JPS63112039A - Forging method for turbine blade stock - Google Patents

Forging method for turbine blade stock

Info

Publication number
JPS63112039A
JPS63112039A JP25734986A JP25734986A JPS63112039A JP S63112039 A JPS63112039 A JP S63112039A JP 25734986 A JP25734986 A JP 25734986A JP 25734986 A JP25734986 A JP 25734986A JP S63112039 A JPS63112039 A JP S63112039A
Authority
JP
Japan
Prior art keywords
forming
profile
bending
turbine blade
divide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25734986A
Other languages
Japanese (ja)
Inventor
Hideo Kikuchi
英雄 菊池
Takao Sato
隆夫 佐藤
Hirofumi Morikawa
森川 裕文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25734986A priority Critical patent/JPS63112039A/en
Publication of JPS63112039A publication Critical patent/JPS63112039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To prevent the generation of under fill and a burr of an overprotrusion of thickness in each cross section of a profile of a turbine blade, by forming an eccentric bending material in an outlet side by applying a bending for allowing the axis center to run along an edge line for connecting a divide, at the stage of bringing a perform to bending. CONSTITUTION:The center position in case when it has been allowed to be eccentric so as to obtain a condition that the center of a profile corresponding part 2a of a perform is not placed on the center line of the upper and the lower profile forming dies 11, 12, and under fill is not generated in both an outlet side 8 and an inlet side 7 is called a divide 16 of a plastic flow. This divide position can be determined definitely by using a plastic material such as clay, etc. by an experiment. The perform 10 is brought to bending forming so as to run along an edge line 17 for connecting a divide in each cross section a profile forming material 13c with a line, a bending material 18 being eccentric in the outlet side 8 is obtained. Subsequently, the bending material 18 is formed to a forging material before a machine work, in a forming stage of the post stage consisting of torsion forming and finish forming.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自由鍛造、型鍛造を含む段階鍛造により複雑
形状のタービンブレード素材を製造する改良鍛造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improved forging method for manufacturing a turbine blade material having a complex shape by stage forging including free forging and die forging.

(従来の技術) 第1図は目的成品のタービンブレードの1例の斜視図、
M2図はその千百図を示す。
(Prior art) Fig. 1 is a perspective view of an example of a turbine blade as a target product;
M2 diagram shows 1,000 diagrams.

タービンブレードは、蒸気タービンの最も重要な機能部
材で、その製造コストはタルピン全体の約60%を占め
、その良否はタービンの性能、信頼性、耐久性に大きく
影響する。ガスタービン、ターボコンプレッサ等におい
てもフ1ノードの重要性は同等である。
Turbine blades are the most important functional components of a steam turbine, and their manufacturing cost accounts for approximately 60% of the entire turbine blade, and their quality greatly affects the performance, reliability, and durability of the turbine. The importance of the F1 node is the same in gas turbines, turbo compressors, etc.

第1および2図に示すように、タービンブレード(1)
は一体のプロフィル部(2)、プラン)7オーム(3)
および損部(4)よシ構成されている。プロフィル部(
2)はプロフィル根元(5)からプロフィル先端(6)
にわたって大きくねじ九てbる。(のけ根本、先端間の
最大ねじれ角度である。
As shown in Figures 1 and 2, the turbine blade (1)
is an integrated profile part (2), plan) 7 ohm (3)
and Atsube (4). Profile section (
2) from the profile root (5) to the profile tip (6)
Turn the screws all the way in. (This is the maximum twist angle between the base and tip of the noke.

プロフィル部(2)の軸直角断面形状は流体力学の翼形
に準拠してつくられ、その流体の入口側(7)から出口
側(8)にわたり複雑曲線の非対称形状テ、根本から先
端にわたってプロフィルノ肉厚、形状とも大幅に変化し
ている。
The cross-sectional shape perpendicular to the axis of the profile part (2) is made according to the shape of a hydrodynamic airfoil, and has an asymmetrical shape with a complex curve from the fluid inlet side (7) to the outlet side (8), and the profile from the root to the tip. Both the wall thickness and shape have changed significantly.

このようなタービンブレード(1) +’St何段階に
も分けて順次に鍛造成形される必要がある。第6図は従
来の成形工程順序の1例とその段階の成形品形状を示す
。出発素材(9)は予備成形囚、プロフィル成形CBI
、捻り成形(0、機械加工(ト)を経て製品タービンブ
レード(1)とする。寸法精度をよシ追求するものは捻
り成形・(0後に仕上成形(ト))を行うものがあシ、
また鍛造性のよいものはプロフィル成形、捻り成形を行
わず予備成形(2)後に直接仕上成形(ト)を行い機械
加工の)に供する場合もある。図中、(2a)はプロフ
ィル部(2)とな、る予備成形品の部分を示す。
Such a turbine blade (1) must be sequentially forged in several stages. FIG. 6 shows an example of the conventional molding process order and the shape of the molded product at that stage. The starting material (9) is preformed material, profile molded CBI
The product is made into a turbine blade (1) through twist forming (0, machining (G)).For those that pursue higher dimensional accuracy, twist forming (after finishing forming (G) after 0) is performed.
In addition, products with good forgeability may be subjected to finishing forming (g) directly after preforming (2) without profile forming or twist forming, and then subjected to machining. In the figure, (2a) shows the part of the preformed product which becomes the profile part (2).

Y軸の原点(0)を中心にしだ軸対称の段付丸棒、ない
しはY軸、Y軸に鏡面対称な四角形断面の段付角棒とな
っている。この予備成形材αQをプロフィル成形口)な
いし仕上成形(ト))すると、プロフィル部(2)の形
状が複雑な非対称形であるために、第4図に示すように
、上型α〃、下型@によりプロフィル成形03)された
プロフィル成形材0のプロフィルに該当する部分(2b
)には肉なしの不肖α復や肉の出すぎのバV a!19
が生ずる0これはプロフィルの肉厚の7違い流体出口側
への塑性流動抵抗が大きいためにこの側で不向σ荀とな
る。
It is a stepped round bar that is axially symmetrical about the origin (0) of the Y axis, or a stepped square bar that has a rectangular cross section that is mirror symmetrical to the Y axis. When this preformed material αQ is formed into a profile molding opening) or a final molding (g), the profile part (2) has a complex asymmetrical shape, so as shown in FIG. The part (2b
) is an unfitness without meat and a va with too much meat! 19
This is because the plastic flow resistance toward the fluid outlet side is large due to the difference in wall thickness of the profile, resulting in an unsuitable flow on this side.

(問題点を解決するだめの手段、作用、実施例)本発明
は従来技術の前記問題点を解消させるためになされたも
のであって、プロフィル部(2)の各断面において不肖
α→および肉の出すぎが生じないように、すなわちプロ
フィル成形(Blの際に型内材料が出口側(8)および
入口側(7)に同時に到達できるように、予備成形材Q
Oのプロフィル該当部分(2a)の軸心位置をY軸、Y
軸の原点(0)・よシ出ロ側(8)の方に偏心させる。
(Means, functions and embodiments for solving the problems) The present invention has been made in order to solve the above-mentioned problems of the prior art. Preformed material
The axis position of the profile corresponding part (2a) of O is the Y axis, Y
Eccentrically move the shaft toward its origin (0) and toward the lower end (8).

そのため予備成形後に予備成形材α1を曲げ型により曲
げ加工成形口を行って軸芯を曲げる。
Therefore, after preforming, the preform material α1 is bent using a bending die to bend the shaft core.

すなわち、本発明のタービンブレード素材の鍛造方法は
、工程順序としては、出発素材を鍛造により予備成形段
階で予備成形材に形成し、次いで予備成形材を曲げ成形
段階でその軸心がタービンブレードのプロフィル各断面
で不肖および肉の出すぎの生じないように分水嶺を結ぶ
稜線に沿わせる曲げ形成を加えて出口側に偏芯した曲げ
形成材とし、次いで曲げ成形材をプロフィル成形、捻り
成形、仕上成形からなる後工程の成形段階で機械加工前
鍛造成形材とすることを特徴とする。
That is, in the method for forging a turbine blade material of the present invention, the starting material is forged into a preformed material in the preforming step, and then the preformed material is bent and formed so that its axis is aligned with the turbine blade. In order to prevent unsightliness and excessive protrusion in each cross-section of the profile, the bent material is bent along the ridgeline connecting the watersheds to create a bent material eccentric to the outlet side, and then the bent material is profile-formed, twisted, and finished. It is characterized in that it is made into a forged material before being machined in the forming stage of the post-process consisting of forming.

以下、本発明を第5図、第6図および第7図を参照し具
体的に説明する。
Hereinafter, the present invention will be specifically explained with reference to FIGS. 5, 6, and 7.

第5図(イ)はプロフィル成形上下型αη@の中心線上
に予備成形材α0のプロフィル該当部分(2a)の中心
を置いた場合でプロフィル成形材(15A)には出口側
(8)に不向α美が生ずる。第5図(ロ)は予備形材α
Oのプロフィル該当部分(2a)を出口側(8)に大き
く片寄せて置いた場合で不肖(141は入口側(7)に
生ずる。第5図()→は不肖が出口側(8)、入口側(
7)ともに生じないゃ件となるよう予備成形材αOを前
記の中間位置に置いた場合で、このときの予備成形材の
プロフィル該当部分(2a)の中心の位置を以下、塑性
流動の分水嶺QGと呼ぶ。
Figure 5 (a) shows a case where the center of the profile corresponding part (2a) of the preformed material α0 is placed on the center line of the upper and lower profile molding molds αη@, and the profiled material (15A) has no part on the outlet side (8). Mukai is born. Figure 5 (b) shows the preliminary shape α
When the corresponding part (2a) of the profile of O is placed largely off to the exit side (8), the unfitness (141 occurs on the inlet side (7)). Entrance side (
7) In the case where the preformed material αO is placed at the intermediate position as mentioned above so that both of them should occur, the position of the center of the profile corresponding part (2a) of the preformed material at this time is hereinafter referred to as the watershed QG of plastic flow. It is called.

この分水嶺位置の決定は、粘土等の塑性材を用いて実験
により確定できる。またFEMなどの塑性力学解析によ
り決定できる。
The watershed position can be determined through experiments using plastic materials such as clay. It can also be determined by plastic mechanics analysis such as FEM.

第6図(ハ)は本発明方法によって得られるプロフィル
成形材を示し、このプロフィル成形材(150)の各断
面での分水嶺α弓を線で結ぶと、この線はブレードの中
心線から外れており、以下この線を塑性流動の稜線ση
と呼ぶ。本発明でi−を第6図(イ)の予備成形材αQ
のプロフィル該当部分(2a)を稜線0ηに沿うように
曲げ成形して第6図(ロ)の稜線α力が第6図(/1と
一致する曲げ成形材(7)とする。
FIG. 6(c) shows a profile molded material obtained by the method of the present invention, and when the watershed α arcs in each cross section of this profile molded material (150) are connected with a line, this line deviates from the center line of the blade. Hereinafter, this line will be referred to as the ridge line ση of plastic flow.
It is called. In the present invention, i- is the preformed material αQ of FIG. 6(A).
The corresponding part (2a) of the profile is bent and formed along the ridgeline 0η to obtain a bending-formed material (7) whose ridgeline α force shown in FIG. 6(b) matches that of FIG. 6(/1).

第7図は本発明によるタービンブレード素材の成形工程
順序の1例を示す。第3図の従来技術の工程と均等の段
階は同一符号で示しである。
FIG. 7 shows an example of a process sequence for forming a turbine blade material according to the present invention. Steps equivalent to the prior art process of FIG. 3 are designated by the same reference numerals.

本発明では予備成形(3)後に上記の軸線の曲げ成形C
F)の工程を新に加え次いでプロフィル成形(8)に入
る。以降の工程は従来と同じである。
In the present invention, after the preforming (3), the above-mentioned axial bending C
Add the step F) and then proceed to profile forming (8). The subsequent steps are the same as before.

塑性力学解析の方法は種々考えられるが、その1例を示
す。
There are various methods of plastic mechanics analysis, one example of which is shown below.

すなわちブレードを長手方向に適宜に分割し、各々の断
面を矩形のモジュールに分割しその各々にスラブ法を適
用して加算してゆく方法をとる。応力、成形力計算式、
ストスト計算式から応力分布、成形力、スラストを求め
、不釣り合力による装置、金型へのダメージを最小にす
るように、逆ステップ法で製品ブレード形状を、段階的
に中立面位置の移動を伴わせて荒地形状を求めてゆく。
That is, a method is adopted in which the blade is appropriately divided in the longitudinal direction, each cross section is divided into rectangular modules, and the slab method is applied to each module and added. Stress, forming force calculation formula,
The stress distribution, forming force, and thrust are determined from the stress calculation formula, and the product blade shape is changed by the reverse step method, and the midplane position is moved in stages to minimize damage to equipment and molds caused by unbalanced forces. Along with this, the shape of the wasteland is determined.

この計算はコンピュータによる計算時間が短かく、同時
に分水嶺稜線も知られる0 (発明の効果) 本発明方法によると、複雑形状のタービンブレード素材
を最適な鍛造栄件のもとに比較的容易に寸度精度良く鍛
造成形することができる。
This calculation requires a short computer calculation time, and at the same time the watershed ridgeline is also known. (Effects of the Invention) According to the method of the present invention, turbine blade materials with complex shapes can be relatively easily sized under optimal forging conditions. Can be forged and formed with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は目的成品のタービンブレードの1例の斜視図、
第2図はその平面図、第6図は従来の成形工程順序の1
例とその段階の成形品形状を示す甲、第4図は従来技術
の不良なプロフィル成形状態を示す断面図、第5図(イ
)は不向が出口側に生ずるプロフィル成形状態の断面図
、第5図(ロ)は不向が入口側に生ずるプロフィル成形
状態の断面図、第5図()っけ不向が生じない本発明の
プロフィル成形状態の断面図、第6図(イ)・は予備成
形材の側面図、第6図(ロ)は本発明途中の曲げ成形材
の側面図、第6図(ハ)は本発明によるプロフィル成形
材の側面図、第7図は本発明方法による成形工程順序の
1例を示すブロック図である。 (1)・゛−タービンプ1ノード、(2)・−プロフィ
ル部、(2a ) (2b’)・・プロフィル該当部分
、(3)・・プラットフォーム、(4)Φ・根部、(5
)・Φプロフィル根本、(6)・・プロフィル先端、(
7)・・入口側、(8)ψ・出口側、(9)・・出発素
材、QO・・予備成形材J(ロ)・・上型、@・・下型
、Q3 (15A)(13B)(130)・・プロフィ
ル成形材、α徨・・不向、αυ・・バIJ 、IN・・
分水嶺、aカ・・稜線、(至)・・曲げ成形材、(5)
・・予備成形、(Bl・・プロフィル成形、(0・・捻
り成形、(至)・・機械加工、■)・・仕上成形、(1
?5・・曲げ成形、(3)(■・・座標、(0)・・原
点、(の・・最大ねじれ角度0図面の浄書(内容に変更
なし) 品5図 (イン (わ) 1,2a (ハ) 艶4 z 算6・図 譲7図 手続補正書(方側 昭和62年2月 2 日 1、事件の表示 昭和61 年特 許 願第25734
9号2、発明の名称  タービンプレード素材の鍛造方
法3、補正をする者事件との関係  特 許 出願人代
表者  牧   冬  彦 4・ 代  理  人  〒650 6、補正の対象図 面(第5図) 7、補正の内容  上記を別紙の通り補正します。
FIG. 1 is a perspective view of an example of a turbine blade as a target product;
Figure 2 is a plan view of the same, and Figure 6 is the conventional molding process sequence.
Figure 4 is a cross-sectional view showing a defective profile forming state of the prior art; Figure 5 (A) is a cross-sectional view of a profile forming state where misdirection occurs on the exit side; FIG. 5(b) is a sectional view of the profile forming state in which misalignment occurs on the inlet side, FIG. 5(b) is a sectional view of the profile forming state of the present invention in which no misalignment occurs, and FIG. is a side view of a preformed material, FIG. 6(B) is a side view of a bending material in the process of the present invention, FIG. 6(C) is a side view of a profiled material according to the present invention, and FIG. 7 is a side view of the method of the present invention. FIG. 2 is a block diagram showing an example of the order of molding steps according to FIG. (1) - Turbine 1 node, (2) - Profile part, (2a) (2b') - Profile corresponding part, (3) - Platform, (4) Φ root, (5
)・ΦProfile root, (6)・Profile tip, (
7)...Inlet side, (8)ψ/Outlet side, (9)...Starting material, QO...Preformed material J (B)...Upper mold, @...Lower mold, Q3 (15A) (13B )(130)...Profile molding material, α徨...unsuitable, αυ...baIJ, IN...
watershed, a... ridgeline, (to)... bending material, (5)
... Preforming, (Bl... Profile forming, (0... Twisting forming, (to)... Machining, ■)... Finish forming, (1
? 5... Bending forming, (3) (■... Coordinates, (0)... Origin, (... Maximum torsion angle 0 drawing engraving (no change in content) Product 5 drawing (in (wa) 1, 2a (c) Written amendment to the procedures for calculation 6 and illustrations 7 (on February 2, 1985, 1, case description 1988 patent application No. 25734)
No. 9 No. 2, Title of the invention: Method for forging turbine blade material 3, Relationship with the case of the person making the amendment Patent Representative: Fuyuhiko Maki 4, Agent 650 6, Drawing subject to amendment (Fig. 5) ) 7. Correction details The above will be corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] 出発素材を鍛造により予備成形段階で予備成形材に形成
し、次いで予備成形材を曲げ成形段階でその軸心がター
ビンブレードのプロフィル各断面で不肉および肉の出す
ぎの生じない分水嶺位置となるように分水嶺を結ぶ稜線
に沿わせる曲げ成形を加えて出口側に偏芯した曲げ成形
材とし、次いで曲げ成形材をプロフィル成形、捻り成形
、仕上成形からなる後工程の成形段階で機械加工前鍛造
成形材とすることを特徴とするタービンブレード素材の
鍛造方法。
The starting material is formed into a preformed material by forging in the preforming stage, and then the preformed material is bent and formed so that its axial center is at a watershed position in each cross section of the turbine blade profile where no underfilling or overhanging occurs. The bent material is bent along the ridgeline connecting the watersheds to create a bent material eccentric to the exit side, and then the bent material is forged before machining in the post-process forming stage consisting of profile forming, twisting forming, and finishing forming. A method for forging a turbine blade material, characterized in that it is made into a molded material.
JP25734986A 1986-10-28 1986-10-28 Forging method for turbine blade stock Pending JPS63112039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25734986A JPS63112039A (en) 1986-10-28 1986-10-28 Forging method for turbine blade stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25734986A JPS63112039A (en) 1986-10-28 1986-10-28 Forging method for turbine blade stock

Publications (1)

Publication Number Publication Date
JPS63112039A true JPS63112039A (en) 1988-05-17

Family

ID=17305143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25734986A Pending JPS63112039A (en) 1986-10-28 1986-10-28 Forging method for turbine blade stock

Country Status (1)

Country Link
JP (1) JPS63112039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873242A (en) * 2011-07-11 2013-01-16 大同特殊钢株式会社 Method of producing turbine blade
DE102012106209A1 (en) 2011-07-11 2013-01-17 Daido Steel Co., Ltd. Method for forging turbine blades
WO2014098151A1 (en) * 2012-12-19 2014-06-26 三菱重工業株式会社 Method for manufacturing turbine rotor blade

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873242A (en) * 2011-07-11 2013-01-16 大同特殊钢株式会社 Method of producing turbine blade
DE102012106208A1 (en) 2011-07-11 2013-01-17 Daido Steel Co., Ltd. BLADE FORGING PROCESS
DE102012106209A1 (en) 2011-07-11 2013-01-17 Daido Steel Co., Ltd. Method for forging turbine blades
KR20130007994A (en) 2011-07-11 2013-01-21 미쯔비시 헤비 인더스트리즈 리미티드 Method of producing turbine blade
JP2013019294A (en) * 2011-07-11 2013-01-31 Daido Steel Co Ltd Method for manufacturing turbine blade
US8726504B2 (en) 2011-07-11 2014-05-20 Daido Steel Co., Ltd. Method of producing turbine blade
US8950070B2 (en) 2011-07-11 2015-02-10 Daido Steel Co., Ltd. Method of forging turbine blade
WO2014098151A1 (en) * 2012-12-19 2014-06-26 三菱重工業株式会社 Method for manufacturing turbine rotor blade
JP2014118958A (en) * 2012-12-19 2014-06-30 Mitsubishi Heavy Ind Ltd Process of manufacture of turbine rotor blade
KR20150082642A (en) * 2012-12-19 2015-07-15 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Method for manufacturing turbine rotor blade
CN104854314A (en) * 2012-12-19 2015-08-19 三菱日立电力系统株式会社 Method for manufacturing turbine rotor blade
US9919392B2 (en) 2012-12-19 2018-03-20 Mitsubishi Hitachi Power Systems, Ltd. Method for manufacturing turbine rotor blade

Similar Documents

Publication Publication Date Title
US5636440A (en) Process for manufacturing a hollow blade for a turbo-machine
Young et al. Wall thickness variations in single-point incremental forming
JP2978579B2 (en) Method of forming hollow blade
Kim et al. Preform design in H-shaped cross sectional axisymmetric forging by the finite element method
CA1189692A (en) Turbine blade repair
JP2918722B2 (en) Manufacturing method of hollow metal products
US6910270B2 (en) Process for preparing rhomboidal blades for axial turbo engines
RU2383408C2 (en) Method of fabricating compound parts of hollow blade by pressing
JPH09125903A (en) Manufacture of hollow blade for turbine engine
JP2005248957A (en) Method of manufacturing hollow blade for turbo machinery
KR100418464B1 (en) Forging method and dies of crank throw using the unbended preform
KR101003252B1 (en) Die device of closed-die forging for crank throw pin part using insert die
JPS63112039A (en) Forging method for turbine blade stock
US3999416A (en) Cold rolling a contour in metal rings
US2799918A (en) Compressor blade manufacture
CN110756714A (en) High-speed extrusion forming die for blades
JP2000140979A (en) Stepped shaft part and its production method
RU2347638C2 (en) Method for production of semi-finished product for element in form of wing
JPH10272536A (en) Manufacture of forged scroll parts
Chen et al. Testing an injection forging process for the production of automotive fasteners
Kang Process sequence design in a heading process
CN110695118A (en) Method for reducing residual stress of high-speed extrusion forming blade
CN110795803A (en) Extrusion forming blade
RU2257277C1 (en) Method for making blades of gas-turbine engine
CN110773694B (en) Die for forging blade