JPS6311161Y2 - - Google Patents
Info
- Publication number
- JPS6311161Y2 JPS6311161Y2 JP7514482U JP7514482U JPS6311161Y2 JP S6311161 Y2 JPS6311161 Y2 JP S6311161Y2 JP 7514482 U JP7514482 U JP 7514482U JP 7514482 U JP7514482 U JP 7514482U JP S6311161 Y2 JPS6311161 Y2 JP S6311161Y2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- nozzle
- tuyere
- blowing
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007664 blowing Methods 0.000 claims description 26
- 238000007670 refining Methods 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 23
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 238000003756 stirring Methods 0.000 claims description 13
- 239000007789 gas Substances 0.000 description 60
- 230000001681 protective effect Effects 0.000 description 17
- 239000011819 refractory material Substances 0.000 description 11
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 239000002131 composite material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010044038 Tooth erosion Diseases 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- -1 molten steel Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
本考案は溶鋼等溶融金属の精錬炉、例えば
AOD炉、Q−BOP炉、複合吹錬炉、取鍋精錬炉
等の羽口に関するものである。
近年溶鋼等の溶融金属の精錬には炉体の底部又
は側壁下部に設けた羽口からO2ガス、Arガス、
COガス、CO2ガス、N2ガス、炭化水素等の精錬
ガス或いは撹拌ガスを吹き込んで吹錬するAOD
炉、Q−BOP炉、複合吹錬炉等が用いられてい
る。ところでこの種の炉の羽口としては精錬ガ
ス、撹拌ガスを交互に吹込む単管構造のもの、ま
た底吹転炉等において用いられる如く、内管に酸
素ガスを、外管に羽口冷却用炭化水素系ガスを、
或いはAOD炉において用いられる如く、内管に
酸素と不活性ガスとの混合ガスを、外管に不活性
ガスを夫々独立して並列的に通流させる二重管構
造のもの等種々の構造のものがあるが、いずれの
構造を採つた場合にも、その程度に若干の差があ
るものの、羽口周辺耐火物にすりばち状の局部的
な溶損を生じ耐火物寿命を著しく縮めることは勿
論、撹拌作用に安定性を欠き、また精錬効果を低
下せしめる結果を招き、羽口周壁の早期取替を余
儀なくされるなどの不都合があつた。
本考案者は上述した如き羽口周辺耐火物に生ず
る溶損現象について、水モデルを用いた実験を行
つた結果、羽口から溶融金属中に吹き込んだ精錬
ガス、撹拌ガスジエツトが、或る一定の周期で羽
口側に吹き戻される、所謂吹き戻し現象が発生
し、この吹き戻しの衝撃が羽口周辺耐火物に繰返
し加えられることにより生ずること、またこの吹
き戻し現象から羽口周辺の耐火物を保護するため
には羽口周囲から保護ガスを気泡状に吹き込むの
が効果的であることを知見した。そしてこの知見
に基ずく発明につき本出願人は既に特許出願を行
なつている(特願昭55−16119号)。ただこの既出
願の構成は保護ガスを気泡状に噴出せしめる手段
として多孔質耐火物を用いているため気泡の吹出
位置が不特定であること、また吹出位置が相互に
接近しているため吹込まれた保護ガスがこれに作
用する溶鋼の表面張力によりその直後に合体して
大径気泡となり、吹き戻し現象の防止機能及び衝
撃に対する緩衝機能が低下し、羽口周辺耐火物に
対する保護機能が十分でなく、また多孔質耐火物
はそれ自体に強度上の問題があつて羽口の保護が
図れる反面、多孔質耐火物自体の剥離、脱落等の
現象がまま生じるなどの難点があつた。
本考案はかかる事情に鑑みなされたものであつ
て、その目的とするところは溶融金属中に精錬用
及び/又は撹拌用のガスを吹込むべく設けられる
羽口において、前記ガスを溶融金属中に吹込むた
めのノズルと、この吹込ノズルの周囲にあつて、
吹込ノズルによるガス吹込方向に延在し、ガスを
小径気泡の状態で溶融金属中に吹き込む複数の通
流孔を備えた非多孔質耐火物とを具備することに
より、気泡同士の合体を防止し、安定した小径の
気泡状態を維持出来、吹き戻し現象による衝撃を
緩和し得て、羽口周辺耐火物の寿命の大幅な延長
が図れるようにした溶融金属精錬用の羽口を提供
するにある。
以下本考案をその実施例を示す図面に基いて具
体的に説明する。第1図は本考案に係る溶融金属
精錬用の羽口(以下本案品という)の使用状態を
示す複合吹錬炉の部分断面図、第2図は本案品の
拡大斜視図、第3図は同じく拡大断面図、第4図
は第3図の−線による正面図であり、図中F
は複合吹錬炉の炉壁、F1はその鉄皮、F2は同じ
くその耐火物、1は本案品たる羽口を示してい
る。
羽口1は複合吹錬炉の底壁部にこれを貫通して
上向きに配設され、フレキシブルチユーブH1を
通じて供給されてくる精錬ガス、またフレキシブ
ルチユーブH2を通じて供給されてくる保護ガス
を夫々底壁部側から複合吹錬炉F内に吹き込むよ
うにしてある。羽口1は第2,3図に示す如く、
酸素ガス等の精錬ガス(及び/又は撹拌ガス)を
吹込むための精錬ガス(及び/又は撹拌ガス)流
通路を形成する内管11と、この内管11の外囲
に配設され、炭化水素ガス、炭酸ガス等の保護ガ
スを吹き込む、保護ガス流通路を形成する外管1
2とが同心一体的に配設され、夫々内管11の先
端には精錬ガス吹込み用のノズル13を、またこ
の内管11と外管12との間には保護ガス吹込み
用の非多孔質耐火物(以下単に耐火物という)1
4を装着して構成されている。内管11は内、外
径ともに略一様なパイプにて形成されており、先
端部にノズル13の基端が装着され、また基端部
外周面には螺条11aが形成され、この基端部を
後述する外管12の端板12cの中心部をシール
材11bを介在させて基端側に貫通突出せしめ、
この突出部分にフレキシブルチユーブH1が連結
され、図示しない精錬ガスタンクから精錬ガスが
通流せしめられるようにしてある。
ノズル13は断面スリツト状の精錬ガス通路及
び吹出口を有する板状に形成されており、その先
端側の過半部を耐火物14における挿入孔14a
内に密に挿入され(相互の間に若干の隙間を介在
させてもよい)ている。
一方外管12は内、外径ともに一様な円筒状に
形成されており、基端部寄りの外周面に取付用の
鍔部材12aを備え、また基端部外周面にはフラ
ンジ12bを設けてあり、このフランジ12bに
端板12cが外管12の基端側開口部を閉鎖する
態様でボルト・ナツト12dを用いて固定され、
更に前記フランジ12bと鍔部材12aとの間の
周壁にはこれを貫通して保護ガス供給口12eが
設けられ、これにフレキシブルチユーブH2が連
結されている。耐火物14はセラミツク或いは
MGO−C質等を素材にしてそれ自体は通気機能
を備えず、且つ基端部側から先端部側に向うに従
つて直径が縮小された円錐台形に形成されてお
り、中央にはその基端面から先端面にわたつて前
記ノズル13の断面形状と同形であつて、且つ若
干断面積の大きいノズル13の挿通孔14aを備
え、また他の部分には基端面から先端面にわたつ
て断面三角形状をなす微小断面積の保護ガス用通
流孔14bが多数形成されている。なおこの通流
孔14bの断面形状は特に三角形に限るものでは
なく、円形、四角形、その他の多角形等であつて
もよい。また通流孔14bはこれを円形とみなし
た場合において、その直径は1〜2mm程度に、更
に各通流孔14b間の離隔寸法は溶融金属中に吹
込まれた後も合体することなく小径の気泡を維持
する必要上、少なくとも3mm以上とするのが望ま
しい。ただし精錬中において保護ガスの吹き込み
を停止することがある場合には、吹き込み停止時
に溶融金属が通流孔14b内に入しないよう、表
面張力を考慮して、例えば溶融金属深さが1mの
ときは通流孔14bの直径を0.1mm相当程度とす
るのがよい。このような耐火物14は套管15内
に嵌挿され、套管15の基端部を外管11の先端
部内側に溶接することによつてこれと同心状に固
定されている。
而して上述の如く構成された本案品にあつては
フレキシブルチユーブH1を通じて供給された精
錬用ガス及び/又は撹拌用ガスは内管11、ノズ
ル13を経てスリツト状の開口部から溶融金属中
に吹き込まれることとなる。一方フレキシブルチ
ユーブH2を通じて吹込まれた保護ガスは外管1
2と内管11との間を経、耐火物14の基端部か
ら各通流孔14bを経て小径の気泡状となつて溶
融金属中に吹き込まれる。なお耐火物14におけ
るノズル挿通孔14aとノズル13との間に隙間
を形成した場合にはガスの一部がこの隙間を通じ
て溶融金属中に吹き込まれる。このノズル挿通孔
14aとノズル13との隙間を通流する保護ガス
は耐火物14との熱交換によつて耐火物14の熱
がノズル13に伝達されるのを防止してノズル1
3を保護する。また耐火物14の通流孔14bを
経て溶融金属中に吹き込まれる保護ガスは小径の
気泡状となるが、各通流孔14b相互の間隔は十
分隔てられているため、合体することがなく、従
つて小径の気泡状態を維持しつつ溶融金属中に介
在して吹き戻しを抑制し、またたとえ生じても羽
口周辺耐火物に作用する衝撃を確実に緩和し得
て、羽口周辺耐火物の溶損を抑制し、その寿命の
大幅な延長が図れることとなる。
第5図は本考案の他の実施例を示す斜視図、第
6図は同じく断面図、第7図は第6図の−線
による正面図であり、この実施例にあつてはノズ
ルとして第1〜4図に示すスリツト型のノズル1
3に代えて円型のノズル13′を用いてある。耐
火物14′における中心部に形成したノズル挿通
孔14a′はノズル13′の外径よりも若干大きい
直径を有する断面円形に形成されており、これに
挿通せしめたノズル13′の外周面との間には若
干の隙間が形成されるようになつている。従つて
精錬ガス及び/又は撹拌ガスの一部はこの隙間を
通じて吹き込まれる過程で、耐火物14′とノズ
ル13′との間の断熱機能を果すこととなる。
なお上述の各実施例においては精錬用ガス及
び/又は撹拌用ガスと保護ガスとして異種のガス
を用いる構成を示したが同種のガスを用いてもよ
い。このような構成とする場合には内管11、ノ
ズル13を省略して外管12、耐火物14又は1
4′のみとし、例えば精錬用のガスを外管12内
に供給し、耐火物14(又は14′)におけるノ
ズル13(又は13′)を取り外した後のノズル
挿通孔14a,14a′そのままノズルとして利用
し、この挿通孔14a,14a′及び通流孔14b
からともに精錬用のガスを吹き込むようにするの
がよい。
次に本案品についての比較試験結果を示す。供
試用の羽口としては前記第2,3図に示す如くス
リツト型ノズルとMgO−C質の耐火物とを組み
合せた羽口(本案品1)、前記第5〜7図に示す
如く円型ノズルとMgO−C質の耐火物とを組み
合せた羽口(本案品2)と、スリツト型羽口と
MgO質の多孔質耐火物とを組合せた羽口(比較
例1)と、円型の管を同心状に配した2種管構造
の羽口(比較例2)とを用いた。他の寸法仕様は
表1に示す通りである。
The present invention is applicable to smelting furnaces for molten metals such as molten steel, e.g.
This relates to tuyeres for AOD furnaces, Q-BOP furnaces, composite blowing furnaces, ladle smelting furnaces, etc. In recent years, O 2 gas, Ar gas,
AOD that blows by blowing refining gas or stirring gas such as CO gas, CO 2 gas, N 2 gas, hydrocarbons, etc.
Furnaces, Q-BOP furnaces, composite blowing furnaces, etc. are used. By the way, the tuyere of this type of furnace has a single-tube structure in which refining gas and stirring gas are alternately blown into the furnace, and the tuyere has a single-tube structure in which refining gas and stirring gas are blown in alternately, and the tuyeres have oxygen gas in the inner tube and tuyere cooling in the outer tube, as used in bottom-blowing converters. Hydrocarbon gas for
Alternatively, various structures such as those used in AOD furnaces, such as a double-tube structure in which a mixed gas of oxygen and inert gas flows through the inner tube and an inert gas through the outer tube independently and in parallel, are available. However, regardless of which structure is adopted, although there is a slight difference in the degree of damage, it goes without saying that the refractories around the tuyeres will suffer localized erosion in the form of pits, which will significantly shorten the life of the refractories. However, the stirring action lacks stability and the refining effect is reduced, which necessitates early replacement of the tuyere peripheral wall. The present inventor conducted an experiment using a water model regarding the erosion phenomenon that occurs in the refractories around the tuyere as described above, and found that the refining gas and stirring gas jet blown into the molten metal from the tuyere A so-called blowback phenomenon occurs in which the blowback is cyclically blown back toward the tuyere, and this blowback occurs when the impact of this blowback is repeatedly applied to the refractories around the tuyeres. We found that it is effective to blow protective gas into bubbles from around the tuyeres. The present applicant has already filed a patent application for an invention based on this knowledge (Japanese Patent Application No. 16119/1982). However, since the configuration of this existing application uses a porous refractory as a means for blowing out protective gas in the form of bubbles, the blowing position of the bubbles is unspecified, and the blowing positions are close to each other, so it is difficult to blow in. The protective gas immediately coalesces into large-diameter bubbles due to the surface tension of the molten steel that acts on it, reducing the blowback prevention function and shock buffering function, and the protective function for the refractory around the tuyere is insufficient. In addition, porous refractories themselves have problems in terms of strength, and while they can protect the tuyere, they still have problems such as peeling and falling off of the porous refractories themselves. The present invention was devised in view of the above circumstances, and its purpose is to inject the gas into the molten metal at a tuyere provided to inject refining and/or stirring gas into the molten metal. Regarding the nozzle for blowing and the area around this blowing nozzle,
A non-porous refractory is provided with a plurality of flow holes that extend in the direction of gas injection by a blowing nozzle and blow gas into the molten metal in the form of small-diameter bubbles, thereby preventing bubbles from coalescing. To provide a tuyere for molten metal refining, which can maintain a stable small-diameter bubble state, reduce the impact caused by the blowback phenomenon, and significantly extend the life of refractories around the tuyere. . Hereinafter, the present invention will be specifically explained based on drawings showing embodiments thereof. Fig. 1 is a partial sectional view of a composite blowing furnace showing the state in which the tuyere for molten metal refining according to the present invention (hereinafter referred to as the proposed product) is used, Fig. 2 is an enlarged perspective view of the proposed product, and Fig. 3 is Similarly, FIG. 4 is an enlarged sectional view and a front view taken along the - line in FIG.
1 indicates the furnace wall of the composite blowing furnace, F 1 indicates its iron skin, F 2 indicates its refractory, and 1 indicates the tuyere of the proposed product. The tuyere 1 is disposed upwardly through the bottom wall of the composite blowing furnace, and receives the refining gas supplied through the flexible tube H1 and the protective gas supplied through the flexible tube H2 , respectively. The air is blown into the composite blowing furnace F from the bottom wall side. The tuyere 1 is as shown in Figures 2 and 3.
An inner pipe 11 that forms a refining gas (and/or stirring gas) flow path for blowing in a refining gas (and/or stirring gas) such as oxygen gas; , an outer tube 1 forming a protective gas flow path into which a protective gas such as carbon dioxide gas is blown.
2 are arranged concentrically and integrally, and a nozzle 13 for blowing refining gas is provided at the tip of each inner tube 11, and a nozzle 13 for blowing protective gas is provided between the inner tube 11 and the outer tube 12. Porous refractories (hereinafter simply referred to as refractories) 1
4 is installed. The inner tube 11 is formed of a pipe with substantially uniform inner and outer diameters, and the base end of the nozzle 13 is attached to the distal end, and a thread 11a is formed on the outer peripheral surface of the base end. The central part of the end plate 12c of the outer tube 12, the end of which will be described later, is made to protrude through to the proximal side with a sealing material 11b interposed therebetween,
A flexible tube H1 is connected to this protruding portion, so that refining gas is allowed to flow from a refining gas tank (not shown). The nozzle 13 is formed into a plate shape having a refining gas passage and an outlet with a slit-like cross section, and the majority of the tip end thereof is inserted into the insertion hole 14a in the refractory 14.
(There may be a slight gap between them). On the other hand, the outer tube 12 is formed into a cylindrical shape with uniform inner and outer diameters, and is provided with a flange member 12a for attachment on the outer circumferential surface near the proximal end, and a flange 12b on the outer circumferential surface of the proximal end. An end plate 12c is fixed to this flange 12b using bolts and nuts 12d in a manner that closes the proximal opening of the outer tube 12,
Further, a protective gas supply port 12e is provided through the peripheral wall between the flange 12b and the collar member 12a, and a flexible tube H2 is connected to this. The refractory 14 is made of ceramic or
It is made of MGO-C, etc., and has no ventilation function, and is shaped like a truncated cone, with the diameter decreasing from the proximal end to the distal end. It is provided with an insertion hole 14a for the nozzle 13 which has the same cross-sectional shape as the nozzle 13 and has a slightly larger cross-sectional area from the end face to the distal face, and has a triangular cross-section from the proximal face to the distal face in other parts. A large number of protective gas flow holes 14b each having a small cross-sectional area are formed. Note that the cross-sectional shape of the communication hole 14b is not particularly limited to a triangular shape, but may be circular, quadrangular, or other polygonal shape. In addition, when the through holes 14b are assumed to be circular, the diameter is approximately 1 to 2 mm, and the distance between each through hole 14b is such that they do not coalesce even after being blown into the molten metal. In order to maintain air bubbles, it is desirable that the thickness be at least 3 mm. However, if the blowing of the protective gas is sometimes stopped during refining, surface tension should be taken into account to prevent the molten metal from entering the flow hole 14b when the blowing is stopped, for example, when the molten metal depth is 1 m. It is preferable that the diameter of the communication hole 14b be approximately 0.1 mm. Such a refractory 14 is fitted into the sleeve 15 and fixed concentrically thereto by welding the proximal end of the sleeve 15 to the inside of the tip end of the outer tube 11. In the case of the present product configured as described above, the refining gas and/or stirring gas supplied through the flexible tube H1 passes through the inner tube 11 and the nozzle 13, and enters the molten metal from the slit-shaped opening. It will be blown into. On the other hand, the protective gas blown through the flexible tube H2 is transferred to the outer tube 1.
2 and the inner tube 11, from the base end of the refractory 14 through each of the communication holes 14b, and is blown into the molten metal in the form of small-diameter bubbles. Note that when a gap is formed between the nozzle insertion hole 14a in the refractory 14 and the nozzle 13, a portion of the gas is blown into the molten metal through this gap. The protective gas flowing through the gap between the nozzle insertion hole 14a and the nozzle 13 prevents the heat of the refractory 14 from being transferred to the nozzle 13 through heat exchange with the refractory 14.
Protect 3. Further, the protective gas blown into the molten metal through the passage holes 14b of the refractory 14 becomes small-diameter bubbles, but since the passage holes 14b are sufficiently spaced from each other, they do not coalesce. Therefore, while maintaining the state of small-diameter bubbles, they are interposed in the molten metal to suppress blowback, and even if they occur, they can reliably alleviate the impact acting on the refractories around the tuyeres, and the refractories around the tuyeres can be This will suppress the erosion of the metal and significantly extend its life. FIG. 5 is a perspective view showing another embodiment of the present invention, FIG. 6 is a sectional view, and FIG. 7 is a front view taken along the - line in FIG. Slit-type nozzle 1 shown in Figures 1 to 4
3, a circular nozzle 13' is used. The nozzle insertion hole 14a' formed in the center of the refractory 14' has a circular cross section with a diameter slightly larger than the outer diameter of the nozzle 13', and the nozzle insertion hole 14a' has a circular cross section with a diameter slightly larger than the outer diameter of the nozzle 13'. A slight gap is formed between them. Therefore, a portion of the refining gas and/or the stirring gas is blown through this gap, thereby serving as a heat insulator between the refractory 14' and the nozzle 13'. In each of the above embodiments, a configuration is shown in which different types of gases are used as the refining gas and/or the stirring gas and the protective gas, but the same types of gases may be used. In such a configuration, the inner tube 11 and nozzle 13 are omitted and the outer tube 12, refractory 14 or 1
For example, after supplying refining gas into the outer tube 12 and removing the nozzle 13 (or 13') in the refractory 14 (or 14'), the nozzle insertion holes 14a and 14a' can be used as nozzles as they are. The insertion holes 14a, 14a' and the communication hole 14b
It is best to blow in gas for refining at the same time. Next, we will show the comparative test results for this product. The test tuyeres were a tuyere that combined a slit-type nozzle and an MgO-C refractory as shown in Figures 2 and 3 (proposed product 1), and a circular tuyere as shown in Figures 5 to 7 above. A tuyere that combines a nozzle and an MgO-C refractory (this product 2), a slit-type tuyere,
A tuyere in which a MgO porous refractory was combined (Comparative Example 1) and a tuyere with a two-tube structure in which circular tubes were arranged concentrically (Comparative Example 2) were used. Other dimensional specifications are as shown in Table 1.
【表】
なお本案品1,2、比較例1においてはそのノ
ズルと耐火物との間に0.3mmの間隙を形成し、こ
こに保護ガスを通流せしめた。試験においては上
記4個の羽口を2.5tの試験転炉の炉底部に装着
し、10ch(チヤージ)の底吹転炉実験を行つた
後、羽口周辺部の耐火物の溶損長を測定した。
他の試験条件は表2に示す通りである。[Table] In the present products 1 and 2 and Comparative Example 1, a gap of 0.3 mm was formed between the nozzle and the refractory, and the protective gas was allowed to flow through the gap. In the test, the four tuyeres mentioned above were attached to the bottom of a 2.5 ton test converter, and after a 10-channel (charge) bottom blowing converter experiment, the melting length of the refractory around the tuyeres was measured. It was measured. Other test conditions are as shown in Table 2.
【表】
なお生石灰、ホタル石は粉体にして混合し、酸
素と共に底吹きした。
結果は表3に示すとおりである。[Table] Quicklime and fluorite were mixed into powder and bottom blown with oxygen. The results are shown in Table 3.
【表】
表3から明らかな如く、本案品1,2にあつて
は比較例に比して耐火物の溶損長は略半分乃至1/
5程度に低減せしめ得ること、またノズル形状は
これを円型とするよりもスリツト型とするのが溶
損防止上より効果が大きいことが解る。
以上の如く本考案にあつては溶融金属中に精錬
用及び/又は撹拌用のガスを吹込むためのノズル
部と、その周囲からガスを小径気泡状に溶融金属
中に吹込む耐火物とを具備するから、ノズルから
ガスが吹込まれることによつて羽口周辺耐火物に
繰り返し加えられる吹き戻しの衝撃を非多孔質耐
火物から小径気泡状に吹込まれる保護ガスによつ
て著しく緩和することが出来、しかも、この保護
ガスが合体することなく吹き戻し防止機能及び吹
き戻しが発生したときの羽口周辺への衝撃緩和機
能が安定し、羽口耐火物の寿命を大幅に延長する
ことが出来るなど本考案は優れた効果を奏するも
のである。[Table] As is clear from Table 3, in the case of the proposed products 1 and 2, the erosion length of the refractory was approximately half to 1/2 compared to the comparative example.
It can be seen that the nozzle shape can be reduced to about 5, and that a slit-shaped nozzle shape is more effective in preventing melt damage than a circular nozzle shape. As described above, the present invention includes a nozzle portion for blowing refining and/or stirring gas into molten metal, and a refractory that blows gas into the molten metal from around the nozzle portion in the form of small-diameter bubbles. Therefore, the blowback impact that is repeatedly applied to the refractory around the tuyere by gas being blown from the nozzle can be significantly alleviated by the protective gas blown in small diameter bubbles from the non-porous refractory. In addition, this protective gas does not coalesce, stabilizing the blowback prevention function and the shock mitigation function around the tuyere when blowback occurs, and greatly extending the life of the tuyere refractory. The present invention has excellent effects.
第1図は本案品の使用態様を示す模式図、第2
図は本案品を横向きの状態で示す拡大斜視図、第
3図は同じく縦断面図、第4図は第3図の−
線による正面図、第5図は本考案の他の実施例を
横向きにした状態で示す拡大斜視図、第6図は同
じく縦断面図、第7図は第6図の−線による
正面図である。
1……羽口、11……内管、12……外管、1
3……ノズル、14,14′……非多孔質耐火物、
14a,14a′……挿通孔、14b……通流孔。
Figure 1 is a schematic diagram showing how the proposed product is used, Figure 2
The figure is an enlarged perspective view showing the proposed product in a horizontal state, Figure 3 is a vertical sectional view, and Figure 4 is the same as in Figure 3.
5 is an enlarged perspective view showing another embodiment of the present invention in a horizontally oriented state, FIG. 6 is a vertical sectional view of the same, and FIG. 7 is a front view taken along the - line of FIG. 6. be. 1...Tuyere, 11...Inner pipe, 12...Outer pipe, 1
3... Nozzle, 14, 14'... Non-porous refractory,
14a, 14a'... through hole, 14b... through hole.
Claims (1)
吹込むべく設けられる羽口において、前記ガスを
溶融金属中に吹込むためのノズルと、この吹込ノ
ズルの周囲にあつて、該吹込ノズルによるガス吹
込方向に延在し、ガスを小径気泡の状態で溶融金
属中に吹き込む複数の通流孔を備えた非多孔質耐
火物とを具備することを特徴とする溶融金属精錬
用の羽口。 A tuyere provided to blow refining and/or stirring gas into the molten metal includes a nozzle for blowing the gas into the molten metal, and a tuyere around the blowing nozzle for blowing gas by the blowing nozzle. A tuyere for refining molten metal, comprising: a non-porous refractory having a plurality of flow holes extending in the direction of the molten metal and blowing gas into the molten metal in the form of small-diameter bubbles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7514482U JPS58176958U (en) | 1982-05-21 | 1982-05-21 | Tuyeres for molten metal smelting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7514482U JPS58176958U (en) | 1982-05-21 | 1982-05-21 | Tuyeres for molten metal smelting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58176958U JPS58176958U (en) | 1983-11-26 |
JPS6311161Y2 true JPS6311161Y2 (en) | 1988-04-01 |
Family
ID=30084518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7514482U Granted JPS58176958U (en) | 1982-05-21 | 1982-05-21 | Tuyeres for molten metal smelting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58176958U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59179710A (en) * | 1983-03-31 | 1984-10-12 | Nippon Kokan Kk <Nkk> | Nozzle for refining molten metal and blowing method of gas |
-
1982
- 1982-05-21 JP JP7514482U patent/JPS58176958U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58176958U (en) | 1983-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11293069B2 (en) | Method for oxygen-blowing refining of molten iron and top-blowing lance | |
US4541617A (en) | Lance structure for oxygen-blowing process in top-blown converters | |
TWI585208B (en) | Operation method of the top and bottom blowing | |
JPS6311161Y2 (en) | ||
JP2007537355A (en) | Molten metal refining | |
JP5544807B2 (en) | Top blowing lance for refining and converter refining method | |
US5911946A (en) | Snorkel for a degassing vessel | |
US5830259A (en) | Preventing skull accumulation on a steelmaking lance | |
JPH1112633A (en) | Lance for refining molten metal and refining method | |
JP2002226907A (en) | Lance for refining molten metal and refining method | |
JP2848010B2 (en) | Top blowing lance for refining molten metal | |
JPS6013405B2 (en) | Tuyeres for molten metal smelting | |
JPH11158527A (en) | Top-blown lance for refining molten metal | |
JP3402133B2 (en) | Top blowing lance for refining and refining method | |
RU2112048C1 (en) | Lance for metal blowing | |
JPWO2019039285A1 (en) | Top blowing lance for converter blowing and method for refining hot metal | |
JPH11181514A (en) | Bottom-blown tuyere in converter | |
JPH03274218A (en) | Multiple purpose three-ply pipe lance | |
JP2011208267A (en) | Top-blown lance for converter, and converter refining method | |
JP3619338B2 (en) | Method of injecting gas into molten metal | |
JP2010047830A (en) | Method for operating converter | |
JPH08269530A (en) | Top blowing lance | |
JP6888492B2 (en) | Molten steel refining equipment and molten steel refining method | |
JPH11124617A (en) | Tuyere for blowing gas into molten metal and method of blowing gas | |
JPH065406Y2 (en) | Converter blowing lance |