JPS63112071A - Method for controlling arc plasma - Google Patents

Method for controlling arc plasma

Info

Publication number
JPS63112071A
JPS63112071A JP25801786A JP25801786A JPS63112071A JP S63112071 A JPS63112071 A JP S63112071A JP 25801786 A JP25801786 A JP 25801786A JP 25801786 A JP25801786 A JP 25801786A JP S63112071 A JPS63112071 A JP S63112071A
Authority
JP
Japan
Prior art keywords
welding
arc
plasma
magnetic field
exciting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25801786A
Other languages
Japanese (ja)
Other versions
JPH07102458B2 (en
Inventor
Ikuo Wakamoto
郁夫 若元
Toshiro Kobayashi
敏郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61258017A priority Critical patent/JPH07102458B2/en
Publication of JPS63112071A publication Critical patent/JPS63112071A/en
Publication of JPH07102458B2 publication Critical patent/JPH07102458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To execute high speed deep penetration welding and high speed cutting with an inexpensive device, by providing the electronic lens of a rotary symmetrical magnetic field type on the periphery of a welding arc and a plasma, and focusing the arc and the plasma. CONSTITUTION:For instance, in a conventional MIG welding device, an exciting coil 14 consisting of the iron core 13 of soft iron having a pole piece 12 is provided on the periphery of a shield nozzle 11 consisting of non-magnetism of the tip of a welding torch. To the exciting coil 14, a DC current is allowed to flow from an excitation power source 17 a magnetic field generated so as to surround the exciting coil 14 is collected to the gap part G of the pole piece 12, and arc (or a plasma) 4 is converged by a generated powerful magnetic field, and by utilizing the arc (or the plasma) 4 having a high energy density, high speed deep penetration welding is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種浴接構造物の溶接に適用される新しいアー
ク溶接やプラズマ浴接(プラズマ切断)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to new arc welding and plasma bath welding (plasma cutting) that are applied to welding various bath welded structures.

〔従来の技術〕[Conventional technology]

従来のアーク浴接の一種であるMIG溶接方法の概要を
第6図に示す。シールドノズル09から流すシールドガ
ス(Ar、 CO,)又はこれらの混合ガス08などの
中で、浴接電源010から給電チップ07を有した給電
体06に浴接ワイヤ05を送給し、母材O1と浴接ワイ
ヤ05の間でアーク04ヲ発生させ、そのアーク熱で溶
融金属08を作りながら浴接ビード02ヲ形成するよう
に溶接を行う方法であるが、最近開発の著しい電子ビー
ム溶接やレーザ浴接に比ベエネルギー密度が小さいため
溶接速度に限界があり、浴込み深さも比較的浅い。した
がって、母材熱影響部の幅が広くなり、靭性や耐食性の
点から不利となっている。
FIG. 6 shows an outline of the MIG welding method, which is a type of conventional arc bath welding. A bath welding wire 05 is fed from a bath welding power supply 010 to a power feeder 06 having a power feeding tip 07 in a shielding gas (Ar, CO,) or a mixed gas 08 of these flowing from a shielding nozzle 09, and the base material is This method generates an arc 04 between O1 and the bath welding wire 05, and uses the arc heat to create molten metal 08 while forming the bath welding bead 02. However, electron beam welding, which has recently been significantly developed, There is a limit to the welding speed due to the low relative energy density of laser bath welding, and the bath depth is also relatively shallow. Therefore, the width of the base metal heat affected zone becomes wider, which is disadvantageous in terms of toughness and corrosion resistance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のように、従来方法ではアークやプラズマは広がシ
やすいが、エネルギー密度が小さく。
As mentioned above, in conventional methods, arcs and plasma spread easily, but their energy density is low.

浴接や切断(プラズマ)に際して加熱時間を必要とする
。したがって、溶接速度が遅く、浴込み深さも浅くなる
問題がある。
Requires heating time during bath welding and cutting (plasma). Therefore, there are problems in that the welding speed is slow and the bathing depth is shallow.

C問題点を解決するための手段〕 本発明はと記問題点を解決するために、溶接(切断)ト
ーチの先端に設けた回転対称磁界型や4極子磁界型等の
電子レンズによりアークやプラズマを集束し、エネルギ
ー密度をLげて高速溶接(切断)、深溶込み溶接、低入
熱溶接が可能となる。すなわち、TIG溶接、MIG溶
接、潜弧浴接等の溶接アーク及びプラズマ溶接。
Means for Solving Problem C] In order to solve the above problem, the present invention uses an electron lens of a rotationally symmetrical magnetic field type or a quadrupole magnetic field type provided at the tip of a welding (cutting) torch to generate an arc or plasma. By focusing the energy density, high-speed welding (cutting), deep penetration welding, and low heat input welding are possible. That is, welding arc and plasma welding such as TIG welding, MIG welding, and submerged arc bath welding.

プラズマ切断等のプラズマを、前記アークやプラズマの
周囲に設けた回転対称磁界型、又は4極子磁界型の電子
レンズにより制御して集束させることを特徴とするアー
ク、プラズマの制御方法全提供するものである。
A complete method for controlling arcs and plasmas, which comprises controlling and focusing plasma during plasma cutting, etc., using a rotationally symmetrical magnetic field type or quadrupole magnetic field type electron lens provided around the arc or plasma. It is.

〔作用〕[Effect]

本発明のアーク、プラズマ制御方法はL記方法によりア
ークやプラズマを簡単な装置により集束可能として、電
子ビーム溶接やレーザ浴接(切断)に比べ安価な装置で
高速深浴込み溶接や高速切断が可能となるようにしたア
ーク、プラズマの制御方法である。
The arc and plasma control method of the present invention enables arc and plasma to be focused using a simple device using method L, and enables high-speed deep bath welding and high-speed cutting with cheaper equipment than electron beam welding and laser bath welding (cutting). This is a method of controlling arc and plasma that makes it possible.

〔実施例〕〔Example〕

以下2本発明全図面に示す実施例に基づいて具体的に説
明する。第1図は本発明の第1実施例に係る回転対称磁
界型電子レンズにおけるアーク、プラズマの制御方法を
示す概念図。第2図は本実施例に係る第1図トl矢視の
平面で。
The present invention will be specifically described below based on two embodiments shown in the drawings. FIG. 1 is a conceptual diagram showing a method for controlling arc and plasma in a rotationally symmetric magnetic field type electron lens according to a first embodiment of the present invention. FIG. 2 is a plane taken in the direction of arrow L in FIG. 1 according to this embodiment.

シールドノズル部の周囲に磁界を集束する模式図。第3
図は本発明の第2実施例に係る4極子磁界型電子レンズ
におけるアーク、プラズマの制御方法を示す概念図。第
4図は本実施例に係る第3図ff−IV矢視の平面で、
電磁コイルをアークやプラズマの周囲に直交させる構造
を示す。
A schematic diagram of focusing a magnetic field around a shield nozzle part. Third
The figure is a conceptual diagram showing a method for controlling arc and plasma in a quadrupole magnetic field type electron lens according to a second embodiment of the present invention. FIG. 4 is a plane taken from arrow ff-IV in FIG. 3 according to this embodiment,
This shows a structure in which an electromagnetic coil is placed orthogonally around the arc or plasma.

第5図は本発明の第1.第2実施例に係る原理を示す(
a)図は回転対称磁界型を、同(b)図は4極子磁界型
の原理図である。以下にその説明をする。
FIG. 5 shows the first embodiment of the present invention. The principle related to the second embodiment is shown (
Figure (a) shows the rotationally symmetric magnetic field type, and Figure (b) shows the principle of the quadrupole magnetic field type. The explanation is below.

第1図において従来のMIG浴接装置は浴接ワイヤ5に
給電する給電チップ7を有した給電体6に浴接電源lO
よシ正極側、母材1を負極側として通電し、この給電体
6を包囲してできる空洞部にシールドガス8を流してア
ーク4による溶融金属3をシールドするシールドノズル
9から構成されて、溶接金属2を形成するものが一般的
である。ここで本発明が従来のtlG溶接方法と変わる
ところは、第1図、第2図に示すような溶接トーチ先端
の非磁性体からなるシールドノズル11の周囲にポール
ピース12を有した軟鉄の鉄心13からなる励磁コイル
14を設け。
In FIG. 1, the conventional MIG bath welding device connects a bath welding power supply lO
It is composed of a shield nozzle 9 that is energized with the positive electrode side and the base material 1 as the negative electrode side, and that shields the molten metal 3 caused by the arc 4 by flowing the shielding gas 8 into the cavity formed by surrounding the power supply body 6. Those that form the weld metal 2 are common. Here, the difference between the present invention and the conventional tlG welding method is that a soft iron core with a pole piece 12 surrounding a shield nozzle 11 made of a non-magnetic material at the tip of a welding torch is shown in FIGS. 1 and 2. An excitation coil 14 consisting of 13 is provided.

この励磁コイル14に励磁電源17より直流電流を流し
、励磁コイル14を取り巻くように生じる磁界をポール
ピース12のギャップ部Gに集め。
A direct current is applied to this excitation coil 14 from an excitation power source 17, and a magnetic field generated surrounding the excitation coil 14 is collected in the gap G of the pole piece 12.

第2図に示す模式のように生じた強力な磁場でアーク4
やプラズマ(これらは共に電子の流れである)を集束し
、エネルギー密度の高いアーク4やプラズマを利用して
高速深溶込み溶接を行う方法である。なお、このポール
ピース12にはアーク熱の遮断策として冷却パイプ15
′lt介して冷却水16ヲ流して冷却する方法を採用し
ている。
The arc 4 is generated by a strong magnetic field as shown in the diagram shown in Figure 2.
This is a method in which high-speed deep penetration welding is performed by focusing the arc 4 and plasma (both of which are electron flows) and utilizing the arc 4 and plasma with high energy density. Note that this pole piece 12 is equipped with a cooling pipe 15 as a measure to cut off arc heat.
A cooling method is adopted in which 16 volumes of cooling water are allowed to flow through the tube.

次いで本発明の第2実施例である第3図の4極子磁界型
電子レンズによるMIG溶接方法について構造から説明
するとMIG溶接装置の一般的な構造は省略し、第1実
施例である第1図との差異を比べると非磁性体からなる
シールドノズル11と、このシールドノズル11がシー
ルドノズル9と螺合して取付けられる部分を下部は円錐
形状で北部は円筒形状を一体化して包囲する鉄心13の
上部円筒状にリング状とした鉄心18と、励磁コイル1
4を第4図で示すように2対又は4対以北を設けたもの
である。第2実施例では4個(2対)の励磁コイル14
をアーク4やプラズマの周囲に直交するように設けた構
造のものを示す。この場合、第1図の第1実施例の方法
に比べて比較的弱い磁場強度でも強い集束作用が得られ
、更に各欄の励磁電流を制御することによシ橢円等の非
円形ビームを作ることも可能となる方法で、各対の磁石
はN−N、S−Sの同極であるが、隣りの極とは逆とな
っている。
Next, the MIG welding method using a quadrupole magnetic field type electron lens shown in FIG. 3, which is a second embodiment of the present invention, will be explained from the structure.The general structure of the MIG welding device will be omitted, and FIG. Comparing the differences between the shield nozzle 11 made of a non-magnetic material and the iron core 13 that surrounds the part where this shield nozzle 11 is screwed with the shield nozzle 9, the lower part is conical and the northern part is cylindrical. An upper cylindrical ring-shaped iron core 18 and an exciting coil 1
As shown in Figure 4, 2 pairs or 4 pairs or more north of the 4 pairs are provided. In the second embodiment, four (two pairs) excitation coils 14
This figure shows a structure in which the arc 4 and the plasma are perpendicular to each other. In this case, a strong focusing effect can be obtained even with a relatively weak magnetic field strength compared to the method of the first embodiment shown in FIG. In such a way that it is possible to make each pair of magnets have the same polarity, N-N, S-S, but with opposite polarity to the adjacent one.

ここで、第4図に示す鉄心13先端の半径RをR=1.
125〜1.258にすれば均一な磁場が得られる。な
お第5図に前述の第1実施例及び第2実施例におけるそ
れぞれ(a)図は回転対称磁界方法。
Here, the radius R of the tip of the iron core 13 shown in FIG. 4 is set to R=1.
A uniform magnetic field can be obtained by setting the value to 125 to 1.258. In addition, in FIG. 5, (a) in each of the above-mentioned first and second embodiments shows the rotationally symmetrical magnetic field method.

同(b)図は4極子磁界方法の各作動原理図を示すが、
何れも7レミングの左手の法則によって決まる方向に曲
げられ集束する。(81図ではアーク4やプラズマの集
束に従来の溶接ワイヤ5と同等幅に分散した電流Iが励
磁コイル14をボートピース12全介してアーク4やプ
ラズマ部に対向さすことにより磁界Bがアーク4の電流
Iは図示しだ母材lに破線のように集束されるものであ
る。又、同(b)図の4i子磁界方法には図示のように
磁界B部に矢印の下で示すローレンツ力が電流lを母材
1に集束することとなる。この両者における有効性は第
2実施例の4極子磁界方法である。本発明による2方法
と従来方法の溶接試験結果を60キロ級高張力鋼のMU
G溶接を対象として下表に示す。
Figure (b) shows the operating principles of the quadrupole magnetic field method.
Both are bent and focused in the direction determined by the left hand rule of the 7 lemmings. (In Fig. 81, when the arc 4 and plasma are focused, a current I distributed in the same width as that of the conventional welding wire 5 causes the exciting coil 14 to face the arc 4 and plasma part through the entire boat piece 12, so that the magnetic field B is The current I is focused on the base material l as shown in the figure as shown by the broken line.In addition, in the 4i magnetic field method in the same figure (b), there is a Lorentzian current in the magnetic field B shown under the arrow as shown in the figure. The force focuses the current l on the base metal 1.The quadrupole magnetic field method of the second embodiment is effective in both cases.The welding test results of the two methods according to the present invention and the conventional method are MU of tension steel
The table below shows G welding.

と表からも分かるように従来方法に比べ1本発明の方法
は同様な溶接電流でもアーク長が短くなり、アーク電圧
が小さくなっている。従ってアーク集束効果と重畳し、
スピードが速くなっても良好な溶接性とビード外観、深
浴込み浴接が可能となる溶接方法である。
As can be seen from the table, compared to the conventional method, the method of the present invention has a shorter arc length and lower arc voltage even at the same welding current. Therefore, it overlaps with the arc focusing effect,
This welding method provides good weldability, good bead appearance, and deep bath welding even at high speeds.

〔発明の効果〕〔Effect of the invention〕

以り具体的に説明したように1本発明においては溶接ト
ーチ先端の非磁性体シールドノズルの周囲に設けた各種
電子レンズによりアークやプラズマを集束し、エネルギ
ー密度をと昇するととによ#)高速深溶は込み溶接が可
能となシ。
As explained more specifically, in the present invention, the arc and plasma are focused by various electron lenses provided around the non-magnetic shield nozzle at the tip of the welding torch, and the energy density is increased. High-speed deep welding welding is possible.

鋼板の高速−層溶接やステンレス鋼の低入熱浴接が行え
、又、プラズマの場合は高速切断も可能となる。
High-speed layer welding of steel plates and low heat input bath welding of stainless steel can be performed, and high-speed cutting is also possible in the case of plasma.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る回転対称磁界型にお
けるアーク、プラズマの制御方法を示す概念図、第2図
は本実施例に係る第1図U−U矢視の平面でシールドノ
ズル部の周囲に磁界全集束する模式図、第3図は本発明
の第2実施例に係、る4衝子磁界型におけるアーク、プ
ラズマの制御方法を示す概念図、第4図は本実施例に係
る第3図IV−IV矢視の平面で電磁コイルをアークや
プラズマの周囲に直交させる構造を示す。第5図は本発
明の第1.第2実施例に係る原理を示す(a)図は回転
対称磁界型、同(b)図は4極子磁界型、第6図は従来
のMIG溶接方法に係る概要図である。 1・・・母材(被溶接材料)、2・・・溶接金属、8・
・・溶融金属、4・・・アーク、5・・・溶接ワイヤ、
6・・・給電f率、 7・・・給電チップ、8・・・シ
ールドガス。 9・・・シールドノズル、 10・・・溶接電源(直流
又は直流パルス)、11・・・シールドノズル、12・
・・ボールヒース、13・・・軟鉄(鉄心)、14・・
・励磁コイル、15・・・水冷パイプ、16・・・冷却
水、17・・・励磁電源(直流)、18・・・軟鉄(リ
ング状)である。
FIG. 1 is a conceptual diagram showing a method of controlling arc and plasma in a rotationally symmetrical magnetic field type according to the first embodiment of the present invention, and FIG. 2 is a shielding plane in the direction of arrows U-U in FIG. 1 according to the present embodiment. FIG. 3 is a schematic diagram showing how the magnetic field is fully focused around the nozzle part. FIG. 3 is a conceptual diagram showing the arc and plasma control method in a four-force magnetic field type according to the second embodiment of the present invention. FIG. FIG. 3 according to an example shows a structure in which an electromagnetic coil is perpendicular to the periphery of an arc or plasma in a plane taken along arrows IV-IV. FIG. 5 shows the first embodiment of the present invention. The principle according to the second embodiment is shown in Fig. 6(a) of the rotationally symmetric magnetic field type, Fig. 6(b) of the quadrupole magnetic field type, and Fig. 6 is a schematic diagram of the conventional MIG welding method. 1...Base metal (material to be welded), 2...Weld metal, 8.
... Molten metal, 4... Arc, 5... Welding wire,
6... Power feeding f rate, 7... Power feeding chip, 8... Shielding gas. 9... Shield nozzle, 10... Welding power source (DC or DC pulse), 11... Shield nozzle, 12...
...Ball heath, 13...Soft iron (iron core), 14...
- Excitation coil, 15... Water cooling pipe, 16... Cooling water, 17... Excitation power source (DC), 18... Soft iron (ring shape).

Claims (1)

【特許請求の範囲】[Claims] TIG溶接、MIG溶接、潜弧溶接等の溶接アーク及び
プラズマ溶接、プラズマ切断等のプラズマを、前記アー
クやプラズマの周囲に設けた回転対称磁界型又は4極子
磁界型等の電子レンズにより制御して集束させることを
特徴とするアーク、プラズマの制御方法。
Welding arcs such as TIG welding, MIG welding, and latent arc welding and plasmas such as plasma welding and plasma cutting are controlled by an electron lens of a rotationally symmetric magnetic field type or a quadrupole magnetic field type provided around the arc or plasma. A method of controlling arc and plasma characterized by focusing.
JP61258017A 1986-10-29 1986-10-29 Control method for arc and plasma Expired - Lifetime JPH07102458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61258017A JPH07102458B2 (en) 1986-10-29 1986-10-29 Control method for arc and plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61258017A JPH07102458B2 (en) 1986-10-29 1986-10-29 Control method for arc and plasma

Publications (2)

Publication Number Publication Date
JPS63112071A true JPS63112071A (en) 1988-05-17
JPH07102458B2 JPH07102458B2 (en) 1995-11-08

Family

ID=17314371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61258017A Expired - Lifetime JPH07102458B2 (en) 1986-10-29 1986-10-29 Control method for arc and plasma

Country Status (1)

Country Link
JP (1) JPH07102458B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100421424B1 (en) * 2001-05-25 2004-03-09 한국과학기술원 Narrow Gap Welding Torch Built With Electromagnet
CN103737164A (en) * 2014-01-03 2014-04-23 上海交通大学 Plasma column compressor
CN108213649A (en) * 2017-12-12 2018-06-29 南京理工大学 A kind of magnetic field control type electric arc robot increases material manufacturing process and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568181A (en) * 1978-11-16 1980-05-22 Nippon Kokan Kk <Nkk> Control method of welding arc
JPS58379A (en) * 1981-06-25 1983-01-05 Mitsubishi Heavy Ind Ltd Plasma arc welding and cutting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5568181A (en) * 1978-11-16 1980-05-22 Nippon Kokan Kk <Nkk> Control method of welding arc
JPS58379A (en) * 1981-06-25 1983-01-05 Mitsubishi Heavy Ind Ltd Plasma arc welding and cutting method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100421424B1 (en) * 2001-05-25 2004-03-09 한국과학기술원 Narrow Gap Welding Torch Built With Electromagnet
CN103737164A (en) * 2014-01-03 2014-04-23 上海交通大学 Plasma column compressor
CN103737164B (en) * 2014-01-03 2016-11-09 上海交通大学 Plasma column compressor
CN108213649A (en) * 2017-12-12 2018-06-29 南京理工大学 A kind of magnetic field control type electric arc robot increases material manufacturing process and device
CN108213649B (en) * 2017-12-12 2021-07-06 南京理工大学 Material increase forming method and device for magnetic field control type electric arc robot

Also Published As

Publication number Publication date
JPH07102458B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
JP3284930B2 (en) High-frequency pulse arc welding method and its equipment and applications
US7235758B2 (en) MIG-plasma welding
US4190760A (en) Welding apparatus with shifting magnetic field
CN113857623A (en) Magnetic control swinging arc magnetic circuit device for ferromagnetic steel GTAW narrow gap welding and application
Reis et al. Investigation on welding arc interruptions in the presence of magnetic fields: welding current influence
JP2000280080A (en) Method and device for laser welding
JPS63112071A (en) Method for controlling arc plasma
Nomura et al. Magnetic control of arc plasma and its modelling
US3882298A (en) Method of and apparatus for the submerged arc surfacing of metallic work pieces
Khoshnaw et al. Arc welding methods
JPH01278983A (en) Laser welding method
Al-Quenaei Fusion welding techniques
JPS5913577A (en) T-joint welding method
JPH0329505B2 (en)
JP2001205435A (en) Magnetically controlled welding method for narrow bevel and device therefor
JPH1085970A (en) Laser welding method
JPS61255774A (en) Electron beam welding method
KR100217855B1 (en) Arc welding method and device for electromagnetic power
Sakurai et al. Study on Suppression of Bead-Meandering of Pure Ar-MIG Arc Welding using External Magnetic Field
US3710066A (en) Method of electric-arc welding of tubular products with magnetic control of the arc
US2745934A (en) Inert gas shielded magnetic field controlled electric arc metal working apparatus
JP2913018B2 (en) Metal surface treatment method
JPS61108475A (en) Inert gas shield welding method
JPS61255773A (en) Electron beam welding method by electron beam shape control
Adonyi Welding Plasmas—Love Them or Hate Them—Are Likely to Stay