JPS63112443A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPS63112443A
JPS63112443A JP61257994A JP25799486A JPS63112443A JP S63112443 A JPS63112443 A JP S63112443A JP 61257994 A JP61257994 A JP 61257994A JP 25799486 A JP25799486 A JP 25799486A JP S63112443 A JPS63112443 A JP S63112443A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
coating
coated
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61257994A
Other languages
Japanese (ja)
Other versions
JPH075336B2 (en
Inventor
Hiroo Matsuda
松田 裕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61257994A priority Critical patent/JPH075336B2/en
Publication of JPS63112443A publication Critical patent/JPS63112443A/en
Publication of JPH075336B2 publication Critical patent/JPH075336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent occurrence of a slipping phenomenon and homogeneously and stably coat an optical fiber at a high speed, by coating a coated or uncoated optical fiber drawn from an optical fiber preform with a liquid ultraviolet curing type resin under specific conditions and curing the resin. CONSTITUTION:An optical fiber drawn from an optical fiber preform or a coated optical fiber is coated with a liquid ultraviolet curing type resin, e.g. urethane acrylate, through a coating die under conditions of 500-3,000cP viscosity under low shearing speed at the coating temperature and 60-100 deg.C temperature and then passed through an ultraviolet ray irradiation device to cure the resin.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は光ファイバの製造方法に関し、とくに光ファイ
バの保護被覆材樹脂を高速で均一に光ファイバに被覆す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an optical fiber, and more particularly to a method for uniformly coating an optical fiber with a protective coating resin at high speed.

〔従来の技術〕[Conventional technology]

第2図に従来の光ファイバの被覆工程を説明する図を示
す。3は光ファイバ、4は液状樹脂、5は塗布ダイス、
6は塗布した液状樹脂を硬化する硬化装置、7は被覆光
ファイバ、8は巻取機である。光ファイバ3が線引直後
の被覆の施されていない裸ファイバの場合、または既に
被覆されている場合のいずれの場合においても同様の工
程で被覆される。
FIG. 2 is a diagram illustrating a conventional optical fiber coating process. 3 is an optical fiber, 4 is a liquid resin, 5 is a coating die,
6 is a curing device for curing the applied liquid resin, 7 is a coated optical fiber, and 8 is a winder. Whether the optical fiber 3 is a bare fiber with no coating immediately after being drawn or is already coated, the coating is performed in the same process.

光ファイバは、通常、機械的強度や伝送特性の観点から
、複数層の被覆が施される。被覆材は硬化の方式による
観点からの分類で、一般に、熱硬化型樹脂と紫外線硬化
型樹脂が主に用いられているが、近年は後者の紫外線硬
化型樹脂が主流になりつつある。その理由は、光硬化反
応を用いるために、光ファイバの製造線引速度の高速化
が可能となり、硬化装置の、たとえば硬化炉としても従
来の熱硬化炉に比べ、小形の紫外線硬化炉を用いるので
、設備上の簡易化に併せ、紫外線硬化型樹脂の材料自身
も、原料組成の点から低価格化がはかれ、経済的に有効
であることによる。
Optical fibers are usually coated with multiple layers from the viewpoint of mechanical strength and transmission characteristics. Covering materials are classified based on their curing method, and generally thermosetting resins and ultraviolet curable resins are mainly used, but in recent years the latter type of ultraviolet curable resin has become mainstream. The reason for this is that the use of a photocuring reaction makes it possible to increase the drawing speed of optical fibers, and the use of a smaller UV curing furnace for curing equipment, such as a curing furnace, compared to a conventional thermal curing furnace. Therefore, in addition to the simplification of equipment, the cost of the ultraviolet curable resin material itself has been reduced in terms of raw material composition, making it economically effective.

紫外線硬化型樹脂を用いた光ファイバへの塗布工程にお
いて、従来、一般に室温!’−C”、1sec−’程度
の低せん断速度で測定した粘度が1000乃至1000
0 cps程度のものが用いられている。第2図に示す
ような塗布ダイス5を用いた被覆方法では、液状樹脂4
の粘度は、一般に塗布性の点で経験的に500乃至30
00cpsの範囲にする必要があることがわかっており
、室温では粘度が高すぎる場合は若干温度を上げて、液
状樹脂4の粘度を上記の範囲におさまるように調整して
いた。このときの被覆温度は、通常、最高約50℃であ
った。
Conventionally, in the coating process for optical fibers using ultraviolet curable resin, it was generally done at room temperature! '-C', viscosity measured at low shear rate of about 1 sec-' is 1000 to 1000
A signal with a speed of about 0 cps is used. In the coating method using a coating die 5 as shown in FIG.
Empirically, the viscosity of is generally between 500 and 30
00 cps, and if the viscosity was too high at room temperature, the temperature was slightly raised to adjust the viscosity of the liquid resin 4 to within the above range. The coating temperature at this time was usually a maximum of about 50°C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

光ファイバは、その需要の急激な増加に伴い、低価格の
生産が要求され、被覆工程においても高い生産性、すな
わち高速被覆することが重要となっている。しかし、従
来の被覆方法では、液状樹脂を安定かつ均一に塗布でき
る線引速度の上限は低いものであった。その原因は明ら
かになっていないが、次のような理由が考えられている
。すなわち、塗布ダイス内では、たとえば第3図aおよ
びbに示すような樹脂の流れ速度の分布が存在し、一般
にせん断速度も一定でない。一方樹脂の粘度は、第4図
に示すように、せん断速度の上昇に従って低下するため
、ダイス内のせん断速度が大きい部分において、樹脂が
ついていかない、いわゆる“すべり”の現象が生じる。
With the rapid increase in demand for optical fibers, low-cost production is required, and high productivity, that is, high-speed coating, is important in the coating process. However, in conventional coating methods, the upper limit of the drawing speed at which liquid resin can be stably and uniformly applied is low. Although the cause is not clear, the following reasons are considered. That is, within the coating die, there is a flow rate distribution of resin as shown, for example, in FIGS. 3a and 3b, and the shear rate is generally not constant. On the other hand, as shown in FIG. 4, the viscosity of the resin decreases as the shear rate increases, so a so-called "slip" phenomenon occurs in which the resin cannot keep up in the portions of the die where the shear rate is high.

この“すべり”は、せん断速度がある限界値を越えると
急に樹脂の粘度が低下するために生じ、そのため高線引
速度では安定した均一塗布が困難となるという問題があ
る。
This "slip" occurs because the viscosity of the resin suddenly decreases when the shear rate exceeds a certain limit, and therefore, there is a problem in that stable and uniform coating becomes difficult at high drawing speeds.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、光ファイバ母材
から線引した光ファイバまたは被覆を施した光ファイバ
に、塗布ダイスにより液状の紫外線硬化型樹脂を塗布し
被覆した後、紫外線照射装置を通過させて液状の紫外線
硬化型樹脂を硬化させる光ファイバの製造方法において
、光ファイバに塗布する液状の紫外線硬化型樹脂は、塗
布温度が60℃乃至100℃の範囲で、かつ塗布温度に
おける低せん断速度の粘度が500cps乃至3000
cpsであることを特徴とする。
In order to solve the conventional problems, the present invention coats an optical fiber drawn from an optical fiber base material or a coated optical fiber with a liquid ultraviolet curable resin using a coating die, and then coats it with an ultraviolet ray irradiation device. In an optical fiber manufacturing method in which a liquid ultraviolet curable resin is cured by passing through a Shear rate viscosity is 500 cps to 3000
It is characterized by being cps.

〔作 用〕[For production]

本発明の、塗布温度での低せん断速度の粘度が500c
ps乃至3000cpsである液状の紫外線硬化型樹脂
を用い、60℃乃至100℃の温度範囲で塗布すること
により、高速線引においても、樹脂の粘度の急激な低下
がなく、“すべり”の現象は発生し難く、高速で均一に
安定に樹脂被覆を行うことができることについて以下に
説明する。
The viscosity of the present invention at low shear rate at coating temperature is 500c.
By using a liquid UV-curable resin with a ps to 3000 cps and applying it at a temperature range of 60°C to 100°C, there is no sudden drop in resin viscosity even during high-speed drawing, and the phenomenon of "slip" is eliminated. The fact that resin coating can be performed uniformly and stably at high speed with little occurrence of this will be explained below.

樹脂の粘度特性、すなわち温度やせん断速度依存性は、
樹脂の組成、たとえばプレポリマやモノマの種類や分子
量分布、添加剤などにより異なる。
The viscosity characteristics of the resin, that is, the dependence on temperature and shear rate, are
It varies depending on the composition of the resin, such as the type and molecular weight distribution of prepolymers and monomers, additives, etc.

そこで種々の組成の樹脂を合成し、その粘度のせん断速
度依存性を測定した。その結果、第5図に示すように、
低せん断速度での粘度が同じになるように、樹脂の組成
が類似の3種の樹脂A、B。
Therefore, we synthesized resins with various compositions and measured the shear rate dependence of their viscosity. As a result, as shown in Figure 5,
Three resins A and B with similar resin compositions such that the viscosity at low shear rates is the same.

Cについて温度をそれぞれTI 、Tz 、Tl (た
だしTl < Tz’ < Tl )と設定した場合、
以下の傾向があることが判明した。すなわち、同一温度
では高粘度の類似組成樹脂A、B、Cを、それぞれ異な
る温度TI、T2 、Tl 、ただしTI<T2〈Tl
のように高温にて粘度を下げて測定した樹脂はど、すな
わち樹脂CがBより、またBが八より高せん断速度領域
まで粘度が低下し難い(1向が認められた。この傾向は
、エポキシアクリレート系、ウレタンアクリレート系、
シリコンアクリレート系、シリコン系などすべてに共通
であった。
When the temperatures for C are set as TI, Tz, and Tl (however, Tl <Tz'< Tl),
The following trends were found. That is, resins A, B, and C with similar compositions, which have high viscosity at the same temperature, are treated at different temperatures TI, T2, and Tl, respectively, but TI<T2<Tl
Among the resins whose viscosity was measured by lowering the viscosity at high temperatures, resin C was more difficult to decrease than resin B, and resin B was more difficult to decrease than resin B in the high shear rate region (1 direction was observed. This tendency was Epoxy acrylate type, urethane acrylate type,
This was common to all silicone acrylate and silicone types.

また同一温度であれば、異種の樹脂についても、第6図
に示すように粘度が急激に低下しはじめるせん断速度(
以下限界せん断速度という。)はほぼ同一である。
Furthermore, at the same temperature, even for different types of resins, the shear rate (
Hereinafter referred to as critical shear rate. ) are almost the same.

一般に、紫外線硬化型樹脂は、上述したような粘度時・
性を有していることから、高粘度の樹脂を高温にて光フ
ァイバに塗布すると、限界せん断速度が高く、ダイス内
樹脂の流れの高せん断速度領域、たとえば、多くの場合
は第3図aにおけるファイバ表面、または第3図すにお
けるダイス壁面においても“すべり”が生じ難く、高線
引速度においても安定かつ均一な塗布が可能となる。
In general, UV-curable resins have the above-mentioned viscosity.
Therefore, when a high viscosity resin is applied to an optical fiber at high temperature, the critical shear rate is high, and the high shear rate region of the resin flow in the die, for example, in many cases, Fig. 3a "Slip" is less likely to occur on the fiber surface in Figure 3 or on the die wall surface in Figure 3, and stable and uniform coating is possible even at high drawing speeds.

また塗布温度範囲の上限は、樹脂の劣化の点から約10
0℃である。下限の60℃の根拠については、後述の実
施例において説明する。
In addition, the upper limit of the coating temperature range is approximately 10
It is 0°C. The basis for the lower limit of 60°C will be explained in Examples below.

−IQに、光ファイバは線引しながら一層または多層の
被覆が施される。この場合、被覆されるファイバ、すな
わち−層目の場合は裸のガラスファイバ、二層目以降は
被覆されたファイバは線引速度によって温度が変化する
。この温度変化は、裸のガラスファイバはガラスの高温
溶融のためであり、また被覆されたファイバは、硬化熱
などのために高温になった後の冷却時間が変化するため
である。均一・安定塗布の観点からは、塗布されるファ
イバと塗布する樹脂の温度差を小さくし、ダイス内樹脂
の温度分布(粘度分布と称する。)は小さい方が望まし
い。このため、樹脂塗布前のファイバ温度を制御し、樹
脂の温度と一致させるのが良い。以下に具体的実施例に
ついて説明する。
- At IQ, the optical fiber is coated with one or more layers while being drawn. In this case, the temperature of the fiber to be coated, that is, the bare glass fiber for the -th layer and the coated fiber for the second and subsequent layers, changes depending on the drawing speed. This temperature change is due to the high temperature melting of the glass in bare glass fibers, and the change in cooling time for coated fibers after reaching a high temperature due to curing heat, etc. From the viewpoint of uniform and stable coating, it is desirable to reduce the temperature difference between the fiber to be coated and the resin to be coated, and to have a small temperature distribution (referred to as viscosity distribution) of the resin in the die. For this reason, it is preferable to control the fiber temperature before applying the resin to match the temperature of the resin. Specific examples will be described below.

〔実施例〕〔Example〕

第1図に示す光ファイバの製造方法工程により、この種
の光ファイバを数種試作し、比較評価した実施例につい
て示す。なお第1図において、第2図と同じ符号は同じ
部分を示す。1は光ファイバ母材、2は線引炉である。
Examples will be described in which several types of optical fibers of this type were produced as prototypes using the optical fiber manufacturing method steps shown in FIG. 1, and were comparatively evaluated. In FIG. 1, the same reference numerals as in FIG. 2 indicate the same parts. 1 is an optical fiber preform, and 2 is a drawing furnace.

実施例1: 外径125μmφのガラスファイバを線引しながら、線
引速度100m/分〜600m/分にて表1に示す9種
類の樹脂を被覆し、外径200μmφに仕上げ、塗布の
均一性と安定性を調べ評価した。
Example 1: While drawing a glass fiber with an outer diameter of 125 μmφ, it was coated with nine types of resin shown in Table 1 at a drawing speed of 100 m/min to 600 m/min, finished to an outer diameter of 200 μmφ, and uniformity of coating was observed. and stability was investigated and evaluated.

表  1 表1に示した結果から、試料No、2.3,5゜6.9
が均一で安定な塗布を施すことができた。
Table 1 From the results shown in Table 1, sample No. 2.3, 5°6.9
It was possible to apply a uniform and stable coating.

これより、低温で高粘度の樹脂を用い、塗布する樹脂の
温度が60℃乃至100℃の範囲において、均一で安定
な塗布を施すことのできることが認められる。
From this, it is recognized that uniform and stable coating can be performed using a resin having high viscosity at low temperature and at a temperature of the resin to be coated in the range of 60°C to 100°C.

実施例2: 外径125μmφのガラスファイバにウレタンアクリレ
ート被覆を施した、外径200μmφのウレタンアクリ
レート被覆光ファイバに、線引速度500m/分で、表
2に示す6種類の樹脂を被覆し、外径300μmφに仕
上げ、塗布の均一性と安定性を調べ評価した。
Example 2: A glass fiber with an outer diameter of 125 μmφ was coated with urethane acrylate.A urethane acrylate coated optical fiber with an outer diameter of 200 μmφ was coated with the six types of resins shown in Table 2 at a drawing speed of 500 m/min, and the outer diameter was It was finished to a diameter of 300 μmφ, and the uniformity and stability of the coating was examined and evaluated.

表  2 表2に示した結果から、試料No、  2. 3. 6
が均一で安定な塗布を茄すことができた。この結果から
も、低温で高粘度の樹脂を用い、塗布する樹脂の温度が
60℃乃至100℃の範囲において、均一で安定な塗布
を施すことのできることが認められる。
Table 2 From the results shown in Table 2, sample No. 2. 3. 6
was able to achieve uniform and stable application. This result also confirms that uniform and stable coating can be performed using a low-temperature, high-viscosity resin at a temperature of 60°C to 100°C.

本発明は、以上の実施例における光ファイバの被覆構造
などにとくに限定されるものではなく、広く通常の紫外
線硬化型樹脂被覆光ファイバに適用できるものである。
The present invention is not particularly limited to the coating structure of the optical fiber in the above embodiments, but can be applied to a wide range of ordinary ultraviolet curable resin-coated optical fibers.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の光ファイバの製造方法によ
れば、高速の線引においても、紫外線硬化型樹脂の塗布
・被覆工程における樹脂の粘度の急激な低下がないので
“すべり”の現象が発生し難<、高速の線引で均一に安
定した紫外線硬化型樹脂の被覆が可能となり、その効果
は大きい。
As described above, according to the optical fiber manufacturing method of the present invention, even during high-speed drawing, there is no sudden drop in the viscosity of the resin during the application/coating process of the ultraviolet curable resin, so the "slip" phenomenon does not occur. This makes it possible to uniformly and stably coat the ultraviolet curable resin with high-speed wire drawing, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光ファイバの製造方法工程説明図
、第2図は従来の光ファイバの被覆工程説明図、第3図
a、bはダイス内樹脂の流れ速度分布を示す図、第4図
は代表的樹脂粘度のせん断速度依存性を示す図、第5図
は類似組成樹脂粘度のせん断速度依存性を示す図、第6
図は異種樹脂粘度のせん断速度依存性を示す図である。 ■・・・光ファイバ母材、2・・・線引炉、3・・・光
ファイバ、4・・・液状樹脂、5・・・塗布ダイス、6
・・・硬化装置、7・・・被覆光ファイバ、8・・・巻
取機特許出願人   住友電気工業株式会社代理人 弁
理士 玉 蟲 久 五 部 せん断速度(sec’) 代表的樹脂粘度のせん断速度依存性 菌  4  図 せん断速度 第  6  図
Fig. 1 is an explanatory diagram of the process of manufacturing an optical fiber according to the present invention, Fig. 2 is an explanatory diagram of the coating process of a conventional optical fiber, Figs. Figure 4 shows the shear rate dependence of typical resin viscosity, Figure 5 shows the shear rate dependence of similar composition resin viscosity, and Figure 6 shows the shear rate dependence of resin viscosity of similar compositions.
The figure shows the shear rate dependence of the viscosity of different resins. ■...Optical fiber base material, 2...Drawing furnace, 3...Optical fiber, 4...Liquid resin, 5...Coating die, 6
Curing device, 7 Coated optical fiber, 8 Winding machine Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Patent attorney Hisashi Tamamushi 5 Part shear rate (sec') Shear of typical resin viscosity Rate-dependent bacteria Figure 4 Shear rate Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)光ファイバ母材から線引した光ファイバまたは被
覆を施した光ファイバに、塗布ダイスにより液状の紫外
線硬化型樹脂を塗布し被覆を施した後、紫外線照射装置
を通過させて前記液状の紫外線硬化型樹脂を硬化させる
光ファイバの製造方法において、 前記光ファイバに塗布する液状の紫外線硬化型樹脂は、 塗布温度が60℃乃至100℃の範囲で、かつ前記塗布
温度における低せん断速度の粘度が500cps乃至3
000cpsである ことを特徴とする光ファイバの製造方法。
(1) After coating an optical fiber drawn from an optical fiber base material or a coated optical fiber with a liquid ultraviolet curable resin using a coating die, the liquid is passed through an ultraviolet irradiation device. In the method for manufacturing an optical fiber in which an ultraviolet curable resin is cured, the liquid ultraviolet curable resin applied to the optical fiber has a coating temperature in the range of 60°C to 100°C, and a viscosity of a low shear rate at the coating temperature. is 500cps to 3
A method for manufacturing an optical fiber, characterized in that the optical fiber has a speed of 0.000 cps.
(2)前記光ファイバ母材を線引しながら前記液状の紫
外線硬化型樹脂を光ファイバに塗布し被覆を施すことを
特徴とする特許請求の範囲第1項記載の光ファイバの製
造方法。
(2) The method for manufacturing an optical fiber according to claim 1, wherein the liquid ultraviolet curable resin is coated on the optical fiber while drawing the optical fiber preform.
JP61257994A 1986-10-29 1986-10-29 Optical fiber manufacturing method Expired - Lifetime JPH075336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61257994A JPH075336B2 (en) 1986-10-29 1986-10-29 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257994A JPH075336B2 (en) 1986-10-29 1986-10-29 Optical fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS63112443A true JPS63112443A (en) 1988-05-17
JPH075336B2 JPH075336B2 (en) 1995-01-25

Family

ID=17314060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257994A Expired - Lifetime JPH075336B2 (en) 1986-10-29 1986-10-29 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH075336B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251447A (en) * 1988-08-11 1990-02-21 Fujikura Ltd Method for coating optical fiber
US7041334B2 (en) 2001-12-13 2006-05-09 Fujikura Ltd. Optical fiber drawing die and drawing method therefor
JP2009227522A (en) * 2008-03-24 2009-10-08 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251447A (en) * 1988-08-11 1990-02-21 Fujikura Ltd Method for coating optical fiber
JP2593693B2 (en) * 1988-08-11 1997-03-26 株式会社フジクラ Optical fiber coating method
US7041334B2 (en) 2001-12-13 2006-05-09 Fujikura Ltd. Optical fiber drawing die and drawing method therefor
JP2009227522A (en) * 2008-03-24 2009-10-08 Furukawa Electric Co Ltd:The Method for manufacturing optical fiber

Also Published As

Publication number Publication date
JPH075336B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US4848869A (en) Method of coating and optical fiber comprising polyimide-silicone block copolymer coating
US5408564A (en) Strippable tight buffered optical waveguide
JP2765033B2 (en) Optical fiber drawing method
JP2836285B2 (en) Coated optical fiber
JPS63112443A (en) Production of optical fiber
JP2635475B2 (en) Optical fiber coating forming method
US6181859B1 (en) Coated optical fiber and method of making the same
US6126993A (en) Coating compositions for optical fibers, and a method of coating optical fibers
JP2975606B2 (en) Glass optical fiber and method for manufacturing the same
JPH032808A (en) Coated optical fiber
JP2003183056A (en) Die for spinning optical fiber, device and method for spinning optical fiber
JPH02212338A (en) Production of optical fiber
JP2928723B2 (en) Optical fiber manufacturing method
JPH10316452A (en) Production of optical fiber
US20050194704A1 (en) Apparatus and method for drawing optical fiber
JPH02175634A (en) Coating of optical fiber
JPH0882725A (en) Production of coated optical fiber
JP3383565B2 (en) Optical fiber ribbon manufacturing method
JP2968680B2 (en) Optical fiber manufacturing method
JPH0629157B2 (en) Optical fiber manufacturing method
JP3675884B2 (en) Optical fiber manufacturing method
JPH04367541A (en) Production of optical fiber strand having small diameter
JPH07109150A (en) Production of optical fiber
JPH08262285A (en) Optical fiber and its production
JPS62119140A (en) Production of optical fiber