JPS63113133A - Fuel supply control device of internal combustion engine - Google Patents

Fuel supply control device of internal combustion engine

Info

Publication number
JPS63113133A
JPS63113133A JP25848886A JP25848886A JPS63113133A JP S63113133 A JPS63113133 A JP S63113133A JP 25848886 A JP25848886 A JP 25848886A JP 25848886 A JP25848886 A JP 25848886A JP S63113133 A JPS63113133 A JP S63113133A
Authority
JP
Japan
Prior art keywords
fuel supply
cylinder
fuel
amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25848886A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP25848886A priority Critical patent/JPS63113133A/en
Priority to US07/115,371 priority patent/US4883038A/en
Publication of JPS63113133A publication Critical patent/JPS63113133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize engine speed at idle and normal operating times by increasing or decreasing fuel supply for correction thereof to a cylinder causing changes in engine speed based on the changes in engine speed for a period of specified stroke of a each cylinder. CONSTITUTION:A control unit 11 calculates a fundamental fuel injection quantity based on detection values sensed by an air flow meter 3 and a crank angle sensor 7, making various corrections based on detection values sensed by a throttle opening sensor 5, a water temperature sensor 8, an O2-sensor 10, etc. When the engine speed is changed by excessive combustion or flameout, a cylinder causing the changes in engine speed is determined based on detection value sensed by the crank angle sensor 7. When fuel is supplied to the cylinder, the fuel supply is corrected by increasing fuel in case of flameout, or by decreasing fuel in case of excessive combustion.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、気筒毎に燃料噴射弁等の燃料供給手段を備え
た内燃機関の燃料供給制御装置に関し、詳しくは機関回
転速度の変動を抑制するように気筒毎に燃料供給量を補
正するようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fuel supply control device for an internal combustion engine that is equipped with a fuel supply means such as a fuel injection valve for each cylinder. The present invention relates to a device in which the fuel supply amount is corrected for each cylinder so that the fuel supply amount is corrected for each cylinder.

〈従来の技術〉 従来の電子制御燃料噴射式の内燃機関では、燃料の噴射
量Tiを例えば次のような式によって定めるようにして
いる。
<Prior Art> In a conventional electronically controlled fuel injection type internal combustion engine, the fuel injection amount Ti is determined, for example, by the following formula.

Ti−TpXCOEFXcr+Ts ここで、Tpは基本噴射量であり、次のような式で与え
られる。
Ti-TpXCOEFXcr+Ts Here, Tp is the basic injection amount and is given by the following formula.

Tp如KXQ/N Kは定数、Qは吸入空気流量、Nは機関回転速度である
。又、C0EFは各種増量補正係数であり、 C0EF= 1 +Ktw+Kas+Kacc +Km
rのような式で与えられる。Kt−は水温増量補正係数
、Kasは始動及び始動後増量補正係数+ Kaccは
加速増量補正係数、Kmrは混合比補正係数であ′る。
Tp like KXQ/N K is a constant, Q is the intake air flow rate, and N is the engine rotation speed. Also, C0EF is various increase correction coefficients, C0EF= 1 +Ktw+Kas+Kacc +Km
It is given by an expression such as r. Kt- is a water temperature increase correction coefficient, Kas is a starting and post-start increase correction coefficient + Kacc is an acceleration increase correction coefficient, and Kmr is a mixture ratio correction coefficient.

αは後述する空燃比のフィードバック制御(λコントロ
ール)を行うための空燃比フィードバック補正係数であ
る。Tsは電圧補正骨で、電源電圧の変動にともなう噴
射量のばらつきを補正するためのものである。
α is an air-fuel ratio feedback correction coefficient for performing air-fuel ratio feedback control (λ control) to be described later. Ts is a voltage correction element, which is used to correct variations in the injection amount due to fluctuations in the power supply voltage.

空燃比のフィードバック制御は、機関の排気系に02セ
ンサを取付けて実際の空燃比を検出し、実際の空燃比が
理論空燃比より濃いか薄いかをスライスレベルにより判
定して実際の空燃比を理論空燃比に限りな(近付けるよ
うに燃料の噴射量を制御するものであり、このために、
前記空燃比フィードバック補正係数αを変化させること
によって制御される。
Air-fuel ratio feedback control involves installing an 02 sensor in the engine's exhaust system to detect the actual air-fuel ratio, and determining whether the actual air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio using a slice level. It controls the amount of fuel injection so that it approaches the stoichiometric air-fuel ratio.
It is controlled by changing the air-fuel ratio feedback correction coefficient α.

〈発明が解決しようとする問題点〉 しかしながら、このような従来の電子制御燃料噴射式多
気筒内燃機関、とりわけ、燃料噴射弁を各気筒毎に備え
るいわゆるマルチポイントインジェクション方式の内燃
機関では、構造上或いは経時変化等により各燃料噴射弁
の燃料噴射量に相違が発生すると、気筒間での燃料の分
配が均一にならないことがある。これにより、特定の気
筒が失火を生じたり、逆に強燃焼(燃焼圧力が大き過ぎ
る)を生じたりすると機関回転が大きく変動し、機関の
安定性、殊に、アイドル安定性が悪化してサージングを
発生したりするとともに機関の出力及び燃費の悪化を招
き、又は、全開時において特定気筒からの排気特性が極
度に悪化して排気処理手段として機能する三元触媒等の
焼損を招く等の問題点を生じてしまう。
<Problems to be Solved by the Invention> However, such conventional electronically controlled fuel injection multi-cylinder internal combustion engines, particularly so-called multi-point injection internal combustion engines in which each cylinder has a fuel injection valve, have structural problems. Alternatively, if a difference occurs in the fuel injection amount of each fuel injection valve due to changes over time, etc., the distribution of fuel between the cylinders may not be uniform. As a result, if a specific cylinder misfires or, conversely, strong combustion (combustion pressure is too high) occurs, the engine speed will fluctuate greatly, and engine stability, especially idle stability, will deteriorate, leading to surging. Problems include problems such as a deterioration of the engine's output and fuel efficiency as well as a deterioration of the engine's output and fuel efficiency, or extremely deterioration of the exhaust characteristics from a specific cylinder when the engine is fully opened, leading to burnout of the three-way catalyst, etc. that functions as an exhaust treatment means. This results in a point.

本考案は、このような実状に鑑みてなされたものであり
、燃料分配特性の悪化を適確に補正し、これにより、機
関の安定性を飛躍的に向上させて出力及び燃費を向上さ
せると共に、三元触媒の焼損などを防止することを目的
とする。
The present invention was developed in view of the above-mentioned circumstances, and aims to accurately correct the deterioration of fuel distribution characteristics, thereby dramatically improving engine stability, improving output and fuel efficiency, and improving fuel efficiency. The purpose is to prevent burnout of the three-way catalyst.

く問題点を解決するための手段〉 このため、本発明では第1図に示すように気筒毎に燃料
供給手段を備えた内燃機関の燃料供給制御装置において
、機関回転速度を検出する回転速度検出手段と、機関回
転速度を含む機関運転状態に応じて基本となる燃料供給
量を設定する基本燃料供給量設定手段と、所定行程にあ
る気筒を判別する気筒判別手段と、各気筒の所定の行程
時期毎の機関回転速度の変化量を演算する回転速度変化
量演算手段と、機関回転速度の変化量が所定以上のとき
に該変化に影響を与えた気筒に対して当該変化を無くす
方向に前記基本燃料供給量を増減補正する燃料供給量補
正手段と、基本燃料供給量又は補正された燃料供給量に
対応する燃料供給信号を気筒判別手段によって判別され
た燃料供給時期にある気筒の燃料供給手段に出力する燃
料供給信号出力手段とを備えた構成とする。
Means for Solving the Problems> Therefore, in the present invention, as shown in FIG. 1, in a fuel supply control device for an internal combustion engine having a fuel supply means for each cylinder, a rotation speed detection method for detecting the engine rotation speed is provided. basic fuel supply amount setting means for setting a basic fuel supply amount according to engine operating conditions including engine rotational speed; cylinder discrimination means for determining a cylinder in a predetermined stroke; and a predetermined stroke for each cylinder. a rotational speed change amount calculation means for calculating the amount of change in the engine rotational speed for each period; Fuel supply amount correction means for increasing or decreasing the basic fuel supply amount; and fuel supply means for a cylinder at the fuel supply timing determined by the cylinder determination means to send a fuel supply signal corresponding to the basic fuel supply amount or the corrected fuel supply amount. The fuel supply signal output means outputs the fuel supply signal to the fuel supply signal.

(作用〉 かかる構成において、基本燃料供給量設定手段により、
機関運転状態に応じて全気筒で略共通な基本燃料供給量
が設定される。
(Function) In such a configuration, the basic fuel supply amount setting means:
A basic fuel supply amount that is substantially common to all cylinders is set depending on the engine operating state.

一方、回転速度検出手段によって各気筒の所定の行程時
期毎に機関回転速度が検出され、回転速度変化量演算手
段により、各回毎の機関回転速度の変化量が演算される
On the other hand, the rotational speed detection means detects the engine rotational speed at each predetermined stroke period of each cylinder, and the rotational speed change amount calculation means calculates the amount of change in the engine rotational speed each time.

そして燃料供給量補正手段により回転速度変化に影響を
与えた気筒の基本燃料供給量が回転速度の変化量に基づ
いて補正される。
Then, the fuel supply amount correcting means corrects the basic fuel supply amount of the cylinder that affected the rotational speed change based on the amount of change in the rotational speed.

このようにして気筒毎に補正して設定された燃料供給量
に対応する燃料供給信号が、燃料供給信号出力手段から
気筒判別手段によって判別された気筒の燃料供給手段へ
出力され、該燃料供給手段から対応する気筒へ供給され
る。
A fuel supply signal corresponding to the fuel supply amount corrected and set for each cylinder in this way is output from the fuel supply signal output means to the fuel supply means of the cylinder discriminated by the cylinder discrimination means, and the fuel supply signal is outputted from the fuel supply signal output means to the fuel supply means of the cylinder discriminated by the cylinder discrimination means. is supplied to the corresponding cylinder.

〈実施例〉 以下に本発明の実施例を図に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

一実施例の構成を示す第2図において、内燃機関1の吸
気通路2には上流側から吸入空気流量検出用のエアフロ
メータ3.絞り弁4.該絞り弁4の開度検出用のスロッ
トル開度センサ5及び各気筒毎に燃料供給手段としての
燃料噴射弁6が設けられる。また、機関回転速度検出手
段としてのクランク角センサ7、冷却水温度検出用の水
温センサ8及び排気通路9に排気中酸素濃度を検出する
0□センサ10が設けられる。
In FIG. 2 showing the configuration of an embodiment, an air flow meter 3 for detecting the flow rate of intake air is installed in an intake passage 2 of an internal combustion engine 1 from the upstream side. Throttle valve 4. A throttle opening sensor 5 for detecting the opening of the throttle valve 4 and a fuel injection valve 6 as fuel supply means are provided for each cylinder. Further, a crank angle sensor 7 as an engine rotational speed detecting means, a water temperature sensor 8 for detecting cooling water temperature, and a 0□ sensor 10 for detecting the oxygen concentration in exhaust gas are provided in the exhaust passage 9.

前記エアフロメータ3からの吸入空気流量信号Q、クラ
ンク角センサ7からの各気筒の所定行程時期毎に出力さ
れる基準信号(その中、特定気筒、例えば#l気筒に対
応する信号は他と区別される気筒判別信号を兼ねる)及
び微小な単位クランク角毎に出力される単位角信号、ス
ロットル開度センサ5からの絞り弁開度信号、水温セン
サ8からの冷却水温度信号、0□センサ10からの酸素
濃度信号は、マイクロコンピュータを内蔵したコントロ
ールユニット11に入力され、コントロールユニット1
1はこれら各信号に基づいて検出された機関運転状態に
応じて燃料噴射量(燃料供給if)を設定し、該噴射量
に相応するパルス巾をもつ噴射パルス(燃料供給信号)
を燃料噴射弁6に出力することによって燃料噴射制御を
行う。
The intake air flow rate signal Q from the airflow meter 3, the reference signal output from the crank angle sensor 7 at each predetermined stroke period of each cylinder (among them, the signal corresponding to a specific cylinder, for example, cylinder #l, is distinguished from the others) unit angle signal output for each tiny unit crank angle, throttle valve opening signal from throttle opening sensor 5, cooling water temperature signal from water temperature sensor 8, and 0□ sensor 10. The oxygen concentration signal from the is input to the control unit 11 containing a microcomputer,
1 sets the fuel injection amount (fuel supply if) according to the engine operating state detected based on each of these signals, and generates an injection pulse (fuel supply signal) having a pulse width corresponding to the injection amount.
The fuel injection control is performed by outputting this to the fuel injection valve 6.

ここで、燃料噴射量の設定は、機関運転状態に応じて基
本となる燃料噴射量を設定した後、各気筒の燃焼行程時
期毎に検出された機関回転速度の変化に応じて気筒毎の
燃料噴射量を増減補正するようにしている。
Here, the fuel injection amount is set by setting the basic fuel injection amount according to the engine operating state, and then setting the fuel injection amount for each cylinder according to the change in the engine speed detected at each combustion stroke timing of each cylinder. The injection amount is adjusted to increase or decrease.

以下、前記燃料噴射量制御ルーチンを第3図〜第5図に
示したフローチャートに従って説明する。
Hereinafter, the fuel injection amount control routine will be explained according to the flowcharts shown in FIGS. 3 to 5.

第3図は、クランク角センサ7からの基準信号入力毎に
行われる、燃料増減補正を行う気筒を判別するルーチン
を示す。
FIG. 3 shows a routine that is performed every time a reference signal is input from the crank angle sensor 7 and determines which cylinder is to be subjected to fuel increase/decrease correction.

ステップ(図ではSと記す)1では前回クランク角セン
サ7から基準信号を入力してから今回基準信号を入力す
るまでの時間(周期)の逆数として機関回転速度Nを検
出すると共に一時記憶する。
In step (denoted as S in the figure) 1, the engine rotational speed N is detected as the reciprocal of the time (period) from inputting the reference signal from the previous crank angle sensor 7 to inputting the reference signal this time, and temporarily stores it.

ステップ2では基準信号が特定気筒(#1気筒)の気筒
判別信号であるか否かを判定し、YESの場合は、ステ
ップ3へ進んで該特定気筒を示すデータcyIlDをO
にセットする。
In step 2, it is determined whether the reference signal is a cylinder discrimination signal for a specific cylinder (#1 cylinder), and if YES, the process proceeds to step 3 where data cyIld indicating the specific cylinder is output.
Set to .

その後、基準信号を入力した時はステップ4へ進んでデ
ータcylDを1カウントアツプし、例えば#2.#3
.#4気筒は夫々cylDが3,1゜2にセットされ、
再度#1気筒の気筒判別信号が入力されるとcylDは
0にリセットされ、これによって各気筒を判別できる。
After that, when the reference signal is input, the process advances to step 4 and the data cylD is counted up by 1, for example #2. #3
.. #4 cylinder has cylD set to 3,1゜2 respectively,
When the cylinder discrimination signal for the #1 cylinder is input again, cylD is reset to 0, and thereby each cylinder can be discriminated.

即ち、クランク角センサ7とステップ2〜4の機能が気
筒判別手段を構成する。
That is, the crank angle sensor 7 and the functions of steps 2 to 4 constitute cylinder discrimination means.

次いでステップ5ではステップエで演算した前回の機関
回転速度に所定の回転Nl(例えば6 rpm)を減算
した値と、今回演算した機関回転速度とを比較し、前者
が後者が上回る時つまり回転速度の低下が大きいときで
あると判定し、ステップ7でその原因となった気筒の燃
料供給量を増量補正すべき旨のデータ(00)を記憶す
る。
Next, in Step 5, the value obtained by subtracting a predetermined rotation Nl (for example, 6 rpm) from the previous engine rotation speed calculated in Step E is compared with the engine rotation speed calculated this time, and when the former exceeds the latter, that is, the rotation speed It is determined that the decrease is large, and in step 7, data (00) indicating that the fuel supply amount of the cylinder that caused the decrease should be corrected to increase is stored.

また、ステップ5で後者が前者以上と判定された場合は
、ステップ6へ進み前回の回転速度に所定回転N1を加
算した値と今回演算した回転速度とを比較し、後者が前
者以下であると判定された場合は回転速度の変動中が所
定回転N1以内であるため正常であると判定し、ステッ
プ8で増減量補正を行わない旨のデータを(01)を記
憶する。
If the latter is determined to be greater than or equal to the former in step 5, the process proceeds to step 6, where the value obtained by adding the predetermined rotation N1 to the previous rotational speed is compared with the rotational speed calculated this time, and if the latter is less than or equal to the former. If this is the case, it is determined that the rotational speed is normal because the rotational speed is changing within the predetermined rotational speed N1, and in step 8, data (01) indicating that no increase/decrease correction is to be performed is stored.

またステップ6で後者が前者を上回ると判定されたとき
、つまり回転速度の上昇が大きいときは強燃焼(最新の
燃焼行程の気筒の燃焼圧が大き過ぎる)であると判定し
、ステップ9で強撚焼化じていると判別された気筒の燃
料供給量を減量補正すべき旨のデータ(02)を記憶す
る。
In addition, when it is determined in step 6 that the latter exceeds the former, that is, when the increase in rotational speed is large, it is determined that strong combustion is occurring (the combustion pressure in the cylinder in the latest combustion stroke is too large), and in step 9 Data (02) indicating that the amount of fuel supplied to the cylinder determined to have deteriorated in twist firing should be corrected by reducing it is stored.

ここで、ステップ5.6の機能が回転速度変化量演算手
段に相当する。
Here, the function of step 5.6 corresponds to the rotational speed change amount calculation means.

第4図は単位時間(例えば10m5)毎に行われる燃料
噴射量演算ルーチンを示す。
FIG. 4 shows a fuel injection amount calculation routine performed every unit time (for example, 10 m5).

図において、ステップ11ではエアフロメータ3から吸
入空気流i1Qを読み込み、ステップエ2では第3図の
ステップ1で演算された機関回転速度Nを読み込む。但
し、クランク角センサ7からの単位角信号の単位時間当
りの入力回数に基づいてこれに比例する機関回転速度N
を演算してもよい。
In the figure, in step 11, the intake air flow i1Q is read from the air flow meter 3, and in step E2, the engine rotational speed N calculated in step 1 of FIG. 3 is read. However, the engine rotation speed N is proportional to the number of inputs of the unit angle signal from the crank angle sensor 7 per unit time.
may be calculated.

ステップ13では燃料噴射弁6から噴射される燃料の基
本噴射量を吸入空気流量Qと機関回転速度Nとに基づい
て次式により演算する Tp−に−Q/N  (Kは定数) 次いでステップ14〜16において、増Nff1補正を
行うべき気筒を求める。
In step 13, the basic injection amount of fuel injected from the fuel injection valve 6 is calculated by the following formula based on the intake air flow rate Q and the engine rotational speed N. In steps 1 to 16, the cylinder to which the increased Nff1 correction is to be performed is determined.

即ちステップ14では第3図のステップ3又はステップ
4において記憶された判別気筒のデータcyID(0〜
3)に対して、燃料の増減量補正を行う場合の気筒を判
別する。点火順序が#1−#3−# 4−# 2の場合
失火あるいは強撚焼による回転速度の変化が検出される
のは変化後2回基準信号を入力した時であり、これに基
づいてcylD=00ときはステップ15で気筒胤デー
タnを4.cyJD=1のときはステップ16でn=2
.cyl!D=1=2のときはステップ17でn=1.
c)j!Dミ3のときはステップ18でn=3にセット
する。
That is, in step 14, the data cyID (0 to 4) of the discrimination cylinder stored in step 3 or step 4 in FIG.
Regarding 3), the cylinder in which the fuel increase/decrease correction is to be performed is determined. When the ignition order is #1-#3-#4-#2, a change in rotational speed due to misfire or strong twist firing is detected when the reference signal is input twice after the change, and based on this, cylD =00, in step 15 the cylinder seed data n is set to 4. When cyJD=1, n=2 in step 16
.. cyl! When D=1=2, n=1.
c) j! If it is D Mi 3, set n=3 in step 18.

ステップ19では第3図のステップ7〜9において記憶
された燃焼状態のデータを判別する。
In step 19, the combustion state data stored in steps 7 to 9 in FIG. 3 is determined.

このデータが前記ステップ7で指令された失火に対して
の燃料供給量を増量補正する指令(00)であるときは
ステップ20へ進んで#n気筒の燃料噴射量補正係数K
nを前回値に対して所定!(0,1%)増加させ、ステ
ップ21でこの値が最大値KnMAX (例えば+5〜
+10%)に達したか否かを判定し、達している場合は
ステップ22でに、 =KnMaxにする。またデータ
が強撚焼に対しての燃料供給量を減量補正する指令く0
2)であるときはステップ22へ進んで同じく燃料噴射
量補正係数に7を前回値に対して所定ffi (0,1
%)減少させ、ステップ24でこの値が最小値に、1、
工(例えば−5〜−10%)以下となったか否かを判定
し、YESの場合はステップ25でKnNINにする。
If this data is a command (00) to increase the fuel supply amount in response to the misfire commanded in step 7, the process proceeds to step 20, and the fuel injection amount correction coefficient K of the #n cylinder is executed.
Set n to the previous value! (0,1%), and in step 21 this value is set to the maximum value KnMAX (for example +5 to
+10%) is reached, and if so, in step 22, =KnMax is set. The data also indicates a command to reduce the amount of fuel supplied for strong twist firing.
2), the process proceeds to step 22 and similarly sets the fuel injection amount correction coefficient to 7 to a predetermined value ffi (0, 1
%), and in step 24 this value is reduced to the minimum value, 1,
It is determined whether or not it has become less than 10% (for example, -5 to -10%), and if YES, it is set to KnNIN in step 25.

またデータが正常であり、増減量補正を行わない場合(
ol)であるときはステップ26へ進んでKnを前回値
をそのまま今回値としてセットする。
Also, if the data is normal and no increase/decrease correction is performed (
ol), the process proceeds to step 26, where the previous value of Kn is set as the current value.

ここで、第3図のステップ7〜9と第4図のステップ2
0〜25の機能が燃料供給量補正手段を構成する。
Here, steps 7 to 9 in Figure 3 and step 2 in Figure 4
The functions 0 to 25 constitute the fuel supply amount correction means.

次いでステップ27で最終的な燃料噴射1iTiを次式
によって演算する。
Next, in step 27, the final fuel injection 1iTi is calculated using the following equation.

Ti=Tp−COEF−cr・ (1+Kn)+Tsこ
こで、C0EFは絞り弁開度や冷却水温度等に基づいて
求められた各種補正係数、αは、排気中酸素濃度に基づ
いて求められた空燃比のフィードバック補正手段であり
、Knは#n(nl〜4)気筒の前記補正係数、Taは
バッテリ電圧による補正骨である。
Ti=Tp-COEF-cr・(1+Kn)+Ts Here, C0EF is various correction coefficients determined based on the throttle valve opening, cooling water temperature, etc., and α is the air pressure coefficient determined based on the oxygen concentration in the exhaust gas. It is a fuel ratio feedback correction means, where Kn is the correction coefficient for #n (nl to 4) cylinders, and Ta is a correction factor based on battery voltage.

このようにして補正設定された燃料噴射量が機関運転状
態に基づいて設定された各気筒の所定のクランク角時期
に燃料噴射弁6がら噴射供給される。
The thus corrected fuel injection amount is injected and supplied from the fuel injection valve 6 at a predetermined crank angle timing of each cylinder, which is set based on the engine operating state.

かかる噴射弁作動ルーチンを第5図に従って説明する。This injection valve operation routine will be explained with reference to FIG.

このルーチンはカウンタによりカウントされた値が噴射
時期と一致した時に割り込まれる。
This routine is interrupted when the value counted by the counter matches the injection timing.

ステ・7プ31でcyIDの値から気筒判別を行い、ス
テップ32〜35で判別された気筒の燃料噴射弁6に燃
料噴射fiTiに相当するパルス巾をもつ噴射パルスを
出力する。ここでステップ32〜35の機能が燃料供給
信号出力手段を構成する。次いでステップ36〜39で
は、次回の演算に備えて今回使用された補正係数に、〜
に4を前回値として記憶する。
In Step 7, the cylinder is discriminated based on the value of cyID, and an injection pulse having a pulse width corresponding to the fuel injection fiTi is output to the fuel injection valve 6 of the cylinder discriminated in Steps 32 to 35. Here, the functions of steps 32 to 35 constitute fuel supply signal output means. Next, in steps 36 to 39, ~ is added to the correction coefficient used this time in preparation for the next calculation.
4 is stored as the previous value.

次にかかる制御を行ったときの作用を第6図に基づいて
説明する。
Next, the effect when such control is performed will be explained based on FIG. 6.

今、#1気筒が燃焼行程で失火を生じるとこの気筒の燃
焼圧力が低下することにより平均有効圧力Piが減少し
、これに伴って回転速度が減少する。
Now, when cylinder #1 misfires during the combustion stroke, the combustion pressure of this cylinder decreases, resulting in a decrease in the average effective pressure Pi, and accordingly, the rotational speed decreases.

この回転速度の減少は、#4気筒の基準信号入力時に検
出されその際#1気筒用の補正係数に1が増大補正され
るので、次回の燃料噴射量が増大補正され、これにより
当該気筒の燃焼圧力が上昇し平均有効圧力が回復する。
This decrease in rotational speed is detected when the reference signal for the #4 cylinder is input, and at that time, the correction coefficient for the #1 cylinder is increased by 1, so the next fuel injection amount is increased, and this causes the cylinder's correction coefficient to increase by 1. Combustion pressure increases and average effective pressure recovers.

また、図示の如く#2気筒で強撚焼を住じると、燃焼圧
力が上昇することにより平均有効圧力Piが上昇し、こ
れに伴って回転速度が上昇する。
Further, as shown in the figure, when strong twist firing occurs in the #2 cylinder, the average effective pressure Pi increases due to the increase in combustion pressure, and the rotational speed increases accordingly.

この場合は、回転速度の上昇が#3気筒の基準信号入力
時に検出され、#2気筒用の補正係数に2が減少補正さ
れ、これにより当該気筒の燃焼圧力が減少し、平均を動
圧力の上昇を抑制する。
In this case, an increase in rotational speed is detected when the reference signal for #3 cylinder is input, and the correction coefficient for #2 cylinder is reduced by 2, which reduces the combustion pressure of the cylinder and makes the average equal to the dynamic pressure. Control the rise.

このようにして燃料噴射量を増減補正することにより気
筒毎の平均有効圧力を均一化でき、アイドル時や定常走
行時の回転変動を抑制できサージングの発生を防止でき
ると共に、三元触媒の焼損等の発生も防止できる。
By adjusting the fuel injection amount in this way, it is possible to equalize the average effective pressure for each cylinder, suppress rotational fluctuations during idling and steady driving, prevent surging, and prevent burnout of the three-way catalyst. It is also possible to prevent the occurrence of

尚、本実施例では、失火2強撚焼の発生した気筒のみを
補正したが、失火傾向の気筒についてのみ増量を行い、
他の気筒は増量分/(気筒数−1)だけ減量し、遂に強
燃焼傾向の気筒についてのみ:$i量を行い、他の気筒
は減量分/(気筒数−1)だけ増量してもよい。これは
、失火1強燃焼は、継続的に行われるものではないため
、全体の燃料量は一定として排気エミンション性、燃費
、触媒性能を良好に維持するためである。
In this example, only the cylinder in which the misfire and double-twist firing occurred was corrected, but the amount was increased only for the cylinder that had a tendency to misfire.
The other cylinders are reduced by the amount increased / (number of cylinders - 1), and finally only for cylinders with a strong combustion tendency: $i amount is performed, and the other cylinders are increased by the amount reduced / (number of cylinders - 1). good. This is to maintain good exhaust emission, fuel efficiency, and catalytic performance by keeping the total amount of fuel constant, since misfire combustion does not occur continuously.

〈発明の効果ン 以上説明したように、本発明によれば各気筒の所定行程
時期間における機関回転速度の変化に応じて当該変化の
原因となる気筒に対して燃料供給量を増減補正する構成
としたため、失火1強燃焼による回転速度の変化を短時
間の中に抑制してアイドル時や定常走行時における回転
速度の安定化を図れ、サージングの発生を防止でき三元
触媒の焼損等も防止できるという効果が得られる。
<Effects of the Invention> As explained above, according to the present invention, the fuel supply amount is corrected to increase or decrease the amount of fuel supplied to the cylinder that is the cause of the change in accordance with the change in engine rotational speed during a predetermined stroke time period of each cylinder. As a result, changes in rotational speed due to misfire and combustion can be suppressed within a short period of time, stabilizing the rotational speed during idling and steady driving, preventing surging, and preventing burnout of the three-way catalyst. You can get the effect that you can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図、第2図は本発
明の一実施例の構成を示す図、第3図は同上実施例の燃
焼状態判定ルーチンを示すフローチャート、第4図は同
じく燃料噴射量演算ルーチンを示すフローチャート、第
5図は同じく燃料噴射パルス出力制御ルーチンを示すフ
ローチャート、第6図は同じく各気筒の燃焼状態を示す
タイムチャートである。
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a flowchart showing the combustion state determination routine of the same embodiment, and FIG. 4 is the same. FIG. 5 is a flowchart showing the fuel injection amount calculation routine, FIG. 5 is a flowchart showing the fuel injection pulse output control routine, and FIG. 6 is a time chart showing the combustion state of each cylinder.

Claims (1)

【特許請求の範囲】[Claims] 気筒毎に燃料供給手段を備えた内燃機関の燃料供給制御
装置において、機関回転速度を検出する回転速度検出手
段と、機関回転速度を含む機関運転状態に応じて基本と
なる燃料供給量を設定する基本燃料供給量設定手段と、
所定行程にある気筒を判別する気筒判別手段と、各気筒
の所定の行程時期毎の機関回転速度の変化量を演算する
回転速度変化量演算手段と、機関回転速度の変化量が所
定以上のときに該変化に影響を与えた気筒に対して当該
変化を無くす方向に前記基本燃料供給量を増減補正する
燃料供給量補正手段と、基本燃料供給量又は補正された
燃料供給量に対応する燃料供給信号を気筒判別手段によ
って判別された燃料供給時期にある気筒の燃料供給手段
に出力する燃料供給信号出力手段とを備えたことを特徴
とする内燃機関の燃料供給制御装置。
In a fuel supply control device for an internal combustion engine, which includes a fuel supply means for each cylinder, a rotation speed detection means detects the engine rotation speed, and a basic fuel supply amount is set according to the engine operating state including the engine rotation speed. Basic fuel supply amount setting means;
Cylinder discrimination means for discriminating a cylinder in a predetermined stroke; rotation speed change amount calculation means for calculating the amount of change in engine rotation speed for each predetermined stroke period of each cylinder; a fuel supply amount correction means for increasing or decreasing the basic fuel supply amount in a direction to eliminate the change for the cylinder that affected the change; and a fuel supply corresponding to the basic fuel supply amount or the corrected fuel supply amount. 1. A fuel supply control device for an internal combustion engine, comprising fuel supply signal output means for outputting a signal to a fuel supply means of a cylinder whose fuel supply timing is determined by a cylinder determination means.
JP25848886A 1986-10-31 1986-10-31 Fuel supply control device of internal combustion engine Pending JPS63113133A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25848886A JPS63113133A (en) 1986-10-31 1986-10-31 Fuel supply control device of internal combustion engine
US07/115,371 US4883038A (en) 1986-10-31 1987-11-02 Fuel supply control system for multi-cylinder internal combustion engine with feature of suppression of output fluctuation between individual engine cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25848886A JPS63113133A (en) 1986-10-31 1986-10-31 Fuel supply control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63113133A true JPS63113133A (en) 1988-05-18

Family

ID=17320904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25848886A Pending JPS63113133A (en) 1986-10-31 1986-10-31 Fuel supply control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63113133A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982534A (en) * 1982-10-29 1984-05-12 Nippon Denso Co Ltd Control of fuel injection amount for internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982534A (en) * 1982-10-29 1984-05-12 Nippon Denso Co Ltd Control of fuel injection amount for internal-combustion engine

Similar Documents

Publication Publication Date Title
US4508075A (en) Method and apparatus for controlling internal combustion engines
JP2510250B2 (en) Combustion control device for internal combustion engine
US5610321A (en) Sensor failure detection system for air-to-fuel ratio control system
GB2200769A (en) Adaptive control system for internal combustion engine
JP2985578B2 (en) Air-fuel ratio control device for lean burn engine
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
JP3186250B2 (en) Air-fuel ratio control device for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
JPS63113133A (en) Fuel supply control device of internal combustion engine
JPH0432939B2 (en)
US11149705B2 (en) Engine controller and engine control method
JPH07269407A (en) Engine misfire detecting device
JPH076437B2 (en) Fuel supply control device for internal combustion engine
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JPS61229950A (en) Air-fuel ratio controller for engine
JP2592327B2 (en) Fuel supply control device for internal combustion engine
JPH05215004A (en) Combustion control device for internal combustion engine
JP2514442B2 (en) Knock detection device for internal combustion engine
JPH0835440A (en) Output torque control device and control method for internal combustion engine
JP3956893B2 (en) Control device for internal combustion engine
JPS61201842A (en) Control device for rarefied air-fuel ratio during idling of internal-combustion engine
JPH01106945A (en) Control device for learning of internal combustion engine
JPH03225076A (en) Knocking control device for internal combustion engine
JPH05321726A (en) Control device for internal combustion engine
JPH06101564A (en) Device for detecting output fluctuation of internal combustion engine