体への光記録を行うにあたり
、各記録層へ同時もしくは時間分割で光エネルギの分配
を行なうことができる光学素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multi-wavelength writing type optical element, and in particular, it has a multi-layer structure, and each layer has a maximum energy absorption efficiency in a different wavelength range. When performing optical recording on a wavelength multiplexed multilayer optical recording medium, which can perform optical recording by changing the reflectance and transmittance of each layer by light irradiation, each recording layer can be recorded simultaneously or over time. The present invention relates to an optical element that can distribute optical energy by dividing it.

[従来の技術] 近年、レーザ光を微小スポットに集光し、光記録材料上
に光記録を行なう光記録媒体が数多く開発研究されてい
る。既に、Te薄膜、 Te分散CS2プラズマ重合膜
、 5e−Te合金膜、スクアリリウム色素膜、ナフト
キノン色素膜等が追記型の光記録媒体として報告されて
いる。また、Te−TeO2゜5e−Ge−Te、 5
e−5n−5eの合金膜による非晶質と結晶質間を相転
移する相変態型光ディスクや、Te−Fe−co非晶質
膜のカー効果を利用した光磁気型の書換式光ディスクも
開発されつつある。
[Prior Art] In recent years, many optical recording media have been developed and researched in which laser light is focused on a minute spot and optical recording is performed on an optical recording material. Te thin films, Te-dispersed CS2 plasma polymerized films, 5e-Te alloy films, squarylium dye films, naphthoquinone dye films, and the like have already been reported as write-once optical recording media. Also, Te-TeO2゜5e-Ge-Te, 5
Developed a phase change type optical disk that changes the phase between amorphous and crystalline using an e-5n-5e alloy film, and a magneto-optical type rewritable optical disk that utilizes the Kerr effect of a Te-Fe-co amorphous film. It is being done.

これら光デイスク媒体は、いずれも、光記録および再生
に単一波長の光を用いるものであったが、光波長空間の
広がりを考えて、複数波長を用いて、積層した光記録媒
体上に並列に記録処理を行なうシステムが提案されてい
る。すなわち、感熱発色媒体、光磁気媒体、フォトクロ
ミック媒体をそれぞれ積層したものを光記録媒体として
用い、かかる光記録媒体に波長多重記録を行う試みがな
されている。
All of these optical disk media used a single wavelength of light for optical recording and reproduction, but considering the expansion of the optical wavelength space, multiple wavelengths were used and paralleled on a stacked optical recording medium. A system for performing recording processing has been proposed. That is, attempts have been made to use as an optical recording medium a stack of a thermosensitive coloring medium, a magneto-optical medium, and a photochromic medium, and perform wavelength multiplexing recording on such an optical recording medium.

従来のこの種の波長多重化多層光記録媒体の記録例を第
3図に示す。第3図において、11.12および13は
、それぞれ、多層光記録媒体を構成するように積層され
た第1記録層、第2記録層および第3記録層を示す。実
線14および15は第1記録層11に対する記録時のレ
ンズ位置および記録光を示す。破線16および17は第
2記録層12に対する記録時のレンズ位置および記録光
を示す。−点鎖線18および19は第3記録層13のレ
ンズ位置および記録光を示す。なお、多層の層数(ここ
では3層)は任意所望の層数nまで拡張できる。
FIG. 3 shows a recording example of a conventional wavelength multiplexed multilayer optical recording medium of this type. In FIG. 3, reference numerals 11, 12 and 13 indicate a first recording layer, a second recording layer and a third recording layer, respectively, which are stacked to constitute a multilayer optical recording medium. Solid lines 14 and 15 indicate the lens position and recording light during recording with respect to the first recording layer 11. Broken lines 16 and 17 indicate the lens position and recording light during recording with respect to the second recording layer 12. - Dotted and dashed lines 18 and 19 indicate the lens position of the third recording layer 13 and the recording light. Note that the number of multilayers (here, three layers) can be expanded to any desired number of layers n.

このような波長多重化積層媒体を用いることにより、光
ディスクの単位面積あたりの記録密度、並列読出しによ
る転送速度が向上することについては、上記の積層化波
長多重記録媒体において述べられた通りに実現できれば
、この種記録の驚異的なレベルアップが望めるものであ
る。
By using such a wavelength multiplexing layered medium, the recording density per unit area of the optical disk and the transfer speed due to parallel reading can be improved, if this can be achieved as described for the layered wavelength multiplexing recording medium mentioned above. , we can expect an amazing improvement in this type of record.

[発明が解決しようとする問題点] ところが、このような波長多重化積層型光記録媒体への
記録に用いる光学素子および光学系としては、−1QQ
に、光デイスク光学系に用いられるものを流用あるいは
転用していたので、異なる波長を用いるたびに新たな焦
点設定をフォーカスサーボな用いて行わねばならず、こ
のような構成lは、波長多重化積層光記録媒体の持つ本
来の特性を充分活かしきれるものではなかった。
[Problems to be Solved by the Invention] However, as an optical element and an optical system used for recording on such a wavelength multiplexing layered optical recording medium, -1QQ
In addition, since the optical disk optical system was used or repurposed, a new focus setting had to be performed each time a different wavelength was used, using a focus servo. The original characteristics of the laminated optical recording medium could not be fully utilized.

たとえば、第3図に示すように、各[11,12および
13に独立に記録するためには、レンズ位置を層毎に設
定する必要があり、そのためにはレンズを機械的に移動
させることが必要になる。しかし、かかるレンズの移動
による時間損失があり、しかもレンズ移動機構が複雑で
あるという問題点が、この種波長多重化多層光記録媒体
の発展を妨げていた。
For example, as shown in Figure 3, in order to record independently on each [11, 12, and 13], it is necessary to set the lens position for each layer, and to do this, it is necessary to mechanically move the lens. It becomes necessary. However, the problems of time loss due to such lens movement and a complicated lens movement mechanism have hindered the development of this type of wavelength multiplexed multilayer optical recording medium.

たとえば、各レーザ波長毎の焦点設定を行なう必要がな
ければ、各レーザ波長を時分割駆動しても記録速度は向
上すると考えられるし、各レーザ波長を同時に記録でき
れば最も記録系としては理想的な速度に向上すると考え
られる。
For example, if there is no need to set the focus for each laser wavelength, the recording speed can be improved by time-divisionally driving each laser wavelength, and if each laser wavelength can be recorded simultaneously, this would be the most ideal recording system. It is thought that the speed will improve.

そこで、本発明の目的は、以上に述べた従来・の多波長
書込み型光学素子の欠点を解決して、同時書込みあるい
は容易に時分割書込みのできる多波長書込み型光学素子
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned drawbacks of the conventional multi-wavelength writing optical element and to provide a multi-wavelength writing optical element that allows simultaneous writing or easy time-division writing. .

[問題点を解決するための手段] このような目的を達成するために、本発明は、波長多重
型多層光記録媒体の異なった光記録層へ焦点を結ばせて
記録を行なう光学素子において、光波長に応じて波長分
散をもつ材料により構成され、多波長光源からの複数の
光波長の光を同時もしくは時間分割の形態で受光可能と
なし、その各波長光に対応する光記録層に、当該波長光
の焦点をそれぞれ独立して結ばせるようになしたことを
特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides an optical element that performs recording by focusing on different optical recording layers of a wavelength multiplexed multilayer optical recording medium. It is made of a material that has wavelength dispersion according to the wavelength of light, and can receive light of multiple wavelengths from a multi-wavelength light source simultaneously or in a time-divided manner, and has an optical recording layer corresponding to each wavelength of light. It is characterized in that the wavelengths of light are individually focused.

一般に、光学素子を構成する物質および回折格子は木来
異なった波長の光に対して、各々異なった屈折率および
回折効率を示す。この現象は、通常、波長光に対する物
質の波長分散と呼ばれている。
In general, materials and diffraction gratings constituting optical elements exhibit different refractive indexes and diffraction efficiencies for light of different wavelengths. This phenomenon is usually called wavelength dispersion of a substance with respect to wavelength light.

白色光源に対して光線を処理する従来の光学素子として
は、このような波長分散の少ない材料が用いられていた
。例えば、光学ガラスFK−1では波長365 nmと
波長768 nmの屈折率比は1.0146 (理科年
表、東京天文台発行)である。
Such materials with low wavelength dispersion have been used as conventional optical elements that process light from a white light source. For example, in optical glass FK-1, the refractive index ratio between wavelengths of 365 nm and 768 nm is 1.0146 (Rika Chronology, published by Tokyo Astronomical Observatory).

これに対して、本発明では、この屈折率分散など、種々
の波長分散特性を逆に利用して、光学素子を最適化する
In contrast, in the present invention, various wavelength dispersion characteristics such as this refractive index dispersion are used inversely to optimize the optical element.

[作 用] 異なった波長の光源からの光を同時にもしくは時分割し
て本発明光学素子に入射させることによって、各層の波
長に即した焦点位置の記録層に光を集光することができ
、それによって、各記録層へ記録を同時にあるいは非常
に短い時間間隔で行なうことができる。従来用いていた
レンズなどの光学素子は、本体自身の空間位置第3勅を
必要としていたのに対し、本発明ではかかる空間位置の
機械的移動を伴なわないか、ないしは微小量の穆勤です
む。
[Function] By making light from light sources with different wavelengths enter the optical element of the present invention simultaneously or in a time-sharing manner, the light can be focused on the recording layer at a focal position that corresponds to the wavelength of each layer, Thereby, recording can be performed on each recording layer simultaneously or at very short time intervals. Conventionally used optical elements such as lenses required the spatial position control of the main body itself, whereas the present invention does not involve mechanical movement of such spatial position, or only requires a very small amount of movement. nothing.

[実施例] 以下に、図面を参照して、本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

本発明の構成概念を第1図に示す。The structural concept of the present invention is shown in FIG.

第1図において、21は本発明光学素子、22は集光す
べき光束の幅、23および24は各々異なった波長の光
に対する焦点位置である。光学素子21の開口率を一定
として波長分散を考慮すると、第1図に示した如く、異
なった焦点位置23および24が常に得られることにな
る。
In FIG. 1, 21 is the optical element of the present invention, 22 is the width of the light beam to be focused, and 23 and 24 are focal positions for light of different wavelengths. If the aperture ratio of the optical element 21 is kept constant and wavelength dispersion is considered, different focal positions 23 and 24 will always be obtained, as shown in FIG.

光学素子21をフレネルゾーンプレートで構成する本発
明実施例について以下に述べる。
An embodiment of the present invention in which the optical element 21 is constituted by a Fresnel zone plate will be described below.

本例では波長分散として回折効率の相異を利用している
In this example, differences in diffraction efficiency are used as wavelength dispersion.

ここで、光軸から rn−J−λ・f −fn ・ro       (1
)で示される(rn) −(rn−1)の複数の輪帯板
から構成したフレネルゾーンプレートにおいては、使用
波長が異なると、焦点距離fが異なる性質を持つ。
Here, rn-J-λ・f −fn・ro (1
) A Fresnel zone plate composed of a plurality of annular plates of (rn) - (rn-1) has a property that the focal length f differs depending on the wavelength used.

(1)式中、nは自然数、λは波長、fは焦点距離、r
oは中心の円半径をそれぞれ示している。
(1) In the formula, n is a natural number, λ is the wavelength, f is the focal length, and r
o indicates the radius of the center circle.

レーザ光のようなスペクトル幅の狭い光源からの光をフ
レネルゾーンプレートによる光学素子21に入射させる
場合、レーザ光の集光スポットは、ゾーンプレートの外
周の分割精度によって制限を受けるが、理論的には、同
一開口数のガラス・レンズ状光学素子に等しいスポット
径をその焦点面に得ることができる。
When light from a light source with a narrow spectral width such as a laser beam is incident on the optical element 21 using a Fresnel zone plate, the focused spot of the laser beam is limited by the division accuracy of the outer periphery of the zone plate. can obtain a spot diameter at its focal plane equal to that of a glass lenticular optical element of the same numerical aperture.

以上に述べた、本発明による多波長書込み型光学素子の
実施例では、波長分布の狭いレーザ光の組合せと同等の
光源からの多波長の光をかかる光学素子に入射させるこ
とにより、その出射光は積層した記録媒体の各層にそれ
ぞれ集光されるので、その層構造の吸収効率に対して最
適化することができる。従って、本発明では、波長多重
光をかかる本発明光学素子に導くことによって、多層記
録媒体に対する同時記録、あるいは迅速な時分割記録、
さらには再生を行なうことができる。
In the above-described embodiment of the multi-wavelength writing optical element according to the present invention, the output light is Since the light is focused on each layer of the stacked recording medium, the absorption efficiency of the layer structure can be optimized. Therefore, in the present invention, by guiding wavelength-multiplexed light to such an optical element of the present invention, simultaneous recording on a multilayer recording medium or rapid time-division recording,
Furthermore, playback can be performed.

ここで、本発明光学素子の具体例について述べる。Here, a specific example of the optical element of the present invention will be described.

波長分散として屈折率が波長に応じて異なる特性をもつ
光学ガラスSF2を球面研磨してn、A、−0,50の
光学素子21を作製して、多波長書込み型光学素子とし
た。
An optical element 21 of n, A, -0,50 was fabricated by spherical polishing of optical glass SF2, which has a property of wavelength dispersion in which the refractive index differs depending on the wavelength, and was made into a multi-wavelength writing type optical element.

次に、基板上に以下の構成で積層した積層型多重光記録
媒体を用意し、この記録媒体に多重光記録を行なった。
Next, a laminated multiple optical recording medium having the following structure laminated on a substrate was prepared, and multiple optical recording was performed on this recording medium.

基板 : PMMA 1.5mm厚 顕色剤:フェノールフタレイン蒸着膜 2μm厚第1光
吸収剤層ニスチルベン蒸着膜300人厚(λmax =
 354nm) 発色剤:クリスタルバイオレットラクトン7μmf5 発色剤: Tl(−107 (保止ケ谷化学製商品名:黒色ロイコ染料)7μm厚 第2光吸収剤層: C,1,Disperse Red
 15,500人厚1λmax= 524 nm) 顕色剤:フェノールフタレイン蒸着膜 14μm厚第3
光吸収剤層−N−ジメチルアミノ スクアリリウム色素
(λmax = 780nm)蒸着膜700人厚 発色剤: RED−[ICF(保止ケ谷化学製商品名:
赤色ロイコ染料)2.0μm厚 まず、作製した光学素子を微動させてスポット径400
μmの波長354 r+mのチューナプル色素レーザ光
を、焦点が記録媒体の第1光吸収剤層に結ばれるよう調
整した上で、パルス幅1μsec 、光パワー6mWの
レーザ光バ、ルスを照射すると、第1光吸収剤層の表面
でビーム径は1.6μmとなり、記録媒体にクリスタル
バイオレットラクトンとフェノールフタレインとが反応
して青色の記録ピットを記録できた。
Substrate: PMMA 1.5mm thick Color developer: Phenolphthalein vapor-deposited film 2μm thick First light absorber layer Nistilbene vapor-deposited film 300mm thick (λmax =
354 nm) Color former: Crystal violet lactone 7μmf5 Color former: Tl(-107 (Hodogaya Chemical product name: black leuco dye) 7μm thick second light absorbing layer: C, 1, Disperse Red
15,500 people thickness 1λmax = 524 nm) Color developer: phenolphthalein vapor deposited film 14 μm thickness 3rd
Light absorber layer - N-dimethylamino squarylium dye (λmax = 780 nm) Vapor deposited film 700 people thick Color former: RED-[ICF (Product name: Hodogaya Chemical Co., Ltd.)
red leuco dye) 2.0 μm thick First, by slightly moving the fabricated optical element, the spot diameter was 400 μm.
Tunable dye laser light with a wavelength of 354 r+m in μm is adjusted so that its focus is on the first light absorber layer of the recording medium, and then a laser beam with a pulse width of 1 μsec and an optical power of 6 mW is irradiated. The beam diameter was 1.6 μm on the surface of the first light absorbent layer, and crystal violet lactone and phenolphthalein reacted to record blue recording pits on the recording medium.

次に、この光学素子を移動することなく、波長510 
nmのチューナプル色素パルス光を照射すると、焦点は
第2光吸収剤層に結ばれ、T)I−107とフェノール
フタレインとが反応して黒色のビットを記録できた。更
に、チューナプル色素レーザの波長を780 r+mと
し、やはり光学素子を移動することなしにパルス光を照
射すると、焦点は第3光吸収剤層に結ばれ、RED−[
ICF とフェノールフタレインとが反応して赤色のビ
ットを記録できた。
Next, without moving this optical element, the wavelength 510
When irradiated with nm tunable dye pulse light, the focus was focused on the second light absorber layer, and T)I-107 and phenolphthalein reacted, allowing black bits to be recorded. Furthermore, when the wavelength of the tunable dye laser is set to 780 r+m and pulsed light is irradiated without moving the optical element, the focus is focused on the third light absorbing layer, and the RED-[
ICF and phenolphthalein reacted and a red bit could be recorded.

本発明の他の具体例として、式(1)で表現されるフレ
ネルゾーンプレートにおいてro: 7.07μmのゾ
ーンプレートによって多波長書込み型光学素子を構成し
、これに、上述した実施例で用いたのと同様の構成の多
層光記録媒体ではあるが、第1光吸収剤層と第2光吸収
剤層、および第2光吸収剤層と第3光吸収剤層とのスペ
ーシングをそれぞれ25μmとした光記録媒体を用い、
この媒体上に上側と同様の各波長レーザを用いて、上述
の実施例と同様の記録、および同時記録を行うことがで
きた。
As another specific example of the present invention, a multi-wavelength writing type optical element is constructed by a zone plate of 7.07 μm in the Fresnel zone plate expressed by formula (1), and this is combined with Although this is a multilayer optical recording medium with a similar structure, the spacing between the first light absorbent layer and the second light absorbent layer, and the spacing between the second light absorbent layer and the third light absorbent layer is 25 μm, respectively. Using optical recording media,
On this medium, using the same wavelength lasers as above, it was possible to perform the same recording and simultaneous recording as in the above embodiment.

このように、書込みのなされた光記録媒体の記録側とは
反対側の面に白色透過光を照射して記録の読み出し再生
を行なうと、各発色ピットに対応する記録ピット信号を
読み出すことができた。
In this way, if the surface of the optical recording medium that has been written on is irradiated with white transmitted light on the side opposite to the recording side to read and reproduce the recording, it is possible to read out the recorded pit signal corresponding to each colored pit. Ta.

次に、多層に同時に書込みを行うようにした本発明の実
施例を第2図に示す。
Next, FIG. 2 shows an embodiment of the present invention in which writing is performed simultaneously on multiple layers.

第2図において、31は第1図に示したような光学素子
であり、この光学素子31の光軸に沿ってダイクロイッ
ク(2色性)ミラーあるいはハーフミラ−32,33お
よび34を配置する。一方、波長354nm、 510
 nm、 780 nmの各光源レーザ35.36およ
び37をそれぞれ独立に配設し、これらレーザ35.3
Bおよび37からの各パルス発振光を、ハーフミラ−3
2)33および34を介して、1木の光軸に沿って混合
して、光学素子31に入射させる。光学素子31の下方
には第1.第2および第3光吸収剤層38.39および
40を有する上述したような構成の多層光記録媒体41
を配置しておく。ここで、光記録媒体41と光学素子3
1との相対的位置関係を適切に調整することによって、
各光源35.36および37からのし一ザ光を焦点位置
42.43および44にそれぞれ合焦させることができ
、それによって、各光源のパルス列に対応したビットを
同時記録できた。
In FIG. 2, numeral 31 is an optical element as shown in FIG. 1, and along the optical axis of this optical element 31, dichroic mirrors or half mirrors 32, 33 and 34 are arranged. On the other hand, the wavelength is 354 nm, 510
The light source lasers 35.36 and 37 with wavelengths of 780 nm and 780 nm are respectively arranged independently, and these lasers 35.3
Each pulse oscillation light from B and 37 is sent to the half mirror 3.
2) The mixed light is mixed along the optical axis of one tree through 33 and 34, and is made incident on the optical element 31. Below the optical element 31 is a first lens. A multilayer optical recording medium 41 having the above-described structure having second and third light absorbing layers 38, 39 and 40.
Place it. Here, the optical recording medium 41 and the optical element 3
By appropriately adjusting the relative positional relationship with 1,
The laser beams from each of the light sources 35, 36 and 37 could be focused on focal positions 42, 43 and 44, respectively, and thereby bits corresponding to the pulse trains of each light source could be recorded simultaneously.

このように、書込みのなされた光記録媒体の記録側とは
反対側の面に白色透過光を照射して記録の読み出し再生
を行なうと、各発色ピットに対応する記録ピット信号を
読み出すことができた。
In this way, if the surface of the optical recording medium that has been written on is irradiated with white transmitted light on the side opposite to the recording side to read and reproduce the recording, it is possible to read out the recorded pit signal corresponding to each colored pit. Ta.

[発明の効果コ 以上に述べたように、本発明による多波長書込み型光学
素子を用いることによって、波長多重型多層光記録媒体
上の異なった記録層に同時あるいは非常に短い時間間隔
で容易に記録を行なうことができる。
[Effects of the Invention] As described above, by using the multi-wavelength writing optical element according to the present invention, different recording layers on a wavelength multiplexed multilayer optical recording medium can be easily written simultaneously or at very short time intervals. Recording can be done.

従って、従来のように、光学素子を各層へ個別にフォー
カシングする必要があった場合では達成できなかった、
記録、再生レートの高速化および各個別層への並列書込
み、読み出しが可能であり、本発明によれば、波長多重
型多層光記録媒体の利点を充分に引き出すことができる
、全く新しい光学素子を実現することかできる。
Therefore, as in the past, it was not possible to achieve this by focusing the optical element on each layer individually.
According to the present invention, a completely new optical element has been developed which is capable of increasing recording and reproducing rates and parallel writing and reading to each individual layer, and which can fully bring out the advantages of wavelength multiplexed multilayer optical recording media. It is possible to make it happen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による多波長書込み型光学素子の構成概
念を示す図、 第2図は本発明による多波長書込み型光学素子の同時書
込み形態の実施例を示す線図、第3図は従来の波長多重
化多層光記録媒体の記録例の説明図である。 11、12.13・・・第1.第2.第3記録層、14
、15・・・第1記録層記録時のレンズ位置および記録
光、 18、17・・・第2記録層記録時のレンズ位置および
記録光、 18、19・・・第3記録層記録時のレンズ位置および
記録光、 21・・・光学素子、 22・・・集光する光束の幅、 23、24・・・各々異なった波長に対する焦点位置、
31・・・光学素子、 32)33.34・・・各波長ハーフミラ−(2色性ミ
ラー)、 35、36.37・・・各波長レーザ光源、3B、 3
9.40・・・第1.第2.第3光吸収剤層、41・・
・光記録媒体、 42)43.44・・・焦点位置。
Fig. 1 is a diagram showing the structural concept of a multi-wavelength writing type optical element according to the present invention, Fig. 2 is a diagram showing an embodiment of a simultaneous writing form of a multi-wavelength writing type optical element according to the present invention, and Fig. 3 is a diagram showing a conventional example. FIG. 2 is an explanatory diagram of a recording example of a wavelength multiplexed multilayer optical recording medium. 11, 12.13... 1st. Second. third recording layer, 14
, 15... Lens position and recording light when recording on the first recording layer, 18, 17... Lens position and recording light when recording on the second recording layer, 18, 19... When recording on the third recording layer Lens position and recording light, 21... Optical element, 22... Width of condensed light beam, 23, 24... Focus position for each different wavelength,
31... Optical element, 32) 33.34... Each wavelength half mirror (dichroic mirror), 35, 36.37... Each wavelength laser light source, 3B, 3
9.40...1st. Second. Third light absorber layer, 41...
- Optical recording medium, 42) 43.44... Focus position.

Claims (1)

【特許請求の範囲】 1)波長多重型多層光記録媒体の異なった光記録層へ焦
点を結ばせて記録を行なう光学素子において、光波長に
応じて波長分散をもつ材料により構成され、多波長光源
からの複数の光波長の光を同時もしくは時間分割の形態
で受光可能となし、その各波長光に対応する前記記録媒
体の光記録層に、当該波長光の焦点をそれぞれ独立して
結ばせるようになしたことを特徴とする多波長書込み型
光学素子。 2)特許請求の範囲第1項記載の多波長書込み型光学素
子において、前記材料は波長に応じて光の屈折率または
回折効率が異なる材料であることを特徴とする多波長書
込み型光学素子。 3)特許請求の範囲第1項または第2項記載の光学素子
において、前記材料はレンズ材料であって、その屈折率
の波長分散を最適化したレンズを用いることを特徴とす
る多波長書込み型光学素子。 4)特許請求の範囲第1項または第2項記載の光学素子
において、前記材料はフレネルゾーンプレートであつて
、その回折効率の波長分散を最適化して用いることを特
徴とする多波長書込み型光学素子。
[Claims] 1) An optical element that performs recording by focusing on different optical recording layers of a wavelength multiplexing multilayer optical recording medium, which is made of a material that has wavelength dispersion according to the wavelength of light, It is possible to receive light of a plurality of light wavelengths from a light source simultaneously or in a time-divided manner, and the focus of each wavelength light is independently focused on the optical recording layer of the recording medium corresponding to each wavelength light. A multi-wavelength writing type optical element characterized by the following. 2) A multi-wavelength writing optical element according to claim 1, wherein the material has a different refractive index or diffraction efficiency depending on the wavelength. 3) The optical element according to claim 1 or 2, wherein the material is a lens material, and the multi-wavelength writing type is characterized by using a lens whose refractive index wavelength dispersion is optimized. optical element. 4) The optical element according to claim 1 or 2, wherein the material is a Fresnel zone plate, and the multi-wavelength writing type optical element is used by optimizing the wavelength dispersion of the diffraction efficiency. element.
JP61258533A 1986-10-31 1986-10-31 Multi-wavelength write type optical element Pending JPS63113947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258533A JPS63113947A (en) 1986-10-31 1986-10-31 Multi-wavelength write type optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258533A JPS63113947A (en) 1986-10-31 1986-10-31 Multi-wavelength write type optical element

Publications (1)

Publication Number Publication Date
JPS63113947A true JPS63113947A (en) 1988-05-18

Family

ID=17321540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258533A Pending JPS63113947A (en) 1986-10-31 1986-10-31 Multi-wavelength write type optical element

Country Status (1)

Country Link
JP (1) JPS63113947A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254432A (en) * 1990-03-02 1991-11-13 Pioneer Electron Corp Optical pickup
JPH0410239A (en) * 1990-04-25 1992-01-14 Sanyo Electric Co Ltd Optical pickup device
US5226029A (en) * 1989-05-16 1993-07-06 Victor Company Of Japan Electric charge image recording medium and recording/reproducing apparatus
EP0827140A3 (en) * 1996-08-27 1998-08-12 Nec Corporation Apparatus and method for optical pick-up
KR100263154B1 (en) * 1996-08-29 2000-09-01 윤종용 Optical pick-up using optical phase plate
JP2001060336A (en) * 1998-10-28 2001-03-06 Matsushita Electric Ind Co Ltd Optical head
US6363046B1 (en) 1997-03-28 2002-03-26 Samsung Electronics Co., Ltd. Optical recording/pickup head compatible with a digital versatile disk (DVD) and a recordable compact disk (CD-R) using a holographic variable aperture
JP2005262290A (en) * 2004-03-19 2005-09-29 Ricoh Co Ltd Laser beam machining apparatus, laser beam machining method and structure produced by the machining apparatus or machining method
EP1927983A2 (en) 2006-11-29 2008-06-04 Ricoh Company, Ltd Optical head, optical disc apparatus including the optical head, and information processing apparatus including the optical disk apparatus
US8174952B2 (en) 2005-11-21 2012-05-08 Ricoh Company, Ltd. Light source unit, optical detector unit, optical pickup device, and optical disk device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226029A (en) * 1989-05-16 1993-07-06 Victor Company Of Japan Electric charge image recording medium and recording/reproducing apparatus
JPH03254432A (en) * 1990-03-02 1991-11-13 Pioneer Electron Corp Optical pickup
JPH0410239A (en) * 1990-04-25 1992-01-14 Sanyo Electric Co Ltd Optical pickup device
EP0827140A3 (en) * 1996-08-27 1998-08-12 Nec Corporation Apparatus and method for optical pick-up
KR100263154B1 (en) * 1996-08-29 2000-09-01 윤종용 Optical pick-up using optical phase plate
US6363046B1 (en) 1997-03-28 2002-03-26 Samsung Electronics Co., Ltd. Optical recording/pickup head compatible with a digital versatile disk (DVD) and a recordable compact disk (CD-R) using a holographic variable aperture
JP2001060336A (en) * 1998-10-28 2001-03-06 Matsushita Electric Ind Co Ltd Optical head
JP2005262290A (en) * 2004-03-19 2005-09-29 Ricoh Co Ltd Laser beam machining apparatus, laser beam machining method and structure produced by the machining apparatus or machining method
US8174952B2 (en) 2005-11-21 2012-05-08 Ricoh Company, Ltd. Light source unit, optical detector unit, optical pickup device, and optical disk device
EP1927983A2 (en) 2006-11-29 2008-06-04 Ricoh Company, Ltd Optical head, optical disc apparatus including the optical head, and information processing apparatus including the optical disk apparatus

Similar Documents

Publication Publication Date Title
US5768221A (en) Method of and apparatus for initializing multi-layer optical recording medium
US8169876B2 (en) Optical information recording method, optical information reproducing method, optical information recording apparatus and optical information reproducing apparatus
JPH03157816A (en) Optical information recording member and optical information recording and reproducing device
JPH05151644A (en) Optical data memory medium
JPS63113947A (en) Multi-wavelength write type optical element
WO2007123065A1 (en) Optical information recording/reproducing device
US20010038596A1 (en) Multi-wavelength optical disc, apparatus and method for reading and writing signal therefor
JPH1055566A (en) Optical pickup device
JPS60202545A (en) Multi-layer optical recording and reproducing method
JP4060813B2 (en) Holographic recording device, holographic reproducing device, and mask
EP1523000B1 (en) Multilayer optical recording medium and storage
JP2000187879A (en) Recording and reproducing device and optical head for optical information recording medium
JPH056546A (en) Information reproducing device and information recording and reproducing device
JP2003228848A (en) Optical recording and reproducing method and apparatus
JPS59210543A (en) Laser recording medium
CN101821680B (en) Optical information recording medium, optical information recording/reproducing device and optical information recording/reproducing method
JP5447985B2 (en) Optical head device and optical information recording / reproducing device
JP4165287B2 (en) Optical recording medium, optical recording / reproducing apparatus, and optical recording / reproducing method
JP2005078691A (en) Holographic recording medium
JP2000089648A (en) Hologram recording and reproducing device and hologram recording medium
CN100507760C (en) Quickly duplication diffraction memory for mass production
JPH0254434A (en) Optical head
JPH10124921A (en) Optical reproducing device
JPH0391125A (en) Optical pickup device using wavelength multiplex recording system
JPS63142546A (en) Wavelength multiplex optical recording medium