JPS63111462A - Gas mixer - Google Patents
Gas mixerInfo
- Publication number
- JPS63111462A JPS63111462A JP61255686A JP25568686A JPS63111462A JP S63111462 A JPS63111462 A JP S63111462A JP 61255686 A JP61255686 A JP 61255686A JP 25568686 A JP25568686 A JP 25568686A JP S63111462 A JPS63111462 A JP S63111462A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- pressure reducing
- carbon dioxide
- reducing valve
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007789 gas Substances 0.000 claims abstract description 53
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 26
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 abstract 3
- 239000008246 gaseous mixture Substances 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 101100390768 Neisseria gonorrhoeae (strain ATCC 700825 / FA 1090) fitA gene Proteins 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 102220101549 rs199890548 Human genes 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はガス混合装置に係り、特に血液ガス分析装置に
用いる炭酸ガスと空気との混合ガスを製造するのに好適
なガス混合装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas mixing device, and particularly to a gas mixing device suitable for producing a mixed gas of carbon dioxide and air used in a blood gas analyzer. It is.
血液ガス分析装置において、炭酸ガス及び酸素分圧が既
知の水溶液を2種類以上を較正用標準液として装置内部
で製造する必要がある。これには、一般的にボンベに充
填した組成既知の炭酸ガス。In a blood gas analyzer, it is necessary to manufacture two or more types of aqueous solutions with known carbon dioxide gas and oxygen partial pressures as calibration standard solutions within the device. This generally involves carbon dioxide gas of known composition filled in a cylinder.
酸素、窒素の混合ガスを水溶液に飽和させて用いている
。米国特許第3464434号(以下単に公知例という
)では、この点を改善し、炭酸ガスは純ガスの状態でガ
スボンベから供給し、酸素、窒素は空気を用いて混合ガ
スとするガス混合装置を開示してある、上記公知例の特
徴は、リリーフ形の差圧圧力制御弁を用いたことにあり
、炭酸ガスの圧力より高くなった空気の圧力をリリーフ
ボートを通して大気に逃がすことにより、双方の圧力を
等しくさせている。すなわち、空気は大気圧より高高0
、1 kgf/ ci程度高い圧力で供給されている
。A mixed gas of oxygen and nitrogen is used to saturate the aqueous solution. U.S. Patent No. 3,464,434 (hereinafter simply referred to as a known example) improves this point and discloses a gas mixing device that supplies carbon dioxide gas in a pure gas state from a gas cylinder, and uses air to create a mixed gas for oxygen and nitrogen. The feature of the above-mentioned known example is that it uses a relief type differential pressure pressure control valve, and by releasing the air pressure that has become higher than the pressure of carbon dioxide to the atmosphere through the relief boat, both pressures can be adjusted. are made equal. In other words, air is higher than atmospheric pressure.
, is supplied at a high pressure of about 1 kgf/ci.
このように低い圧力で作動させるには、次のような問題
点がある。第1に、ボンベ中の炭酸ガス(常温で約65
kgf/a#の圧力で液化している)の圧力をケージ圧
で0.1kgf/cd程度に安定性1%以下に減圧する
必要があり、市販の減圧弁では実現できず、特別に減圧
弁を製作しなければならず、不経済であった・第2に、
低い圧力の炭酸ガス及び空気の混合は、脈流状態となり
、混合ガス中の例えば炭酸ガスの濃度が数分間の周期で
数%ゆらぐことである。第3に、外形が複雑で、部品の
組み上げに回連さがあり、組立工賃が高くなることであ
る。Operating at such a low pressure has the following problems. First, the carbon dioxide gas in the cylinder (about 65% at room temperature)
It is necessary to reduce the pressure (which is liquefied at a pressure of kgf/a#) to about 0.1 kgf/cd using cage pressure with a stability of 1% or less, which cannot be achieved with a commercially available pressure reducing valve, so a special pressure reducing valve is required.・Secondly,
The mixture of low-pressure carbon dioxide gas and air results in a pulsating flow state, and the concentration of, for example, carbon dioxide gas in the mixed gas fluctuates by several percent over a period of several minutes. Thirdly, the external shape is complex, and the assembly of parts requires repeated steps, resulting in high assembly costs.
本発明の目的は、一般の市販の減圧弁を用い。The purpose of the present invention is to use a general commercially available pressure reducing valve.
混合ガスの成分濃度が安定を混合ガスを得ることができ
るガス混合装置を提供することにある。An object of the present invention is to provide a gas mixing device capable of obtaining a mixed gas whose component concentration is stable.
上記目的は、ボンベに充填された炭酸ガスと大気中の空
気とから炭酸ガス濃度の異なる2種類の混合ガスを製造
するものにおいて、それぞれの2次減圧弁と分流器の間
または上記分流器と混合ガス出口の間に毛管抵抗管より
なる降圧管を設けた構成として達成するようにした。The above purpose is to produce two types of mixed gases with different concentrations of carbon dioxide gas from carbon dioxide gas filled in a cylinder and air in the atmosphere. This is achieved by providing a step-down tube made of a capillary resistance tube between the mixed gas outlet.
一般の市販の減圧弁は、2次圧を低圧にすると、2次圧
の安定性が周期数分間で数%変動し、また。In general commercially available pressure reducing valves, when the secondary pressure is made low, the stability of the secondary pressure fluctuates by several percent over a period of several minutes.
2次圧の設定値が運転、停止を繰り返すと変動するので
、2次圧を高く設定するとともに低弾性率の溶接金属ベ
ローズを用いた減圧弁を用い、2次圧の高圧化は毛管抵
抗管よりなる降圧管によって降圧するようにした。Since the set value of the secondary pressure fluctuates when the operation and stop are repeated, the secondary pressure is set high and a pressure reducing valve using a welded metal bellows with a low elastic modulus is used to increase the secondary pressure. The pressure was lowered by a step-down tube consisting of
以下本発明を第1図〜第10図に示した実施例を用いて
詳細に説明する。The present invention will be explained in detail below using the embodiments shown in FIGS. 1 to 10.
第1図は本発明のガス混合装置の一実施例を示す流路図
である。第1図において、1は炭酸ガスボンベより1次
減圧弁でゲージ圧2±0.2kgf/−に降圧された炭
酸ガス供給源、2は流路開閉用の電磁弁、3は詳細を後
述する2次減圧弁、4は毛管抵抗管よりなる降圧管、5
は分岐点、6゜7は分流器で1例えば、合流点8には分
流器6にて炭酸ガスを1mQ/winの流量で流し1合
流点18には分流器7にて炭酸ガスを2mΩ/+oin
の流量で流すように設定されている。11は0.5±0
、1 kgf/ ciに調圧された空気圧源、12は
流−開閉用の電磁弁・ 13は詳細を後述する2次減圧
弁、14は毛管抵抗管よりなる降圧管、15は分岐点、
16.17は分流器で、例えば1合流点8には分流器1
6にて空気を17.11mQ/lll1nの流量で流し
、合流点18には分流器17にて空気を16.05m1
2/winの流量で流すように設定されている。9は混
合ガスその1の出口、19は混合ガスその2の出口であ
る。10はパイロット圧導管で1分岐点5の圧力を減圧
弁13に伝達し、分岐点5の圧力変化に比例して分岐点
15の圧力が変化するように減圧弁13のの開き量を制
御するようにしてある。20は圧力スイッチで、空気圧
が0.4kgf/fflより降下すると電気信号を発す
る。FIG. 1 is a flow path diagram showing an embodiment of the gas mixing device of the present invention. In Fig. 1, 1 is a carbon dioxide gas supply source whose pressure is lowered to a gauge pressure of 2±0.2 kgf/- by a primary pressure reducing valve from a carbon dioxide gas cylinder, 2 is a solenoid valve for opening and closing the flow path, and 3 is a 2 gas supply source whose details will be described later. The next pressure reducing valve, 4 is a step down pipe consisting of a capillary resistance tube, 5
is a branch point, and 6°7 is a flow divider 1. For example, at the confluence point 8, carbon dioxide gas is flowed at a flow rate of 1 mQ/win through the flow divider 6. At the confluence point 18, carbon dioxide gas is supplied at a flow rate of 2 mΩ/win through the flow divider 7. +oin
It is set to flow at a flow rate of . 11 is 0.5±0
, an air pressure source regulated to 1 kgf/ci, 12 a solenoid valve for opening and closing the flow, 13 a secondary pressure reducing valve whose details will be described later, 14 a step-down pipe made of a capillary resistance tube, 15 a branch point,
16 and 17 are flow dividers, for example, flow divider 1 is installed at 1 confluence point 8.
6, air is flowed at a flow rate of 17.11 mQ/lll1n, and air is flowed at a flow rate of 16.05 m1 at the confluence point 18 through a flow divider 17.
It is set to flow at a flow rate of 2/win. 9 is an outlet for mixed gas No. 1, and 19 is an outlet for mixed gas No. 2. 10 is a pilot pressure conduit that transmits the pressure at branch point 5 to pressure reducing valve 13, and controls the opening amount of pressure reducing valve 13 so that the pressure at branch point 15 changes in proportion to the change in pressure at branch point 5. It's like this. 20 is a pressure switch which emits an electric signal when the air pressure drops below 0.4 kgf/ffl.
第2図は本発明の他の実施例を示す流量図で、第1図と
異なるところは、降圧管4,14がなく、その代りに合
流点8,18と出口9,19の間にそれぞれ降圧管24
.25を設けである点にある。FIG. 2 is a flow rate diagram showing another embodiment of the present invention, which differs from FIG. Step-down tube 24
.. There is a certain point in providing 25.
第3図は第1図の2次減圧弁3の一実施例を示す構成図
である。31は弁座、32は1次圧入力。FIG. 3 is a configuration diagram showing one embodiment of the secondary pressure reducing valve 3 of FIG. 1. 31 is the valve seat, and 32 is the primary pressure input.
33は1次圧出口、34は可動弁で、可動弁34に固定
された軸35を介して金属溶接ベローズ36の上底中心
部が固定してある。ベローズ36の他方は弁座31に固
定してある。ベローズ36の上部にばばね37が配設し
てあって、弁座31に一方が固定してあるボンネット3
9の頂部に設けであるネジ穴に螺合する調節ネジ38に
よって圧縮され、弁座31と可動弁34との間隙を調節
することによって1次圧に対して2次圧を一定に保つよ
うにしてある。33 is a primary pressure outlet, 34 is a movable valve, and the center portion of the upper base of a metal welded bellows 36 is fixed via a shaft 35 fixed to the movable valve 34. The other end of the bellows 36 is fixed to the valve seat 31. A bonnet 3 has a spring 37 disposed above the bellows 36 and has one end fixed to the valve seat 31.
The valve is compressed by an adjusting screw 38 screwed into a screw hole provided at the top of the valve 9, and by adjusting the gap between the valve seat 31 and the movable valve 34, the secondary pressure is kept constant with respect to the primary pressure. There is.
第4図は第1図の2次減圧弁13の一実施例を示す構成
図である。第3図と異なる部分は、第3図のばね37、
調節ネジ38の代りに、パイロットボート40がボンネ
ット39に設けてあり、1次圧22次圧の範囲によって
は、ばね41を弁座31とベローズ36の上底の間の@
35の囲りに配設するようにした点にある。FIG. 4 is a block diagram showing an embodiment of the secondary pressure reducing valve 13 shown in FIG. The parts that differ from Fig. 3 are the spring 37 in Fig. 3;
Instead of the adjusting screw 38, a pilot boat 40 is provided on the bonnet 39, and depending on the range of the primary pressure 22 secondary pressure, the spring 41 is placed between the valve seat 31 and the upper bottom of the bellows 36.
The point is that it is arranged around 35.
第5図は第1図の2次減圧弁13の他の実施例を示す構
成図である。ベローズ36の上底にはリリーフボート4
2力篇ジけてあり−4+11135との相対関係がくず
れたとき、すなわち、2次圧が瞬時に高くなったとき、
空気がリリーフボート42からリンク43の穴44、ボ
ンネット39の排気口45を経て外部に放出されるよう
にしてある。FIG. 5 is a block diagram showing another embodiment of the secondary pressure reducing valve 13 shown in FIG. A relief boat 4 is attached to the upper bottom of the bellows 36.
When the relative relationship with -4+11135 breaks down, that is, when the secondary pressure instantly increases,
Air is discharged from the relief boat 42 to the outside through a hole 44 in a link 43 and an exhaust port 45 in a bonnet 39.
46は他のベローズで、リンク43によってベローズ3
6の上底に固定してあり、上下に同時に動く。パイロッ
トボート40よりのパイロット圧は、リンク43を介し
てベローズ36に伝えられる。46 is another bellows, which is connected to bellows 3 by link 43.
It is fixed to the upper base of 6 and moves up and down at the same time. Pilot pressure from the pilot boat 40 is transmitted to the bellows 36 via the link 43.
第6図は本発明のガス混合装置の一実施例を示す組立図
で、(a)は平面図、(b)は側面図である。50は基
体で、基体50に2次減圧弁3゜13、VI&圧管4,
14、分流器6,7,16゜17、混合ガス出口9,1
9、圧力スイッチ20が組み付けである。これらの部品
への出入口及び分岐点5,15、合流点8,1Bが穿た
れ、これらの加工穴の不用な部分は盲栓51で封じであ
る。FIG. 6 is an assembly diagram showing an embodiment of the gas mixing device of the present invention, in which (a) is a plan view and (b) is a side view. 50 is a base body, and the base body 50 is equipped with a secondary pressure reducing valve 3°13, a VI & pressure pipe 4,
14, Flow divider 6, 7, 16° 17, Mixed gas outlet 9, 1
9. Pressure switch 20 is assembled. Entrances and exits to these parts, branching points 5 and 15, and merging points 8 and 1B are drilled, and unnecessary portions of these machined holes are sealed with blind plugs 51.
減圧弁3.13は、当金54とねじ55によって基体5
0に気密に取り付であり、減圧弁3の1次圧側は、アダ
プタで電磁弁2と気密に接続してある。電磁弁2はアダ
プタ58にネジ59で、アダプタ58はネジ60で押え
板56に、押え板56はネジ57で基体50及び当金5
4に取り付けである。減圧弁13も同様である。The pressure reducing valve 3.13 is connected to the base body 5 by a stopper 54 and a screw 55.
The primary pressure side of the pressure reducing valve 3 is airtightly connected to the solenoid valve 2 with an adapter. The solenoid valve 2 is connected to the adapter 58 with a screw 59, the adapter 58 is connected to the holding plate 56 with a screw 60, and the holding plate 56 is connected to the base 50 and the stopper 5 with a screw 57.
4 is the installation. The same applies to the pressure reducing valve 13.
第7図〜第9図は第6図における流路の接続部の一実施
例を示す拡大詳細断面図である。第7図は減圧弁3の1
次圧側の接続部である。アダプタ58にはユニオン1′
がネジ込まれており、ガスケット62により気密に保持
されている。他方。7 to 9 are enlarged detailed cross-sectional views showing one embodiment of the connecting portion of the flow path in FIG. 6. FIG. Figure 7 shows 1 of pressure reducing valve 3.
This is the connection on the next pressure side. Adapter 58 has union 1'
is screwed in, and is held airtight by a gasket 62. On the other hand.
2方電磁弁2も61をガスケットにしてネジ59により
圧密に取り付けである。ユニオン1′からの流路は、2
方電磁弁2を経由し減圧弁3に至る。The two-way solenoid valve 2 is also mounted pressure-tight with screws 59 using 61 as a gasket. The flow path from union 1' is 2
It reaches the pressure reducing valve 3 via the solenoid valve 2.
減圧弁3の1次側は、焼結金属製のフィルタ71を経由
し、ガイド72に保持された0リング73により気密に
封じられている。第8図は減圧弁3の2次側と基体50
の接続部である。ガイド74に保持された0リング75
により気密に保持されている6第9図は基体50へ分流
器(毛細抵抗管)7の入口の接続部である。基体5oに
焼結金)t7を製のフィルタ76が0リング81.ネジ
77によって気密に固定してあり5分流器7は0リング
80.0リング押え79、ネジ78によりネジ77に気
密に固定してある0分流器7の出口は図示してないが、
基体50に直接○リング80,0リング押え79.ネジ
78で気密に固定してある0以上の説明かられかるよう
に、ネジ部よりの切粉は、−清流路の中へ脱落混入しな
いようにOリング等で封じである。ユニオン1’ 、1
1’ 、混合ガス出口9.19 (共にユニオンを用い
ている)等は、流路に直接ネジ込まれているが、これら
をネジ込んだ後、高圧空気流で切粉を吹き飛した後、他
の部分に取り付ける。このようにして最終組立は、ガイ
ド等に保持されるOリングによって気密に保持され、4
本のネジ55及び4本のネジ57によって固定される。The primary side of the pressure reducing valve 3 is hermetically sealed by an O-ring 73 held by a guide 72 via a filter 71 made of sintered metal. FIG. 8 shows the secondary side of the pressure reducing valve 3 and the base body 50.
This is the connection part. O-ring 75 held by guide 74
6 shows the connection of the inlet of the flow divider (capillary resistance tube) 7 to the base body 50. A filter 76 made of sintered gold (t7) is attached to the base body 5o with an O ring 81. The flow divider 7 is airtightly fixed to the screw 77 with a 0 ring 80. The outlet of the 0 flow divider 7 is airtightly fixed to the screw 77 with the 0 ring presser 79 and the screw 78, but the outlet is not shown.
○ ring 80, 0 ring presser 79 directly on the base body 50. It is airtightly fixed with a screw 78. As can be seen from the above description, the chips from the screw part are sealed with an O-ring or the like so that they do not fall off and get mixed into the clear flow path. Union 1', 1
1', mixed gas outlet 9, 19 (both using unions), etc. are screwed directly into the flow path, but after screwing these in, blow away the chips with a high-pressure air flow, Attach to other parts. In this way, the final assembly is held airtight by an O-ring held on a guide etc.
It is fixed with a book screw 55 and four screws 57.
第10図は合流点8の形状説明図である。例えば、流量
の多いときは、同図(b)のように、空気fitAが混
合流Mに直線的に配設され、途中から直角に炭酸ガス流
Cが交わる方が安定流が得られる。流量の少ないときは
、(a)はたは(c)も非常によい安定流を作る。ただ
し、何れの場合も流速の変化は大きくない方がよい。FIG. 10 is an explanatory diagram of the shape of the confluence point 8. For example, when the flow rate is large, a stable flow can be obtained by disposing the air fitA linearly in the mixed flow M and intersecting the carbon dioxide gas flow C at right angles from the middle, as shown in FIG. 2(b). When the flow rate is low, either (a) or (c) produces a very stable flow. However, in either case, it is better that the change in flow velocity is not large.
いま、分流器6,7,16.17の抵抗をそれぞれRe
e R7+ R1111R17とし、それらの値を次
の値にする。Now, the resistances of the shunts 6, 7, 16.17 are respectively Re.
e R7+ R1111R17, and set these values to the following values.
Ra=116X10’″”kH−win/am’R?
= 58 X 10−8kg−w1n/cs’R+e=
6.7X10″″’kg−n+in/am’R17=
7 、3 X 10−3kg−I!Iin/am’同様
に降圧管4,14,24.25の抵抗をそれぞれR4w
Rza、R21Rzsとし、それらの値を次の値にす
る。Ra=116X10'''kH-win/am'R?
= 58 X 10-8kg-w1n/cs'R+e=
6.7X10''''kg-n+in/am'R17=
7, 3 x 10-3kg-I! Similarly to Iin/am', the resistances of step-down tubes 4, 14, and 24.25 are R4w.
Rza and R21Rzs, and set their values to the following values.
Ra = 3 、5 X 10−”kg−win/ax
BRxa=39X10″”kg ・ sin/cm’R
1a= 6 、7 X 10−8kg−5in/as’
Rza=6.7X10″″8kg−1lin/cffl
δかつ、減圧弁3,13の2次圧を0.200kgf/
adに設定する。第1図の流路図では、分岐点5,15
の圧力は0.100kgf/cj、第2図の流路図では
、合流点8,18の圧力は0.100kgf/adとな
る。すなわち、第1図、第2図の流路図とも分流器6,
7,16.17の抵抗を2倍(毛祷抵抗管の場合、長さ
が2倍となる)にしてはじめて差圧を2倍にすることが
できるが、降圧管を用いると1.5倍以下でよいことに
なる0分岐点5,15または合流点8,18の圧力を減
圧弁の2次圧の1/2にしたが、これを1/3以下にす
る場合は、さらに効果的である。また、減圧弁の2次圧
が上がると、圧力調節機能が格段に向上し、市販の減圧
弁でも炭酸ガス濃度の変動は前述の数値の流量、圧力で
5.6±0.06%及び11.2±0.11%が容易に
実現できる。Ra = 3, 5 x 10-”kg-win/ax
BRxa=39X10''kg・sin/cm'R
1a = 6, 7 x 10-8kg-5in/as'
Rza=6.7X10″″8kg-1lin/cffl
δ and the secondary pressure of pressure reducing valves 3 and 13 to 0.200 kgf/
Set to ad. In the flow path diagram of Fig. 1, branch points 5 and 15
In the flow path diagram of FIG. 2, the pressure at the confluence points 8 and 18 is 0.100 kgf/ad. That is, in both the flow path diagrams of FIGS. 1 and 2, the flow divider 6,
7, 16. The differential pressure can only be doubled by doubling the resistance in 17 (in the case of a capillary resistance tube, the length will be doubled), but if a step-down tube is used, it will be 1.5 times more. We set the pressure at the 0 branch points 5 and 15 or the confluence points 8 and 18 to 1/2 of the pressure reducing valve's secondary pressure, which would be sufficient if the pressure was lower than 1/3, but it would be even more effective. be. In addition, when the secondary pressure of the pressure reducing valve increases, the pressure regulation function improves significantly, and even with a commercially available pressure reducing valve, the fluctuation in carbon dioxide concentration is 5.6 ± 0.06% and 11% at the flow rate and pressure of the above numerical values. .2±0.11% can be easily achieved.
以上説明したように1本発明によれば、抵抗の小さい分
流器を用いても降圧管を用いるようにしたので、差圧を
大きくすることができ、結局、2次減圧弁の2次圧を0
.1kgf/aJ以上にすることが容易になり、このこ
とは2次減圧弁として市販の減圧弁を使用しても減圧弁
の2次圧の安定性を1%以下にできることを意味し、?
n会合ガス中炭酸ガス濃度の一層の安定性を望む場合は
、溶接金属ベローズダイヤプラムを用いた減圧弁を用い
、今らにはパイロット圧による制御、リリーフボートに
よる制御を併用すればよく、また、各部品のネジ込みに
よる切粉混入を防止するため、0リングと少数の締付ネ
ジによって基体に取り付けるようにしたので1組立工数
を著しく較減できるという効果がある。As explained above, according to the present invention, even if a shunt with low resistance is used, a step-down pipe is used, so the differential pressure can be increased, and the secondary pressure of the secondary pressure reducing valve can be increased. 0
.. It becomes easy to increase the pressure to 1 kgf/aJ or more, which means that even if a commercially available pressure reducing valve is used as the secondary pressure reducing valve, the stability of the secondary pressure of the pressure reducing valve can be kept below 1%.
n If you want more stability in the carbon dioxide concentration in the associated gas, you can use a pressure reducing valve with a welded metal bellows diaphragm, and now also use pilot pressure control and relief boat control. In order to prevent the contamination of chips due to the screwing of each component, it is attached to the base body using an O-ring and a small number of tightening screws, which has the effect of significantly reducing the number of assembly steps.
第1図は本発明のガス混合装置の一実施例を示す流路図
、第2図は本発明の他の実施例を示す流路図、第3図は
第1図の2次減圧弁3の一実施例を示す構成図、第4図
は第1図の2次減圧弁13の一実施例を示す構成図、第
5図は第1図の2次減圧弁13の他の実施例を示す構成
図、第6図は本発明のガス混合装置の一実施例を示す組
立図。
第7図、第8図、第9図は第6図における流路の接続部
の一実施例を示す拡大詳細断面図で、第7図は減圧弁3
の一次側、第8図は減圧弁3の2次側、第9図は基体5
0への分流器7の入口の接続部の断面図、第10図は合
流点8の形状説明図である。
1・・・炭酸ガス供給源、3,13・・・2次減圧弁、
4゜14.24.25・・・降圧器(毛管抵抗管)、5
゜15・・・分岐管、6,7,16.17・・・分流器
、8゜18・・・合流点、9,19・・・混合ガス出口
、11・・・空気圧源、36.46・・・ベローズ、4
0・・・パイロットボート、42・・・リリーフボート
、43・・・リンク、50・・・基体。
・゛・:′1不、1図
察2図
、;琲;
も3図
1+Q−−−/ザイロットオζ−ト
も5図
曝6−〜− ベリー人
効6巳
(b)
50− 隻体
(α)
(b)FIG. 1 is a flow path diagram showing one embodiment of the gas mixing device of the present invention, FIG. 2 is a flow path diagram showing another embodiment of the present invention, and FIG. 3 is a flow path diagram showing the secondary pressure reducing valve 3 of FIG. 1. FIG. 4 is a block diagram showing one embodiment of the secondary pressure reducing valve 13 in FIG. 1, and FIG. 5 is a block diagram showing another embodiment of the secondary pressure reducing valve 13 in FIG. FIG. 6 is an assembly diagram showing an embodiment of the gas mixing device of the present invention. 7, 8, and 9 are enlarged detailed cross-sectional views showing one embodiment of the connection part of the flow path in FIG. 6, and FIG. 7 shows the pressure reducing valve 3.
8 is the secondary side of the pressure reducing valve 3, and FIG. 9 is the base 5.
10 is a cross-sectional view of the connection part of the inlet of the flow divider 7 to the flow divider 7, and FIG. 10 is a shape explanatory diagram of the confluence point 8. 1... Carbon dioxide gas supply source, 3, 13... Secondary pressure reducing valve,
4゜14.24.25...Step-down device (capillary resistance tube), 5
゜15... Branch pipe, 6,7,16.17... Flow divider, 8゜18... Merging point, 9, 19... Mixed gas outlet, 11... Air pressure source, 36.46 ...Bellows, 4
0...Pilot boat, 42...Relief boat, 43...Link, 50...Base.
・ ・: ′ 1 failure, 2 figures 2,; Ha; and q ; も も も ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト トα) (b)
Claims (1)
炭酸ガス濃度の異なる2種類の混合ガスを製造するもの
において、それぞれの2次減圧弁と分流器の間または前
記分流器と混合ガス出口の間に毛管抵抗管よりなる降圧
管を設けたことを特徴とするガス混合装置。 2、前記炭酸ガス用2次減圧弁と空気用2次減圧弁のう
ち少なくとも空気用2次減圧弁として溶接金属ベローズ
を用い、減圧後の炭酸ガス圧をパイロット圧とした構成
とした特許請求の範囲第1項のガス混合装置。 3、前記空気用2次減圧弁にリリーフボートを設けた構
成とした特許請求の範囲第1項または第2項記載のガス
混合装置。 4、基体に多重の流路を設け、これに炭酸ガスの流路お
よび空気の流路をそれぞれ開閉する電磁弁、前記各2次
減圧弁、前記各分流器および前記降圧管等の全ての部品
を配設してある特許請求の範囲第1項または第2項また
は第3項記載のガス混合装置。[Claims] 1. In a device that produces two types of mixed gases with different concentrations of carbon dioxide gas from carbon dioxide gas filled in a cylinder and air in the atmosphere, between the respective secondary pressure reducing valves and the flow divider or A gas mixing device characterized in that a step-down tube made of a capillary resistance tube is provided between the flow divider and the mixed gas outlet. 2. A welded metal bellows is used as at least the secondary pressure reducing valve for air among the secondary pressure reducing valve for carbon dioxide gas and the secondary pressure reducing valve for air, and the carbon dioxide pressure after pressure reduction is used as pilot pressure. Gas mixing device of scope 1. 3. The gas mixing device according to claim 1 or 2, wherein the secondary air pressure reducing valve is provided with a relief boat. 4. All parts such as multiple flow paths provided in the base, electromagnetic valves that open and close the carbon dioxide gas flow paths and air flow paths, each of the secondary pressure reducing valves, each of the flow dividers, and the step down pipe, etc. A gas mixing device according to claim 1, 2, or 3, wherein the gas mixing device is provided with:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255686A JPS63111462A (en) | 1986-10-29 | 1986-10-29 | Gas mixer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255686A JPS63111462A (en) | 1986-10-29 | 1986-10-29 | Gas mixer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63111462A true JPS63111462A (en) | 1988-05-16 |
Family
ID=17282215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61255686A Pending JPS63111462A (en) | 1986-10-29 | 1986-10-29 | Gas mixer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63111462A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0882522A1 (en) * | 1997-06-04 | 1998-12-09 | Carboxyque Française | Lance and apparatus for the production of a liquid jet of CO2 and its use for a surface cleaning installation |
-
1986
- 1986-10-29 JP JP61255686A patent/JPS63111462A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0882522A1 (en) * | 1997-06-04 | 1998-12-09 | Carboxyque Française | Lance and apparatus for the production of a liquid jet of CO2 and its use for a surface cleaning installation |
FR2764215A1 (en) * | 1997-06-04 | 1998-12-11 | Carboxyque Francaise | LANCE AND APPARATUS FOR PRODUCING A LIQUID C02 JET, AND ITS APPLICATION TO A SURFACE CLEANING INSTALLATION |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1001326B1 (en) | Gas supply equipment with pressure type flow rate control device | |
US4214607A (en) | Unidirectional flow limiter | |
US3739799A (en) | Continuous flow anesthesia apparatus | |
US5398721A (en) | Compressed gas integral regulator and flowmeter | |
EP0233775A2 (en) | Supply cylinder shut-off and flow control valve | |
JPS63111462A (en) | Gas mixer | |
US5465750A (en) | Two-stage regulator | |
EP0896177B1 (en) | Fluid control device | |
KR19980042035A (en) | Flow regulating device for gases with substantially different mass per mole | |
US3074426A (en) | Fixed pressure regulator | |
US3717177A (en) | Proportional gas mixing apparatus | |
US3712325A (en) | Gas mixer | |
JP2007038179A (en) | Gas mixer | |
US3930519A (en) | Pressure regulator | |
US4823593A (en) | Flueric partial pressure sensors | |
US3392752A (en) | Device for mixing a plurality of gases and for varying the relative proportion of the gases | |
GB1100996A (en) | A high-pressure gas inlet valve device for a respiratory apparatus | |
JPS63195568A (en) | Pressure balancer | |
JP7483265B2 (en) | Pressure Generator | |
JPH05302680A (en) | Check valve | |
JPH03106429A (en) | Gas mixing apparatus | |
JPH0333218B2 (en) | ||
US4723571A (en) | Fluid supply apparatus | |
SU1453369A1 (en) | Pressure regulator | |
JPS63243757A (en) | Gas mixer |