JPS6311308A - Manufacture of carbon fiber reinforced thermoplastic resin - Google Patents

Manufacture of carbon fiber reinforced thermoplastic resin

Info

Publication number
JPS6311308A
JPS6311308A JP15543386A JP15543386A JPS6311308A JP S6311308 A JPS6311308 A JP S6311308A JP 15543386 A JP15543386 A JP 15543386A JP 15543386 A JP15543386 A JP 15543386A JP S6311308 A JPS6311308 A JP S6311308A
Authority
JP
Japan
Prior art keywords
carbon fiber
thermoplastic resin
cut
pulverized
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15543386A
Other languages
Japanese (ja)
Inventor
Tadashi Ito
正 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP15543386A priority Critical patent/JPS6311308A/en
Publication of JPS6311308A publication Critical patent/JPS6311308A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/905Fillers or reinforcements, e.g. fibres with means for pretreatment of the charges or fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To enable a carbon fiber reinforced thermoplastic resin to be produced without decreasing of recovery of carbon fiber aggregate and to contrive not to generate deterioration of working environment due to scattering of carbon fiber by a method in which a bulky carbon fiber aggregate and a solid material of thermoplastic resin are cut together by a high speed rotary cutter, and they are pulverized and mixed, and then the cut and pulverized mixture is molten and kneaded. CONSTITUTION:A bulky carbon fiber aggregate and a solid material of thermoplastic resin are cut together, pulverized and mixed by a high speed rotary cutter, and then the cut and pulverized mixture is molten and kneaded. The bulky carbon fiber aggregate is e.g. mat, paper, tow or felt, etc., and it measures (thickness) 1-5cm X (width) 1-200cm X (length) 1-infinity cm, as for the bulk of the aggregate, the density of 0.008-0.08g/cc is preferable. The thermoplastic resin is a solid material of high molecular weight polymer having a heat- softening temperature of at least room temperature, preferably at least 40 deg.C, and it is e.g. polyethylenetelephthalate, polybutylenetelephthalate, polyacetal, polystyrene, etc. and their mixture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維で強化さ扛た熱可塑性樹脂の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a thermoplastic resin reinforced with carbon fibers.

〔従来技術及びその問題点〕[Prior art and its problems]

炭素繊維を熱可塑性樹脂と混練し、樹脂の曲げ強度、引
張強度を向上したり、摺動特性や電気特性を改良した炭
素繊維強化熱可塑性樹脂(以下CFRTPと略記する)
は、複雑形状物用として欠かせない材料であり、スポー
ツ用品から一般工業用途まで幅広−商品形態をなしてい
る。
Carbon fiber-reinforced thermoplastic resin (hereinafter abbreviated as CFRTP) that is made by kneading carbon fiber with thermoplastic resin to improve the bending strength and tensile strength of the resin, as well as improving the sliding properties and electrical properties.
is an indispensable material for complex-shaped objects, and is available in a wide range of product forms, from sporting goods to general industrial uses.

一般にCFRTPは、熱可塑性樹脂のペレットと数−下
にカットした炭素繊維をタンブラ−等で固体混合し、エ
クストルーダーの如き連続溶融混練機で混練吐出させ、
ペレタイザーで数叫のペレットに切断後、射出成型機な
ど連に&溶融成型機で金型中へ射出し成形品としている
Generally, CFRTP is produced by solidly mixing thermoplastic resin pellets and carbon fibers cut into several pieces in a tumbler, etc., and then kneading and discharging the mixture using a continuous melt kneader such as an extruder.
After cutting into several pellets with a pelletizer, they are transferred to an injection molding machine and injected into a mold using a melt molding machine to form an injection molded product.

この際強化材として使用する炭素繊維を数層以下の長さ
にカットする技術は、長フィラメント状炭素繊維の場合
には回転刃カッターで連続的に切断できる。一方、最近
盛んに開発されて込るようなピッチ系の汎用炭素繊維は
、2o喘〜100順の短か−炭素繊維が主であるが、短
繊維は上記と同様なカッターでは切断できないので、様
々な工夫がなされてAる。
In this case, the technique of cutting the carbon fiber used as the reinforcing material into lengths of several layers or less can be used to continuously cut long filament carbon fibers with a rotary blade cutter. On the other hand, pitch-based general-purpose carbon fibers, which have been actively developed recently, are mainly short carbon fibers in the order of 2o to 100, but short fibers cannot be cut with the same cutter as above, so Various efforts have been made to achieve A.

例えば、短かいピッチ系炭素繊維をエアサンカーで集束
し炭化後、嵩高−集束体を回転刃カンタ−へフィードし
1!!続的に切断する方法、短かA炭素繊維を強制的に
挽き臼ヘフィードし、連続的に粉状へ切断する方法、さ
らには本発明者らの発明になるものであるが、水等流動
体に短かい炭素禮維を混合し、高速回転切断機でパッチ
ワイズに切断し、乾燥させる方法(特願昭61−433
51号)等である。
For example, short pitch-based carbon fibers are bundled with an air sunker and after carbonization, the bulky bundle is fed to a rotary blade canter. ! A method of continuously cutting short carbon fibers, a method of forcibly feeding short A carbon fibers to a mill, and continuously cutting them into powder, and a method of continuously cutting the short A carbon fibers into a powder form, which was invented by the present inventors. A method in which short carbon fibers are mixed with the water, cut into patchwise pieces using a high-speed rotary cutting machine, and dried (Patent application No. 61-433)
No. 51) etc.

しかしいずれの方法も熱可塑性樹脂と混合するまでに炭
化後あるいは炭化以前に、1〜2工程を要し、収率の低
下を来たし経済性を損なうとか、カッティングの際の粉
塵により作業環境を著しく汚染するとかの欠点がある。
However, both methods require one or two steps before or after carbonization to mix with the thermoplastic resin, resulting in a decrease in yield and impairing economic efficiency, and the dust generated during cutting significantly degrades the working environment. It has the disadvantage of being contaminated.

〔間呟点を解決する為の手段〕[Means for resolving misunderstandings]

本発明者らは種々研究の結果、以下の(1)〜(4)の
点より本発明を完成するに至った。即ち(1)紡糸方法
に限らず短かA炭素繊維は、紡糸したピッチ繊維をベル
トコンベア上に堆積しそのまま不融化続すて炭化せしめ
る方法が最も経済的であること、 (2)  この炭素繊維は嵩高い集合体をなすが、炭素
繊維集合体を因かに強制的に高速回転刃に押しつけても
刃に当る一部しか切断できなりこと。
As a result of various studies, the present inventors have completed the present invention based on the following points (1) to (4). That is, (1) regardless of the spinning method, the most economical method for producing short A carbon fibers is to deposit the spun pitch fibers on a belt conveyor, continue to infusible, and then carbonize them; (2) this carbon fiber. forms a bulky aggregate, but even if the carbon fiber aggregate is forcibly pressed against a high-speed rotating blade, only the part that hits the blade can be cut.

(3)シかし、(2)の場合同時に固体を混合してやれ
ば固体の攪拌と飛散に随伴して炭素繊維も流動し、切断
された限られた長さの炭素繊維と粉砕した固体の固体混
合物になること、 さらに (4)溶融混練及び/ある因は溶融射出の隊長すぎる炭
素繊維は折れて適当な長さに治まること。
(3) In the case of (2), if the solids are mixed at the same time, the carbon fibers will flow as the solids are stirred and scattered, and the cut carbon fibers of limited length and the crushed solids will flow together. (4) Carbon fibers that are too large for melt-kneading and/or melt-injection may break and settle to an appropriate length.

〔問題点を解決する為の手段〕[Means for solving problems]

即ち本発明は(ト)嵩高い炭素繊維集合体との)熱可塑
性樹脂の固形物とを共に高速回転切断機で切断粉砕混合
し、該切断粉砕混合物を溶融混練することを特徴とする
炭素繊維強化熱可塑樹脂(CFRTP)の製造方法に関
する。
That is, the present invention provides a carbon fiber characterized in that (g) a bulky carbon fiber aggregate and a thermoplastic resin solid are both cut and pulverized using a high-speed rotary cutter, and the cut and pulverized mixture is melt-kneaded. The present invention relates to a method for producing reinforced thermoplastic resin (CFRTP).

〔構成〕〔composition〕

炭素繊維は、原料がPAN系、ピッチ系−ずれをも問わ
ないが、かかる炭素繊維集合体が形成されるのは溶融紡
糸が多いので、ピッチ系が主体である。ピッチの溶融紡
糸には、いわゆる遠心紡糸法、渦流法あるbは溶融ピッ
チをエアサッカーで曳取るbわゆるエアサッカー法など
あるが、ピッチ繊維が炭化後かかる嵩高い集合体をなす
ものであれば、いずれの製法で作られたものでも良い。
The raw material for carbon fibers may be PAN-based or pitch-based, but since such carbon fiber aggregates are often formed by melt spinning, pitch-based materials are the main material. Pitch melt spinning methods include the so-called centrifugal spinning method, the eddy current method, and the so-called air sucker method, in which the molten pitch is drawn with an air sucker. However, it may be made by any method.

本発明の嵩高込炭素繊維集合体とは、炭素繊維同志のか
らみ合って集合してbるものであって、例えばマット、
ペーパー、トウ、フェルトなどである。この集合体の大
きさは、厚さ1〜5備×横巾1〜200c1nX縦1〜
の浦のものが好ましく使用される。この集合体の嵩高さ
とは、密度がo、oos〜0.081/ /ccである
ものが望まし込。密度が、o、osI!/ecよシ大き
いものであっても構わないが、炭化する際酸化性ガスと
不活性ガスの置換が迅速に行なえないと騒う問題がある
ので好ましくなり0又、o、oosIi/ccより小さ
bものであっても構わなAが炭化炉収率が経済性を損な
うとbう問題があるので好ましくない。
The bulky carbon fiber aggregate of the present invention is an aggregate of carbon fibers intertwined with each other, such as a mat,
Paper, tow, felt, etc. The size of this aggregate is 1 to 5cm thick x 1 to 200cm wide x 1 to 20cm tall.
Those from Noura are preferably used. The bulk of this aggregate preferably has a density of o, oos to 0.081/cc. The density is o, osI! It may be larger than /ec, but since there is a problem that the oxidizing gas and inert gas cannot be quickly replaced during carbonization, it is preferable that it is smaller than 0, o, oosIi/cc. It is not preferable to use A, which may be a carbonaceous material, since there is a problem that the yield in the carbonization furnace impairs economic efficiency.

本発明の熱可塑性樹脂とは、熱軟化温度(軟化点)が室
温以上好ましくは40℃以上の高分子量重合体の固形物
でエンジニアリングプラスチックとして使用されるもの
である。例えば、ポリエチレンテレフタレート、ポリブ
チレンテレフタレート、ポリアセタール、ポリスチレン
、6−ナイロン、6,6−ナイロン、ポリスルホン、ポ
リカーポネート、ポリフェニレンオキサイド、ポリフェ
ニレンスルフィド、チリ塩化ビニル、ポリ塩化ビニリデ
ン、ポリプロピレン、ポリエチレン、ポリエチレン、ポ
リメチルメタクリレート、ポリエーテルエーテルケトン
、ポリテトラフルオロエチレン、ポリフェノール、AB
S、ジアリールフェノール等およびこれらの混合物があ
る。この樹脂中へ潤滑材、顔料、ガラス、他の繊維状物
、充填剤(例えば炭酸カルシウム、テフロンパウダー、
グラファイトパウダー)や無機フィラーなど配合しても
何ら支障把ない。
The thermoplastic resin of the present invention is a solid substance of a high molecular weight polymer having a heat softening temperature (softening point) of room temperature or higher, preferably 40° C. or higher, and is used as an engineering plastic. For example, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polystyrene, 6-nylon, 6,6-nylon, polysulfone, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyvinyl chloride, polyvinylidene chloride, polypropylene, polyethylene, polyethylene, Methyl methacrylate, polyetheretherketone, polytetrafluoroethylene, polyphenol, AB
S, diarylphenol, etc. and mixtures thereof. Lubricants, pigments, glass, other fibrous materials, fillers (e.g. calcium carbonate, Teflon powder,
There is no problem in adding graphite powder) or inorganic fillers.

本発明に言う高速回転刃切断機とは、100 rpm以
上の高速で回転する刃が付属してbる切断機であればい
ずれでも良い。例えばハンマーミル、インペラーブレー
カ−、ディスインチグレーター、アトリッター、カッタ
ーミル、パルペライザー、ノ?ローター、エツジランナ
ーなど粉砕機及びヘンシェル型ミキサー、ジューサーミ
キサーなど混合機がある。
The high-speed rotary blade cutting machine referred to in the present invention may be any cutting machine that is attached with a blade that rotates at a high speed of 100 rpm or more. For example, hammer mill, impeller breaker, disinch grater, attritor, cutter mill, pulperizer, etc. There are grinders such as rotors and edge runners, and mixers such as Henschel type mixers and juicer mixers.

炭素繊維集合体と熱可塑性樹脂との重量配合比はbずれ
でも良−が、炭素繊維が熱可塑性樹脂中で効果を発現す
るのは5〜50重量%であるから、あらかじめ所定量配
合するのが良い。もちろんマスターバッチ等を作る目的
で炭素繊維を50重量%以上配合しても何ら支障毎ない
The weight blending ratio of the carbon fiber aggregate and the thermoplastic resin may vary by b, but since the carbon fibers exhibit their effect in the thermoplastic resin at 5 to 50% by weight, it is best to mix them in a predetermined amount in advance. is good. Of course, there will be no problem if 50% by weight or more of carbon fiber is added for the purpose of making a masterbatch or the like.

熱可塑性樹脂の固形物の大きさは重要である。The size of the thermoplastic resin solids is important.

固形物は、自らも粉砕されるものであるから細かすぎる
場合粉体混合物の溶融混練機でのカミ込みが慈くなる傾
向がある。一方大きすぎると粒が繊維を同伴する機会が
減るので集合体の切断効率が低下する。一般には、熱可
塑性樹脂が成型用として市販されている場合のペレット
(数鵡長好ましくは1〜5關で、直径2〜3trunの
円柱)が適当である。
Since the solid material itself is pulverized, if it is too fine, the powder mixture tends to be clumped together in the melt-kneading machine. On the other hand, if the size is too large, there is less opportunity for the particles to entrain fibers, resulting in a decrease in the cutting efficiency of the aggregate. Generally, pellets (cylinders of several lengths, preferably 1 to 5 inches, and 2 to 3 truns in diameter), which are commercially available thermoplastic resins for molding, are suitable.

刃の高速回転よりペレットが攪拌し集合体も少しづつ随
伴して切断されるが、集合体状の炭素繊維は、同一の長
さに切断されるわけではなく、広い長さ分布を有した糸
組成物として切断される傾向がある。しかし、後の溶融
混線時あるいは射出成型時に過長な糸は切断を受けるの
で、糸長の分 −布にはこだわらなくても良い。糸長が
0.1 trys以下の短か過ぎる場合には補強効果が
減じられる傾向があるので、平均糸長さは0.3〜3.
0 mmlであるのが望ましい。固形物の大きさと平均
糸長は、回転刃の種類、時間および回転数によって調整
できる。
The high-speed rotation of the blade agitates the pellets and cuts the aggregates little by little, but the aggregated carbon fibers are not cut into the same length, but instead are cut into threads with a wide length distribution. There is a tendency for the composition to be cut. However, since excessively long yarns will be cut during later melt-mixing or injection molding, there is no need to be particular about the yarn length distribution. If the yarn length is too short, such as 0.1 tries or less, the reinforcing effect tends to be reduced, so the average yarn length should be 0.3 to 3.
Preferably it is 0 mml. The size of the solids and the average thread length can be adjusted by the type, time and rotation speed of the rotary blade.

集合体をなした炭素繊維は、炭化された温度によって物
性が変るが、2000℃以上に炭化された黒鉛繊維でも
良b0又、集合体をなした炭素繊維は主に熱可塑性樹脂
との親和性を改善する目的で表面処理されて騒ても何ら
支障衾ない。
The physical properties of aggregated carbon fibers change depending on the carbonization temperature, but even graphite fibers carbonized at 2000°C or higher have good b0, and aggregated carbon fibers mainly have compatibility with thermoplastic resins. There is no problem even if the surface is treated for the purpose of improving it.

切断粉砕混合物からCFRTPを成型するには、熱で溶
融させ成形する方法であれば何れでも良すが一般には押
出溶融成型機及びある論は溶融射出成型機がある。前者
で混練しペレット状で取出し、射出成型機で成型する方
法が最も一般的であるが、これに制限されるものではな
い。
To mold CFRTP from a cut and pulverized mixture, any method that involves melting and molding with heat may be used, but in general, an extrusion melt molding machine and, in some cases, a melt injection molding machine are used. The most common method is to knead the pellets, take them out in the form of pellets, and mold them using an injection molding machine, but the method is not limited to this method.

〔効果〕〔effect〕

本発明の製造方法は、最も経済的である炭素繊維集合体
を、まったく収率が減少することなくCFRTPを製造
できるので、本発明のCFRTPを用いると極めて経済
的な成形品を得る利点がある。又、密閉された容器中で
作業できるので、炭素繊維の飛散による作業環境の悪化
も来たさな込とbった利点がある。
The manufacturing method of the present invention can produce CFRTP from the most economical carbon fiber aggregate without any decrease in yield, so the use of the CFRTP of the present invention has the advantage of obtaining extremely economical molded products. . Furthermore, since the work can be carried out in a sealed container, there is an advantage that the work environment may deteriorate due to scattering of carbon fibers.

以下に本発明を実施例にて説明するが、文中「部」及び
「チ」は特に断わりのない限り、重量基準である。
The present invention will be explained below with reference to Examples, where "parts" and "chi" are based on weight unless otherwise specified.

〔実施例−1〕 渦流法で紡糸しベルトコンベア上に堆積させたピッチ繊
維を1000℃で炭化して炭素繊維マットを得た。マッ
トの形状は、3c1n厚さX 30 cm横幅であシ、
密度は0.01697ccであった。マットをなす炭素
繊維の長さは10〜20crn、一本のストランドの引
張強度は78kg/w”、引張弾性率は3.2 T o
 n/WI2、伸度は2.2チであった。本マットを9
oog(6,24m)切シ取った。30/のヘンシェル
型ミキサーヘポリフェニレンスルフィド(ppsと略記
する、フィリップスベトローリアム製、ライドンP−4
)ベレン) 2100.9を入れ、次に強制的にマット
900Iを押込み、蓋をして1600rpmで攪拌した
。下方からマットが切断され4分後には完全に均一に攪
拌できるようになったので、5分後に止めた。取出した
固体混合体は、炭素繊維が最長8咽から最短0.1 t
trm、平均0.6 rran長ppsペレットは約半
分以下に粉砕されて両者はよく混合されて−た。次に口
径40喘単軸押出浴融混練機で最高シリンダ一温度32
0℃でストランドとして押出し、ペレタイザーで4fr
rM長、太さ1.8 wnのペレットとした。
[Example-1] Pitch fibers spun by the eddy current method and deposited on a belt conveyor were carbonized at 1000°C to obtain a carbon fiber mat. The shape of the mat is 3 cm thick x 30 cm wide.
The density was 0.01697cc. The length of the carbon fibers forming the mat is 10 to 20 crn, the tensile strength of one strand is 78 kg/w'', and the tensile modulus is 3.2 To
n/WI2, the elongation was 2.2 inches. 9 book mats
oog (6,24m) was cut off. Henschel type mixer of 30% polyphenylene sulfide (abbreviated as pps, manufactured by Philips Vetroleum, Rydon P-4)
) Belen) 2100.9 was added, then Mat 900I was forcibly pushed in, the lid was closed, and the mixture was stirred at 1600 rpm. The mat was cut from below, and after 4 minutes it became possible to stir completely uniformly, so the stirring was stopped after 5 minutes. The taken out solid mixture has carbon fibers ranging from a maximum length of 8 tons to a minimum length of 0.1 tons.
trm, average length of 0.6 rran, pps pellets were pulverized to about half or less, and both were well mixed. Next, use a single-screw extrusion bath melt-kneader with a diameter of 40 mm and the maximum cylinder temperature is 32 mm.
Extruded as a strand at 0℃, pelletized to 4fr
The pellet had a length of rM and a thickness of 1.8 wn.

次に型締圧50トン、容量3オンス、射出溶融成形機に
かけ、シリンダ一温度320℃、射出圧カー次圧120
0 kl? 7cm2、二次圧600197cm” 、
射出速度中速で、金型温度120℃でテストピースを成
型した。
Next, it was applied to an injection melt molding machine with a mold clamping pressure of 50 tons and a capacity of 3 ounces.
0kl? 7cm2, secondary pressure 600197cm",
A test piece was molded at a medium injection speed and a mold temperature of 120°C.

成形物の物性は表−1の如くであった。The physical properties of the molded product were as shown in Table-1.

表−1 成形物中の炭素繊維の長さは、6間〜0.1圏、平均長
は0.5咽であった。
Table 1 The length of the carbon fibers in the molded product was 6 to 0.1 mm, with an average length of 0.5 mm.

〔実施例−2〕 実施例−1と同様にして炭素繊維マットを得た。[Example-2] A carbon fiber mat was obtained in the same manner as in Example-1.

本マットを9001 (6,24m)切シ取ッ’fl−
030ノのヘンシェル型ミキサーへ6,6−ナイロン(
旭化成製、レオナ)ペレット2100.9を入れ、次に
強制的にマット900gを押込み蓋をして1600rp
mで攪拌した。順次下方からマットが切断され4分後に
は完全に均一に攪拌できるようになったので、5分後に
止めた。取出した固形物は、炭素繊維が最長10簡から
最短0.1■、平均0.7 w長で、ナイロンペレット
は約半分に粉砕されて、両者はよく混合して−た。
Cut this mat 9001 (6,24m).
6,6-nylon (
Put Asahi Kasei (Leona) pellets 2100.9, then forcefully push in 900g of mat, cover with a lid, and turn to 1600rpm.
The mixture was stirred at m. The mats were sequentially cut from below, and after 4 minutes it became possible to stir completely uniformly, so the stirring was stopped after 5 minutes. The solid material taken out had carbon fibers ranging from the longest 10 fibers to the shortest 0.1 cm, with an average length of 0.7 W, and the nylon pellets were pulverized into about half, and the two were well mixed.

次に口径40喘単軸押出溶融混練機で最高シリンダ一温
度280℃でストランドとして押出し、ペレタイザーで
4咽長、太さ1.8咽のペレットとなした。
Next, it was extruded as a strand using a single-screw extrusion melt-kneader with a diameter of 40 mm at a maximum cylinder temperature of 280°C, and pelletized with a pelletizer having a length of 4 mm and a thickness of 1.8 mm.

次に実施例2と同じ射出成型機にかけシリンダー温12
80℃、射出圧カー次圧1200 kg /cm2、二
次圧600に9/cm2.射出速度中速で、金型温度8
0℃でテストピースを成形した。
Next, it was put into the same injection molding machine as in Example 2 and the cylinder temperature was 12.
80℃, injection pressure car secondary pressure 1200 kg/cm2, secondary pressure 600 to 9/cm2. Medium injection speed, mold temperature 8
Test pieces were molded at 0°C.

成形物の機械的物性は表−2の如くであった。The mechanical properties of the molded product were as shown in Table 2.

衣 −2 〔実施例3〕 遠心紡糸法で紡糸したピッチ繊維をエアサッカーで収束
し、ペルコン上に堆積してマット上になした。そのまま
不融化し、1000℃で炭化して、炭素繊維のマントを
得た。マットの形状は厚さ4、5 cm X横幅30c
mであり密度は0.0219/CCであった。マットを
なす炭素繊維の長さは20〜48(1)、一本のストラ
ンドの引張強度は86 ky/1ras”、引張弾性率
は3.OTo n /Hp 、伸度は2.3俤であった
Clothes-2 [Example 3] Pitch fibers spun using a centrifugal spinning method were converged using an air sucker and deposited on Percon to form a mat. It was made infusible as it was and carbonized at 1000°C to obtain a carbon fiber mantle. The shape of the mat is 4.5 cm thick x 30 cm wide.
m, and the density was 0.0219/CC. The length of the carbon fibers forming the mat is 20 to 48 (1), the tensile strength of one strand is 86 ky/1 ras'', the tensile modulus is 3.OTon/Hp, and the elongation is 2.3 yen. Ta.

本マットを900.!i’(3,17m)切り取った。This mat costs 900. ! i' (3,17m) was cut out.

30ノのヘンシェル型ミキサーへ難燃化変性ポリブチレ
ンテレフタレート(大日本インキ化学工業(株)製シラ
ナックBT−2200)ペレット2100Iiを入れ、
次に強制的にマット900.9を押込み蓋をして168
0rpmで攪拌した。5分後にほぼ完全に均一に混合し
た。
Pellets 2100Ii of flame retardant modified polybutylene terephthalate (Silanac BT-2200 manufactured by Dainippon Ink and Chemicals Co., Ltd.) were put into a 30 mm Henschel type mixer.
Next, forcefully push in the mat 900.9 and close the lid.
Stirred at 0 rpm. After 5 minutes, the mixture was almost completely homogeneous.

次に口径40w+m単軸押出溶融混練機で最高シリンダ
一温度260℃でストランドとして押出し、ペレタイザ
ーで4咽長、太さ1.6■のペレットとなした。
Next, it was extruded as a strand using a single-screw extrusion melt-kneading machine with a diameter of 40 W+m at a maximum cylinder temperature of 260°C, and pelletized with a pelletizer having a diameter of 4 mm and a thickness of 1.6 cm.

次に実施例−1に使った射出成型機にかけ、シリンダ一
温度260℃、射出圧カー次圧1200kg/cm2、
二次圧600 kg/cm”、射出速度中速で、金型温
度80℃でテストピースを成型した。
Next, it was applied to the injection molding machine used in Example-1, the cylinder temperature was 260℃, the injection pressure was 1200kg/cm2,
A test piece was molded at a secondary pressure of 600 kg/cm'', a medium injection speed, and a mold temperature of 80°C.

成形品の物性は表−3の如くであった。The physical properties of the molded article were as shown in Table 3.

表−3 〔実施例4〕 ピッチを遠心紡糸し、嵩高いトウになした炭素繊維(具
現化学 クレカトウT−101F、直径12.5μm、
引張強度79 kg/lrtm2.引張弾性率3.3 
To n /rran”伸度2.4%)を使用した。嵩
高さの目安になる標準N童は10.9/mであった。
Table 3 [Example 4] Carbon fiber made by centrifugally spinning pitch into a bulky tow (Guigen Kagaku Kurekato T-101F, diameter 12.5 μm,
Tensile strength: 79 kg/lrtm2. Tensile modulus 3.3
Ton/rran" elongation of 2.4%) was used. The standard N child, which is a measure of bulkiness, was 10.9/m.

301ヘンシエルミキサーヘポリアセクール(セラニー
ズ社、Kematal M−450)ペレット2400
11を入れ、クレカトウ600gを押込み、蓋をして1
650rpmで攪拌した。下方よりマットが切断し始め
、5分後には完全に混合された。
301 Henschel Mixer Hepolyacecool (Celanese, Kematal M-450) Pellets 2400
Add 11, push in 600g of Kurekato, cover with 1
Stirred at 650 rpm. The mat started to break from below and was completely mixed after 5 minutes.

次に口径401EIn単軸溶融混練機で最高シリンダ一
温度300℃でストランドとして押出し、ペレタイザー
で4晒長、太さ1.8調のペレットとした。
Next, it was extruded as a strand using a 401EIn single-screw melt-kneader at a maximum cylinder temperature of 300°C, and pelletized using a pelletizer with a length of 4 and a thickness of 1.8.

次に実施例−1に同じ成型機でシリンダ一温度300℃
、射出圧カー次圧1200 kll/cm”、二次圧6
00 kl/cm”射出速度中速、金型温度120℃で
テストピースを成型し友。
Next, using the same molding machine as in Example-1, the temperature of the cylinder was 300°C.
, injection pressure car secondary pressure 1200 kll/cm", secondary pressure 6
The test piece was molded at a medium injection speed of 00 kl/cm and a mold temperature of 120°C.

成形品の物性は表−4の如くであった。The physical properties of the molded article were as shown in Table 4.

表−4 比較例1 実施例1〜4に使用した301ヘンシエル型ミキサー中
へ、実施例1に使用した炭素繊維マット900gを入れ
、蓋をして1600rpmで攪拌したが、2時間後もマ
ットはまったく動かず、わずかに刃に接した部分のみ切
断されたに過ぎ々かった。
Table 4 Comparative Example 1 900 g of the carbon fiber mat used in Example 1 was put into the 301 Henschel type mixer used in Examples 1 to 4, the lid was closed, and the mixture was stirred at 1,600 rpm, but the mat still remained after 2 hours. It didn't move at all, and only the part that touched the blade was cut off.

Claims (1)

【特許請求の範囲】 1、(A)嵩高い炭素繊維集合体と (B)熱可塑性樹脂の固形物とを共に高速回転切断機で
切断、粉砕、混合し、該切断粉砕混合物を溶融混練する
ことを特徴とする炭素繊維強化熱可塑性樹脂の製造方法
[Claims] 1. (A) bulky carbon fiber aggregate and (B) thermoplastic resin solid are both cut, pulverized, and mixed using a high-speed rotary cutting machine, and the cut and pulverized mixture is melt-kneaded. A method for producing a carbon fiber-reinforced thermoplastic resin.
JP15543386A 1986-07-02 1986-07-02 Manufacture of carbon fiber reinforced thermoplastic resin Pending JPS6311308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15543386A JPS6311308A (en) 1986-07-02 1986-07-02 Manufacture of carbon fiber reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15543386A JPS6311308A (en) 1986-07-02 1986-07-02 Manufacture of carbon fiber reinforced thermoplastic resin

Publications (1)

Publication Number Publication Date
JPS6311308A true JPS6311308A (en) 1988-01-18

Family

ID=15605916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15543386A Pending JPS6311308A (en) 1986-07-02 1986-07-02 Manufacture of carbon fiber reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS6311308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006268994B2 (en) * 2005-07-08 2011-04-14 Teijin Aramid B.V. Method for improving filament cohesiveness of chopped aramid fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006268994B2 (en) * 2005-07-08 2011-04-14 Teijin Aramid B.V. Method for improving filament cohesiveness of chopped aramid fiber
US8075820B2 (en) * 2005-07-08 2011-12-13 Teijin Aramid B.V. Method for improving filament cohesiveness of chopped aramid fiber

Similar Documents

Publication Publication Date Title
KR970008215B1 (en) Thermoplastic composite material reinforced with hemp fibers
KR20080066695A (en) Process for forming a reinforced polymeric material and articles formed therewith
JPS5845255A (en) Polybutylene terephthalate composition
JP2007084713A (en) Method for producing thermoplastic resin composition containing cellulose fiber
EP0714940B1 (en) Long-fiber-reinforced columnar body comprising long-fiber-reinforced crystalline propylene resin composition and propeller-shaped fan made therefrom
CN114651029B (en) Blends of poly (arylene ether ketone) copolymers
JPH11172121A (en) Thermoplastic composite composition reinforced with mica and woody fibrous filler
JPS6343425B2 (en)
CN112759250B (en) Glass fiber group and manufacturing method thereof, and glass fiber reinforced resin matrix composite material and manufacturing method thereof
US20130052448A1 (en) Process for the Production of Fiber Reinforced Thermoplastic Composites
CN114410091A (en) High-temperature-resistant impact-resistant high-strength modified polylactic acid material and preparation method thereof
JPS6311308A (en) Manufacture of carbon fiber reinforced thermoplastic resin
JPH0379663A (en) Polyamide resin composition
JPS59155459A (en) Polyester resin composition
JPH02124956A (en) Production of composite material composition
JP2007245517A (en) Resin mass and its manufacturing method
JPH0526642B2 (en)
JPH10279777A (en) Flaky phenolic resin molding material containing carbon fiber and its production
CN112759794B (en) Glass fiber group and glass fiber reinforced resin matrix composite material
Tjong et al. Performance characteristics of compatibilized ternary Nylon 6/ABS/LCP in-situ composites
da Silva et al. Tailoring polyamide 6 to exhibit super‐tough behavior and high thermomechanical stability: The role of AES and EPDM‐MA hybridization
JP2757454B2 (en) Short carbon fiber aggregate and fiber-reinforced thermoplastic resin composition obtained by blending the same
CN85106980A (en) Glass fibre enhanced vinyl chloride polymer products and preparation technology thereof
JPS5861149A (en) Reinforced thermoplastic resin composition
Lu et al. Morphology and Mechanical Properties of Polypropylene/Poly (Butylene Terephthalate)/Organ-Montmorillonite Composites