JPS63112478A - Manufacture of heat resistant inorganic fiber formed body - Google Patents

Manufacture of heat resistant inorganic fiber formed body

Info

Publication number
JPS63112478A
JPS63112478A JP25877886A JP25877886A JPS63112478A JP S63112478 A JPS63112478 A JP S63112478A JP 25877886 A JP25877886 A JP 25877886A JP 25877886 A JP25877886 A JP 25877886A JP S63112478 A JPS63112478 A JP S63112478A
Authority
JP
Japan
Prior art keywords
fiber
weight
heat
manufacturing
resistant inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25877886A
Other languages
Japanese (ja)
Other versions
JPH0796468B2 (en
Inventor
淳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP61258778A priority Critical patent/JPH0796468B2/en
Publication of JPS63112478A publication Critical patent/JPS63112478A/en
Publication of JPH0796468B2 publication Critical patent/JPH0796468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス、ガラス、各種金属酸化物等の焼
成において、炉の内張、種板、およびトレイ等として使
用することのできる耐熱性無機質1aftlkを主体と
する成形体や、バーナープレート、排ガス浄化用触媒担
体として使用することのできる軽量、高強度で、耐熱衝
撃性に優れた耐熱性無機質spa成形体の製造方法に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a heat-resistant inorganic material that can be used as a furnace lining, seed plate, tray, etc. in the firing of ceramics, glass, various metal oxides, etc. The present invention relates to a method for producing a heat-resistant inorganic spa molded body that is lightweight, has high strength, and has excellent thermal shock resistance, and can be used as a molded body mainly composed of 1aftlk, a burner plate, and a catalyst carrier for exhaust gas purification.

〔従来の技術〕[Conventional technology]

耐熱性無機質m!iを主体とする成形体は、軽量(多孔
質)て耐熱衝撃性に優れているという特徴から種々の工
業分野で利用されている。特に最近になって、前記耐熱
性態a質繊維に無機物質を複合させることにより、従来
より高密度で高強度の成形体が得られるようになり、た
とえば、コンデンサー、センサー、IC基板等の電子機
部部品焼成用の内張、n板、浅い鉢(以下トレイという
)等に使用されたり、多孔性を利用して触媒担体として
使用されたりしている。
Heat-resistant inorganic material m! Molded bodies mainly composed of i are used in various industrial fields because they are lightweight (porous) and have excellent thermal shock resistance. Particularly recently, by combining inorganic substances with the heat-resistant A-type fibers, it has become possible to obtain molded products with higher density and higher strength than before. It is used for linings for firing machine parts, n-plates, shallow pots (hereinafter referred to as trays), etc., and it is also used as a catalyst carrier by taking advantage of its porosity.

(発明が解決しようとする問題点) 上記した如く、耐熱性類a賀繊維を主体とする成形体は
、各種形状に成形され、種々の用途に使用されているが
、従来の製造方法は、耐熱性無機質m雄と無機物質等の
添加剤を多量に水中にて分散混合後、凝集させてから成
形用型に真空吸引成形させる方法が汎用されていた。こ
の方法では、かさ密度の低い成形体は成形可使であるが
、特に、電子機能部品焼成用の棚板・敷板・トレイ・匣
鉢等の各種焼成治具や触媒担体の用途に関しては、高密
度で高強度の材質が必要となり従来の製造方法では成形
できず、平板状に成形、プレス後、各種形状に加工して
使用されたり、熱可塑性樹脂、熱硬化性樹脂中に耐熱性
無機質1a維を混練させてから成形したり、さらには、
空気中に浮遊させたまま各種物質の混合を行なうという
方法が考えられてきた。
(Problems to be Solved by the Invention) As mentioned above, molded bodies mainly made of heat-resistant Aga fibers are molded into various shapes and used for various purposes, but the conventional manufacturing method A widely used method has been to disperse and mix a large amount of heat-resistant inorganic material and additives such as inorganic substances in water, coagulate the mixture, and then vacuum-suction mold the mixture into a mold. With this method, the compact with a low bulk density can be molded and used, but it is particularly difficult to use for various firing jigs and catalyst carriers such as shelves, floorboards, trays, and saggers for firing electronic functional parts. A material with high density and high strength is required and cannot be molded using conventional manufacturing methods, so it is molded into a flat plate, pressed, and then processed into various shapes. The fibers can be kneaded and then molded, or even
A method of mixing various substances while suspended in the air has been considered.

たとえば、#熱性無機質緻雅と無機バインダー(例えば
粘土、シリカゾル、アルミナゾル等)を大量の木てスラ
リー状となし平板状に真空吸引、プレス、乾燥後、所定
の形状に切削加工したものは、ja雄が厚み方向に積層
しているため切削の方向により成形体の一部が特に弱く
なるという問題点かあうた。具体的には、第1図の模式
図にあるように積層面相互の強度がないため、図の矢印
の部分て強度不足となり欠損がよく生じた。また、図の
ように底の深い形状物に対しては原料収率か低くなって
製品が高価となる問題があり量産には不向きであった。
For example, #thermal inorganic particles and inorganic binders (e.g. clay, silica sol, alumina sol, etc.) are made into a slurry of a large amount of wood, vacuum-suctioned into a flat plate, pressed, dried, and then cut into a predetermined shape. The problem is that because the males are stacked in the thickness direction, some parts of the molded body become particularly weak depending on the cutting direction. Specifically, as shown in the schematic diagram of FIG. 1, since there was no mutual strength between the laminated surfaces, there was insufficient strength in the area indicated by the arrow in the diagram, and defects often occurred. In addition, as shown in the figure, products with a deep bottom shape have the problem of low raw material yield and expensive products, making them unsuitable for mass production.

また、凝集剤を使うことにより無機結合剤が集合離散す
るために強度が低かった。
In addition, the use of a flocculant caused the inorganic binder to aggregate and disperse, resulting in low strength.

また、セラミックスの成形によく使用されるに粒状の原
料をプレスする方法は、耐熱性無機質繊維を核とする顆
粒かプレスにより破壊されず、また、破壊してしまうと
密度を小さくできないため粒状のM&雄集合体が連続し
てつながった構造となり、繊維集合粒子間の強度の全く
ない成形体となってしまい、第2図のように工・ンヂの
部分に強度不足からよく欠損が生ずる問題があうた。
In addition, the method of pressing granular raw materials, which is often used for ceramic molding, is difficult because the granules, which have heat-resistant inorganic fibers as their core, are not destroyed by pressing, and if they are destroyed, the density cannot be reduced. This results in a structure in which M&male aggregates are continuously connected, resulting in a molded body with no strength at all between the fiber aggregate particles, and as shown in Figure 2, there is a problem in which defects often occur in the engineering and engineering parts due to lack of strength. It struck me.

また、特開昭61−16:117:1号公報にある社な
成形助剤として固体ワックスを使い加熱混錬成形により
耐熱性無機質m雌成形体を得る方法は、混練に必要な粘
性をワックスにて補償させることか困難てあり充分にM
A維の分散していない構造を有した成形体しか得られな
いこと、ざらに、脱ロウ費用が高く成形体が高価となる
等の問題があった。
In addition, a method of obtaining a heat-resistant inorganic female molded body by heat kneading molding using solid wax as a molding aid described in JP-A No. 61-16:117:1 discloses that the viscosity necessary for kneading is reduced with wax. It is difficult to compensate for it and it is enough M
There are problems in that only a molded body having a structure in which A fibers are not dispersed can be obtained, and that dewaxing costs are high and the molded body is expensive.

さらに、特開昭59−18476:1号公報提案の如く
超高温用セラミックファイバーと粘土との混練物を吹付
けにより型付けして成形体を得る方法は、繊維が短くな
りすぎ成形体の密度を下げることができないこと、また
、プレス成形等の手段と比べて成形体の生密度が低くな
り焼成後の成形体強度を充分に向上できないこと等の問
題があった。
Furthermore, the method proposed in JP-A-59-18476:1, in which a kneaded mixture of ultra-high temperature ceramic fibers and clay is molded by spraying to obtain a molded body, causes the fibers to become too short, reducing the density of the molded body. In addition, there were problems such as the green density of the molded body being lower than that obtained by means such as press molding, and the strength of the molded body after firing could not be sufficiently improved.

一方、特開昭58−190855号公報で提案の如く、
セラミック原料を混合したポリウレタン発泡体を焼成し
てポリウレタンを除去させて多孔質セラミック成形品を
得る方法によって成形した成形体は、基本的には繊維質
材料を含有していないし、微細な気孔を有する成形体が
得られないから、繊、1!質材料を含むものに比較して
、強度が劣るという問題かあった。
On the other hand, as proposed in Japanese Patent Application Laid-Open No. 58-190855,
A molded product formed by a method of obtaining a porous ceramic molded product by firing a polyurethane foam mixed with ceramic raw materials and removing the polyurethane basically does not contain any fibrous material and has fine pores. Because a molded body cannot be obtained, fiber, 1! There was a problem that the strength was inferior compared to those containing high quality materials.

以上の様に従来の耐熱性無機質繊維成形体の製′ 遣方
法は種々の問題点が存在し、この問題に起因した構造上
の欠陥が現われていた。
As described above, conventional methods for producing heat-resistant inorganic fiber molded articles have various problems, and structural defects have appeared due to these problems.

本発明は、これらの問題点を解決し、今までになかった
新しい耐熱性熱+jJt質m雄成形体の製造方法を提供
し、耐火性粉末と無機結合剤との混合組成物中に耐熱性
無機質繊維を均一に分散せしめた構造を有する成形体を
提供することにより、高強度で軽量、かつ量産化の容易
な種々形状の耐熱性無機質m雌成形体を提供し、前記機
飽部品焼成用治其の省エネルギーおよび作業性の改善に
寄与し、前記触媒担体の品質向上とコストダウンに寄与
することを目的とする。
The present invention solves these problems and provides a new method for producing a heat-resistant heat+jJt quality m male molded body, which has never been seen before, and in which heat-resistant By providing a molded body having a structure in which inorganic fibers are uniformly dispersed, heat-resistant inorganic female molded bodies of various shapes that are high in strength, lightweight, and easy to mass-produce are provided, and are suitable for firing the machine parts. The purpose of the present invention is to contribute to energy saving and improve workability of the catalyst, and to contribute to improving the quality and reducing costs of the catalyst carrier.

C問題点を解決するための手段) すなわち、本発明は、次の(a)〜(d)の工程から成
ることを特徴とするかさ密度0.6〜2.0g/cm’
である耐熱性態v1質m維成形体の製造方法に関するも
のであり、上記目的を達成するために次のような手段を
採用するものである。
Means for Solving Problem C) That is, the present invention is characterized by comprising the following steps (a) to (d).
The present invention relates to a method for producing a heat-resistant v1-quality m-fiber molded article, and employs the following means to achieve the above object.

(a)耐熱性無機質縁!I20〜50重量%と耐火性粉
末40〜800〜80重量結合剤5〜30重量%とから
成る配合組成物100重量部に対して、30〜150重
量部の木と、必要に応じて有機成形助剤を固形分で0.
5〜10重量部とを添加して常温で混練する工程、 (Is)前記混練物を脱気する工程、 (c)前記脱気物を多孔性の成形用型に入れ、常温にて
プレス成形体となす工程、 (d)前記プレス成形体を乾燥後800〜1600’C
の温度範囲で焼成する工程。
(a) Heat-resistant inorganic rim! For 100 parts by weight of a blended composition consisting of 20-50% by weight of I and 40-800-80% by weight of a refractory powder and 5-30% by weight of a binder, 30-150 parts by weight of wood and, if necessary, organic molding. The solid content of the auxiliary agent is 0.
(Is) Degassing the kneaded product; (c) Putting the degassed product into a porous mold and press-molding it at room temperature. (d) 800 to 1600'C after drying the press molded body;
The process of firing at a temperature range of

(作用) 耐熱性無機質繊維を主体とした成形体は、軽量で耐熱衝
撃性に優れているという理由から、工業炉の部品として
種々の形状に加工して使用されている。しかし、そのほ
とんどは、大量の水に前記繊維を分散させたスラリーを
真空吸引成形する方法によって製造されていた。この方
法によれば繊維か吸引方向に対して垂直に積層するため
強度の弱い部分ができること、深林のような異形物は加
工か困難であったり原料収率が低くなる等の問題から量
産化には不向きであった。
(Function) Molded bodies made mainly of heat-resistant inorganic fibers are used after being processed into various shapes as parts of industrial furnaces because they are lightweight and have excellent thermal shock resistance. However, most of them have been manufactured by vacuum suction molding a slurry in which the fibers are dispersed in a large amount of water. With this method, the fibers are stacked perpendicular to the direction of suction, resulting in parts with weak strength, and it is difficult to process irregularly shaped items such as Fukabayashi, and the raw material yield is low, making it difficult to mass-produce. was not suitable.

本発明は、耐熱性無機質繊維を主体とする成形体を、量
産に最も適したプレス法で成形する手段を新しく開発し
たことにより初めて開示されるものであり、基本的には
次の4つの項目から成るものである。
The present invention was disclosed for the first time through the development of a new method for molding a molded article made mainly of heat-resistant inorganic fibers using a press method most suitable for mass production, and basically consists of the following four items. It consists of

第一は、耐熱性無機質繊維を耐火性粉末と無機結合剤と
の混合組成物中に分散させることである。ta雄状物を
粉体状物に混合させるには、uA維状鞠を短く切断する
が、tag状物の作る空間を乾燥あるいは焼成時に揮散
する物質て充填しておくかいずれかの手段か必要である
が、前者は成形体の密度が上ってしまって本発明の目的
に合わないので後者の手段か必要条件になる。ここで、
充填物は水か最も安価で好ましい。たたし、繊維状物を
充分に解繊させるには高粘性の物質な慮雄間に存在させ
、そのぜん断力を利用するのか有効であり、耐火性粉末
や無機結合剤でこの粘性が補償されない場合には、有機
成形助剤を添加して粘性を発揮させる。従って、混成物
そのものは多量の水分を含んだ柔軟性のある原料となり
、通常スプレードライヤーで成形されるプレス用原料す
なわち顆粒状原料とは全く異ったものとなる。その結果
、圧力をあまり加えずに均一な成形体を得ることができ
るようになる。具体的には、耐熱性無機質!、1!20
〜50重量%と耐火性粉末40〜80重量%と無機結合
剤5〜30重量%とから成る配合組成物100重都二部
に対して、30〜150重量部の水と、必要に応じて有
機成形助剤を固形分で0.5〜lO@量部とを添加して
混練するのが良い。前記耐熱性無機質繊維は、アルミノ
シリケートmrts、結晶質アルミナiaMi、結晶質
ムライト繊維、シリカ繊維、ジルコニアm、*とから選
ばれるいずれか1種又は2種以上であることか好適で、
配合組成は20〜50重量%とするのが良い。20重量
%未満は成形体密度が高くなり過ぎ、50重量%を越え
ると強度が小さくなって好ましくない。前記耐火性粉末
は、アルミナゾル マグネシア質、チタニア質、クロミア賀とから選ばれる
いずれか1種又は2種以上であることが好ましく、具体
的には、アルミナ、ムライト、カオリナイト、木簡粘土
、蛙目粘土、シソマナイト、ステアタイト、フすルステ
ライト、タルク、ジルコニア、マグネシア、スピネル、
チタニア、クロミア等が好ましく、配合組成は40〜8
0重量%とするのが良い。、10?li%未満だと強度
か不充分であり、80重呈%を越えると密度が高くなっ
て好ましくない。前記無機結合剤は、シリカ・ソーダ系
The first is to disperse heat-resistant inorganic fibers in a mixed composition of refractory powder and an inorganic binder. In order to mix the ta male material into the powder material, the uA fibrous ball is cut into short lengths, but the space where the tag material is made can be filled with a substance that will volatilize during drying or firing. Although it is necessary, the former method increases the density of the molded body and is not suitable for the purpose of the present invention, so the latter method becomes a necessary condition. here,
The filling is preferably water or the cheapest. However, in order to sufficiently defibrate fibrous materials, it is effective to place a highly viscous substance between the layers and utilize its shearing force, and this viscosity can be reduced using fire-resistant powder or inorganic binder. If not compensated, organic forming aids are added to develop viscosity. Therefore, the mixture itself becomes a flexible raw material containing a large amount of water, and is completely different from a press raw material, that is, a granular raw material, which is usually molded using a spray dryer. As a result, a uniform molded body can be obtained without applying much pressure. Specifically, heat-resistant inorganic materials! , 1!20
30 to 150 parts by weight of water and, if necessary, to 2 parts by weight of 100 parts of a blended composition consisting of ~50% by weight, 40 to 80% by weight of refractory powder, and 5 to 30% by weight of an inorganic binder. It is preferable to add and knead an organic molding aid in a solid content of 0.5 to 10 parts. Preferably, the heat-resistant inorganic fiber is one or more selected from aluminosilicate mrts, crystalline alumina iaMi, crystalline mullite fiber, silica fiber, zirconia m, *,
The blending composition is preferably 20 to 50% by weight. If it is less than 20% by weight, the density of the molded product becomes too high, and if it exceeds 50% by weight, the strength becomes low, which is not preferable. The refractory powder is preferably one or more selected from alumina sol magnesia, titania, and chromia, and specifically, alumina, mullite, kaolinite, wood tablet clay, and chromia. Clay, shisomanite, steatite, fustellite, talc, zirconia, magnesia, spinel,
Titania, chromia, etc. are preferred, and the blending composition is 40-8
It is preferable to set it to 0% by weight. , 10? If it is less than li%, the strength will be insufficient, and if it exceeds 80%, the density will be undesirably high. The inorganic binder is silica/soda based.

ホウ酸カルシウム系、シリカ系のフリット、アルミナゾ
ル、シリカゾルから選ばれるのが好ましく、たとえば、
長石、マイカ粉末、ホヮ酸、ガラス粉、硅石、アルミナ
ゾル、シリカゾル等が好適て、配合!lrJ、は5〜3
0重量%とするのか良い。5重量%未満では成形体強度
が低い値となり、30重量%を越えると焼結が進んで重
くなり過ぎ好ましくない。上記配合組成物100重簗部
に対して。
Preferably, it is selected from calcium borate-based, silica-based frit, alumina sol, and silica sol, for example,
Suitable combinations include feldspar, mica powder, phosphoric acid, glass powder, silica sol, alumina sol, and silica sol! lrJ, is 5-3
It is better to set it to 0% by weight. If it is less than 5% by weight, the strength of the compact will be low, and if it exceeds 30% by weight, sintering will progress and it will become too heavy, which is not preferable. For 100 parts of the above blended composition.

30〜150重量部の水と、必要に応じて有機成形助剤
を固形分で0.5〜10重量部とを添加して成形用原料
ができる。水が30重量部未満では繊維が充分解磁され
ず毛玉状の繊維が残り、 150重量部を越えると混練
物がやわらかくなって成形後の保形性がなくなり好まし
くない。また、前記有機成形助剤は、メチルセルロース
、カルボキシメチルセルロース、および、酢酸ビニル、
ポリアクリル樹脂、水分散型ワックスエマルジョンの中
から選ばれるいずれか1種又は2種以上であることが良
い、この成形助剤の配合量が0.5重量部未満では、成
形体の乾燥強度が得られず、10重量部を越えるとコス
ト高となって好適ではない。上記配合量1&物は、市販
の混練機で混練されるが、繊維を短く切断せずに分散さ
せるには、食品用によく使用されている刃部ミキサで混
練するのが最適である。ボールミルやニーグーでは繊維
が折れてしまって成形体密度が上ってしまい有効ではな
い。
A raw material for molding is prepared by adding 30 to 150 parts by weight of water and, if necessary, an organic molding aid in a solid content of 0.5 to 10 parts by weight. If the amount of water is less than 30 parts by weight, the fibers will not be sufficiently demagnetized and pill-like fibers will remain, and if it exceeds 150 parts by weight, the kneaded material will become soft and lose shape after molding, which is not preferable. Further, the organic molding aids include methylcellulose, carboxymethylcellulose, and vinyl acetate,
If the amount of this molding aid, which is preferably one or more selected from polyacrylic resin and water-dispersed wax emulsion, is less than 0.5 parts by weight, the dry strength of the molded product will decrease. If it exceeds 10 parts by weight, the cost will be high and it is not suitable. The above blending amount 1> is kneaded with a commercially available kneader, but in order to disperse the fibers without cutting them into short pieces, it is best to knead with a blade mixer commonly used for food products. Ball mills and Ni-Goo are not effective because the fibers break and the density of the compact increases.

第二は、前記混練物を脱気することである。特にm!I
を含有する原料のため脱気していないと繊維間のつなが
りのない部分にクラックが生じやすくなり、成形体の請
質の低下につながって好ましくない。脱気はバッチ式の
真空容器の中で可能であるが、生産性の点から真空排気
系を設けたスクリューの中で良く脱気される。
The second step is to deaerate the kneaded material. Especially m! I
If it is not deaerated, cracks are likely to occur in areas where there is no connection between fibers, which is undesirable as it leads to a decrease in the quality of the molded product. Degassing is possible in a batch-type vacuum container, but from the viewpoint of productivity it is best done in a screw equipped with a vacuum evacuation system.

第三は、前記脱気物を多孔性の成形用型に入れて常温に
てプレスすることである。前記脱気物は水分を多量に含
むので粘着性が高く、一般の金型では全く離型が出来な
い。金型表面を凹凸にすることで少し離型はできるよう
になるが耐久性がなく使用できない。水分の多い原料の
成形はろくろ成形や泥しよう鋳込み等が汎用されている
が、比重の大きく異なる材料を含んだ原料の成形や、円
形とならない物の成形は使用できない、しかし、泥しょ
う鋳込に用いられる石膏型は水分の多い原料の成形には
良く適した材料である。ただし、石膏型は吸水−乾燥を
崩返すと良く割れたりして耐久性が非常に小さかった。
The third method is to put the degassed material into a porous mold and press it at room temperature. Since the degassed material contains a large amount of water, it is highly adhesive and cannot be released from the mold at all with a general mold. By making the mold surface uneven, it becomes possible to release the mold a little, but it is not durable and cannot be used. For molding raw materials with high moisture content, potter's wheel molding, mud casting, etc. are commonly used, but molding of raw materials containing materials with greatly different specific gravity, or molding of objects that are not circular, cannot be used. The gypsum mold used in this is a material well suited for molding raw materials with a high moisture content. However, the plaster mold often cracks when it absorbs water and collapses after drying, resulting in very low durability.

本発明者等は、離型が良く行なわれ、耐久性の高い成形
用型について研究したところ、連続気孔を持つ材質が本
発明の混練原料には最も適していることを新規に知見し
た。具体的には、繊維質材料の絡みで連続気孔を成形さ
せ、有機樹脂や無機質粉末を充填させ成形用型に必要な
強度と弾性を発揮させるものである。上記多孔性の成形
用型による成形は、混線脱気原料が適度な粘性を有して
いるため良く伸び常温でプレスすることができコストダ
ウンに大きく寄与できるものである。
The present inventors conducted research on molds with good mold release and high durability, and newly discovered that a material with continuous pores is most suitable for the kneaded raw material of the present invention. Specifically, continuous pores are formed by intertwining fibrous materials and filled with organic resin or inorganic powder to provide the necessary strength and elasticity to the mold. Molding using the above-mentioned porous mold can greatly contribute to cost reduction because the cross-wire-degassed raw material has appropriate viscosity, so it stretches well and can be pressed at room temperature.

第四は、前記プレス成形体を乾燥後800〜1600℃
の温度範囲で焼成することである。焼成の目的は、有機
樹脂の焼却と成形体強度の向上である。
Fourth, after drying the press molded body, the temperature is 800 to 1600°C.
It is to be fired at a temperature range of . The purpose of firing is to incinerate the organic resin and improve the strength of the molded product.

すなわち、前記耐熱性無機質ta!lIと耐火性粉末お
よび無機結合剤とを充分に焼結せしめ高強度の構造物を
得ることができる。しかも、前記プレス成形体は、従来
の抄造法の様に無機結合剤を凝集することなく使用でき
るので、バインダー効果が均一に発揮され150〜30
0kgf/cm″の格段に優れた強度を得ることができ
る。
That is, the heat-resistant inorganic material ta! A high-strength structure can be obtained by sufficiently sintering lI, refractory powder, and inorganic binder. Moreover, the press-formed product can be used without agglomerating the inorganic binder unlike in the conventional paper-making method, so the binder effect is uniformly exhibited and the
A significantly superior strength of 0 kgf/cm'' can be obtained.

以上のようにして成形された本発明の耐熱性無機質繊維
成形体は0.6〜2.f1g/cゴのかさ密度であるこ
とが好ましい。0.6g/cm″未満では成形体強度が
充分に得られず、また2、0g/crn’を越えると重
くなり過ぎ、蓄熱量が多くなったり耐熱衝撃性に劣るよ
うになり好ましくない。
The heat-resistant inorganic fiber molded article of the present invention molded as described above has a temperature of 0.6 to 2. It is preferable that the bulk density is f1g/c. If it is less than 0.6 g/cm'', sufficient strength will not be obtained, and if it exceeds 2.0 g/cm', it will become too heavy, resulting in an increased amount of heat storage or poor thermal shock resistance, which is not preferable.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例1 水中で分級することにより非繊維状物の含有層を3wL
% ニrrJl 御L/ タA l 20 =50wt
 %、5in2SOvt%のアルミノシリケート繊fi
600gと平均粒径4.5gmのアルミナ粉末1100
gおよび末節粘土300gと焼成ケイソウ上150gと
を配合して万能ミキサの中に入れ、水950gと有機成
形助剤(ワックス、ポリアクリルアミン酢酸塩) 30
0gとを添加してから 5分間混練し、続いて真空土練
機にて脱気後、多孔性の型に入れ20kgf/crn’
の圧力でプレスして 200x  200x 8o I
I+繊維 (内寸180x  t80x 6011■)
の深林状の成形品を製造した。乾燥後1450°Cて6
時間焼成して1.1g/crn’の密度の耐熱性無機質
m!!成形体を得た。
Example 1 A layer containing non-fibrous matter was reduced to 3wL by classification in water.
% NirrJl GoL/TaAl 20 = 50wt
%, 5in2SOvt% aluminosilicate fiber fi
Alumina powder 1100 with 600g and average particle size 4.5gm
Blend 300 g of clay and 150 g of calcined diatomaceous powder into a multipurpose mixer, add 950 g of water and organic molding aids (wax, polyacrylamine acetate) 30
After adding 0g, knead for 5 minutes, then degas in a vacuum kneading machine, then put into a porous mold and mix at 20kgf/crn'.
Press with pressure of 200x 200x 8o I
I+ fiber (inner size 180x t80x 6011■)
A deep forest-shaped molded product was manufactured. After drying at 1450°C6
Heat-resistant inorganic material with a density of 1.1 g/crn' after firing for hours m! ! A molded body was obtained.

実施例2 結晶質アルミナ繊維300gと平均粒径4.54mのア
ルミナ粉末300gおよびモンモリロナイト100gと
を配合して万t3ミキサの中に入れ、固形分5wt%の
酢酸ビニル樹脂水分散型エマルション1000gを添加
してから7分間混練し、続いて真空脱気後、多孔性の石
膏型に入れ15kgf/crn’の圧力でプレスして実
施例1と同様の成形品を製造した。乾燥後1600℃で
 3時間焼成視て強度2DOkgf/cゴ、密度1.0
g/繊維″の成形体を得た。
Example 2 300 g of crystalline alumina fiber, 300 g of alumina powder with an average particle size of 4.54 m, and 100 g of montmorillonite were blended and placed in a 3,000-ton mixer, and 1000 g of vinyl acetate resin water-dispersed emulsion with a solid content of 5 wt% was added. After that, the mixture was kneaded for 7 minutes, and then after vacuum degassing, it was placed in a porous plaster mold and pressed at a pressure of 15 kgf/crn' to produce a molded article similar to Example 1. After drying, it was baked at 1600℃ for 3 hours to give a strength of 2DOkgf/c and a density of 1.0.
A molded article with a weight of 1.5 g/fiber was obtained.

(発明の効果) 以上の様に本発明によれば高強度で軽量な耐熱性無機質
繊維成形体を容易に寸度でき、異形状の成形体が安価に
製造できる。
(Effects of the Invention) As described above, according to the present invention, a high-strength, lightweight heat-resistant inorganic fiber molded article can be easily sized, and irregularly shaped molded articles can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の耐熱性無機質繊!lk成形体の断面図、
第2図は顆粒状原料で成形した耐熱性無機質繊維成形体
の断面図てあり、これら両図中の矢印はいずれも強度の
弱い部分を表わすものである。
Figure 1 shows conventional heat-resistant inorganic fiber! A cross-sectional view of the lk molded body,
FIG. 2 is a cross-sectional view of a heat-resistant inorganic fiber molded article formed from a granular raw material, and the arrows in both figures indicate areas of weak strength.

Claims (6)

【特許請求の範囲】[Claims] (1)次の(a)〜(d)工程から成ることを特徴とす
るかさ密度0.6〜2.0g/cm^3である耐熱性無
機質繊維成形体の製造方法。 (a)耐熱性無機質繊維20〜50重量%と耐火性粉末
40〜80重量%と無機結合剤5〜30重量%とから成
る配合組成物100重量部に対して、30〜150重量
部の水と、必要に応じて有機成形助剤を固形分で0.5
〜10重量部とを添加して常温で混練する工程、 (b)前記混練物を脱気する工程、 (c)前記脱気物を多孔性の成形用型に入れ、常温にて
プレスし成形体となす工程、 (d)前記プレス成形体を乾燥後800〜1600℃の
温度範囲で焼成する工程。
(1) A method for producing a heat-resistant inorganic fiber molded article having a bulk density of 0.6 to 2.0 g/cm^3, comprising the following steps (a) to (d). (a) 30 to 150 parts by weight of water per 100 parts by weight of a blended composition consisting of 20 to 50% by weight of heat-resistant inorganic fibers, 40 to 80% by weight of fire-resistant powder, and 5 to 30% by weight of an inorganic binder. and, if necessary, organic molding aids at a solid content of 0.5
(b) degassing the kneaded product; (c) putting the degassed product into a porous mold and pressing and molding at room temperature. (d) a step of baking the press-formed product at a temperature range of 800 to 1600°C after drying;
(2)前記混練が、万能ミキサを用いて行なわれること
を特徴とする特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the kneading is performed using a universal mixer.
(3)前記耐熱性無機質繊維は、アルミノシリケート繊
維、結晶質アルミナ繊維、結晶質ムライト繊維、シリカ
繊維、ジルコニア繊維とから選ばれるいずれか1種又は
2種以上であることを特徴とする特許請求の範囲第1項
および第2項記載の製造方法。
(3) A patent claim characterized in that the heat-resistant inorganic fiber is one or more selected from aluminosilicate fiber, crystalline alumina fiber, crystalline mullite fiber, silica fiber, and zirconia fiber. The manufacturing method according to the ranges 1 and 2.
(4)前記耐火性粉末は、アルミナ質、アルミナ・シリ
カ質、ジルコニア質、マグネシア質、チタニア質、クロ
ミア質とから選ばれるいずれか1種又は2種以上である
ことを特徴とする特許請求の範囲第1項〜第3項記載の
製造方法。
(4) The refractory powder is one or more selected from alumina, alumina/silica, zirconia, magnesia, titania, and chromia. The manufacturing method according to ranges 1 to 3.
(5)前記無機結合剤は、粘土、ガラスフリット、ケイ
酸ソーダ、ホウ酸カルシウム、硅石、アルミナゾル、シ
リカゾルとから選ばれるいずれか1種又は2種以上であ
ることを特徴とする特許請求の範囲第1項〜第4項記載
の製造方法。
(5) Claims characterized in that the inorganic binder is one or more selected from clay, glass frit, sodium silicate, calcium borate, silica, alumina sol, and silica sol. The manufacturing method according to items 1 to 4.
(6)前記有機成形助剤は、メチルセルロース、カルボ
キシメチルセルロース、および酢酸ビニル、ポリアクリ
ル樹脂、水分散型ワックスエマルジョンの中から選ばれ
るいずれか1種又は2種以上であることを特徴とする特
許請求の範囲第1項〜第5項記載の製造方法。
(6) A patent claim characterized in that the organic molding aid is one or more selected from methylcellulose, carboxymethylcellulose, vinyl acetate, polyacrylic resin, and water-dispersed wax emulsion. The manufacturing method according to the ranges 1 to 5.
JP61258778A 1986-10-30 1986-10-30 Method for producing heat-resistant inorganic fiber molded body Expired - Lifetime JPH0796468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258778A JPH0796468B2 (en) 1986-10-30 1986-10-30 Method for producing heat-resistant inorganic fiber molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258778A JPH0796468B2 (en) 1986-10-30 1986-10-30 Method for producing heat-resistant inorganic fiber molded body

Publications (2)

Publication Number Publication Date
JPS63112478A true JPS63112478A (en) 1988-05-17
JPH0796468B2 JPH0796468B2 (en) 1995-10-18

Family

ID=17324949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258778A Expired - Lifetime JPH0796468B2 (en) 1986-10-30 1986-10-30 Method for producing heat-resistant inorganic fiber molded body

Country Status (1)

Country Link
JP (1) JPH0796468B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257217A (en) * 1975-11-05 1977-05-11 Noboru Nagase Method of relaeasing ceramic products
JPS5988378A (en) * 1982-11-10 1984-05-22 東芝セラミツクス株式会社 Lightweight refractories and manufacture
JPS59152281A (en) * 1983-02-18 1984-08-30 東芝モノフラツクス株式会社 High temperature heat insulative structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257217A (en) * 1975-11-05 1977-05-11 Noboru Nagase Method of relaeasing ceramic products
JPS5988378A (en) * 1982-11-10 1984-05-22 東芝セラミツクス株式会社 Lightweight refractories and manufacture
JPS59152281A (en) * 1983-02-18 1984-08-30 東芝モノフラツクス株式会社 High temperature heat insulative structure

Also Published As

Publication number Publication date
JPH0796468B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
EP1940532B1 (en) Filter device for molten metal filtration and method for producing such filters
CN101328073B (en) Self-reinforcing type ceramic fibre pouring material and preparation thereof
JPH0543666B2 (en)
CN100404467C (en) Ceramic cushion board and its producing method
US5420087A (en) Refractory or fireproof brick as tin bath bottom brick
CN106518043B (en) The preparation method of the siliceous bottom brick of molten tin bath of low-cost aluminum calcium
CN108947568B (en) Method for preparing alumina hollow ball brick by using pore-forming agent
JP3000151B2 (en) Refractory support and method for producing the same
JPH08283073A (en) Kiln tool
CN112592156B (en) Foamed ceramic and preparation method and application thereof
JPS5988378A (en) Lightweight refractories and manufacture
JPS63112478A (en) Manufacture of heat resistant inorganic fiber formed body
JPS63112477A (en) Heat resistant inorganic fiber formed body
JPH0369545A (en) Manufacturing white ware ceramic product
NL8200602A (en) SHAPED PRODUCTS OF HIGH MECHANICAL STABILITY AT HIGH TEMPERATURES, METHOD OF MANUFACTURE THEREOF AND USE THEREOF.
JPS63113294A (en) Heat-resistant inorganic fibrous ceramic baked jig
JPS63190777A (en) High heat resistance lightweight burnt tool
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
CN110818396B (en) High-temperature-resistant material and preparation method thereof
JPS63242979A (en) High heat resistance lightweight burnt tool
JPH01278481A (en) Lightweight heat-resistant molded article and production thereof
JPH0154305B2 (en)
JPH06305853A (en) Production of heat-resistant fibrous molded article having low-specific gravity
KR20050064062A (en) Method for preparing castable block improving corrosion and oxidation resistance
JPH04250849A (en) Production of honeycomb structure carrier comprising boria-silica-alumina composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term