JPS63111192A - Production of fluorobenzene - Google Patents

Production of fluorobenzene

Info

Publication number
JPS63111192A
JPS63111192A JP61256882A JP25688286A JPS63111192A JP S63111192 A JPS63111192 A JP S63111192A JP 61256882 A JP61256882 A JP 61256882A JP 25688286 A JP25688286 A JP 25688286A JP S63111192 A JPS63111192 A JP S63111192A
Authority
JP
Japan
Prior art keywords
anode
benzene
fluorobenzene
electrode
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61256882A
Other languages
Japanese (ja)
Inventor
Atsushi Shimizu
敦 清水
Kazunori Yamataka
山高 一則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61256882A priority Critical patent/JPS63111192A/en
Publication of JPS63111192A publication Critical patent/JPS63111192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To reduce the loss of the anode and to industrially produce fluorobenzene by electrolytically fluorinating benzene in a nitrile compd. as a solvent with specified tetraalkylammonium fluoride-hydrogen fluoride as a supporting salt and an Rh electrode as the anode. CONSTITUTION:A nitride compd. such as propionitrile as a solvent, tetraalkylammonium fluoride-hydrogen fluoride represented by the formula (where each of R<1>-R<4> is alkyl and x=1-10) as a supporting salt, and benzene are charged into an electrolytic cell. An electrode of Rh or an alloy contg. >=80% Rh as the anode and a Ti lath electrode or the like as the cathode are placed in the cell and the benzene is electrolytically fluorinated. By this method, the consumption of the anode is extremely reduced and fluorobenzene can be industrially produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベンゼンの電解フツ素化方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for electrolytic fluorination of benzene.

〔従来の技術〕[Conventional technology]

従来、ベンゼンを電解フッ素化する方法として、Izv
 、 AlaLd−Nauk S SSRSer 、 
Khim(、1130(1972)、が挙ケラれる。こ
の方法では、電解溶媒としてアセトニトリルを用い、支
持価およびフッ素源として(02H5)4NF ・3H
Fを用い2.4■の一定電位(対カロメル電極)で白金
陽極を用いて行っている。
Conventionally, as a method for electrolytic fluorination of benzene, Izv
, AlaLd-Nauk S SSRSer ,
Khim (, 1130 (1972)). In this method, acetonitrile is used as the electrolytic solvent, and (02H5)4NF 3H is used as the supporting value and fluorine source.
The test was carried out using a platinum anode at a constant potential of 2.4 µm (vs. calomel electrode).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

白金陽極に水溶液環境では安定であるが、酸性条件下で
有機物が存在した場合、異常消耗を起こすことが知られ
ている(電気化学協会筒51回大会予稿集E2R2.1
984)。上記従来技術の電解フッ素化を本発明者らが
試みたところ、同じ様に陽極異常消耗が認められ、この
技術を工業的に応用することは困難であることが判明し
た。
Although the platinum anode is stable in an aqueous environment, it is known to cause abnormal consumption if organic substances are present under acidic conditions (Electrochemical Society of Japan's 51st Annual Conference Proceedings E2R2.1)
984). When the present inventors attempted electrolytic fluorination using the above-mentioned conventional technique, abnormal anode consumption was similarly observed, and it was found that it was difficult to apply this technique industrially.

本発明者らは、上記の様な従来方法が持つ欠点を克服し
、陽極異常消耗を引き起こさずにベンゼンの電解フッ素
化を行う方法を開発すぺ〈種々の電極材料について鋭意
研究を重ねた結果、陽極材料としてロジウムもしくはロ
ジウム合金が、特異的に消耗が少ないことを見い出し、
この知見に基づいて本発明を完成するに至った。
The present inventors have developed a method for electrolytic fluorination of benzene without causing abnormal consumption of the anode by overcoming the drawbacks of the conventional methods as described above. discovered that rhodium or rhodium alloys have uniquely low wear and tear as anode materials.
Based on this knowledge, we have completed the present invention.

〔問題点を解決するための手段および作用〕本発明は、
ベンゼンを、ニトリル系化合物を溶媒として、支持塩に
一般式 BI H2B3〜1”xHF  (式中R”l
 12R R”l R’はアルキル基であり、互いに同
一もしくは異ってもよい。Xは1以上10以下である。
[Means and effects for solving the problems] The present invention has the following features:
Using benzene and a nitrile compound as a solvent, the supporting salt has the general formula BI H2B3~1"xHF (in the formula R"l
12R R"l R' is an alkyl group and may be the same or different from each other. X is 1 or more and 10 or less.

)で表わされるフッ化テトラアルキルアンモニウム−フ
ツ化水素を用い、ロジウムもしくはロジウムを80%以
上含む合金よシなる陽極を用いて電解フッ素化すること
を特徴とするフルオロベンゼンの製法である。
This is a method for producing fluorobenzene, which is characterized by electrolytic fluorination using a tetraalkylammonium fluoride-hydrogen fluoride represented by the following formula, using an anode made of rhodium or an alloy containing 80% or more of rhodium.

本発明において、使用する溶媒はニトリル系化合物であ
る。この中でも、アセトニトリル、プロピオニトリル、
n−ブチロニトリル、インブチロニトリルが好ましい。
In the present invention, the solvent used is a nitrile compound. Among these, acetonitrile, propionitrile,
Preferred are n-butyronitrile and inbutyronitrile.

本発明において支持塩は、一般式R”R2R’R’NF
−xHF(式中R1,R”、 Rs、 R4はアルキル
基であり、互いに同一もしくは異ってもよい。Xは1以
上10以下である。)で表わされるフッ化テトラアルキ
ルアンモニウム−フツ化水素である。アルキル基の種類
は反応に大きな影響を及ぼさ々いが、R’、 R”、 
R”。
In the present invention, the supporting salt has the general formula R"R2R'R'NF
Tetraalkylammonium fluoride-hydrogen fluoride represented by -xHF (in the formula, R1, R", Rs, and R4 are alkyl groups, and may be the same or different from each other. The type of alkyl group has a great influence on the reaction, but R', R'',
R”.

R4がエチル基、n−プロピル基、イソプロピル基、n
−ブチル基、イソブチル基、tart−ブチル基である
ものが入手しやすいので好ましい。またXの値1l−1
:1以上10以下であるが、好ましくは1以上3.5以
下である。支持塩濃度は5W%以上50W%以下が目的
物の選択率、電流効率の点で好ましい。
R4 is an ethyl group, n-propyl group, isopropyl group, n
-butyl group, isobutyl group, and tart-butyl group are preferred because they are easily available. Also, the value of X is 1l-1
: 1 or more and 10 or less, preferably 1 or more and 3.5 or less. The supporting salt concentration is preferably 5 W% or more and 50 W% or less in terms of selectivity of the target product and current efficiency.

本発明において陽極はロジウムもしくはロジウムを80
%以上含む合金よシなる。該陽極は、少なくともその表
面がロジウムもしくはロジウムを80%以上含む合金で
あればよい。合金中のロジウム以外の成分は、ルテニウ
ム、ノラジウム、イリジウム、白金が好ましい。後述す
る実施例から明らかな様に、該陽極は特異的に消耗が少
ない。
In the present invention, the anode is rhodium or rhodium 80
% or more. The anode may be made of rhodium or an alloy containing 80% or more of rhodium at least on its surface. Components other than rhodium in the alloy are preferably ruthenium, noradium, iridium, and platinum. As is clear from the examples described below, the anode has a uniquely low wear rate.

本発明において、ベンゼン濃度は0.5W%以上50W
%以下であることが好ましい。
In the present invention, the benzene concentration is 0.5W% or more and 50W
% or less.

本発明において電解は定電流電解あるいは定電位電解い
ずれの方法でも行うことが可能である。
In the present invention, electrolysis can be carried out by either constant current electrolysis or constant potential electrolysis.

〔発明の効果〕〔Effect of the invention〕

本発明では、フルオロベンゼンを製造するに際し陽極の
消耗が極めて少ない点で工業的に実施する場合極めて有
利な方法である。
The present invention is an extremely advantageous method when carried out industrially in that the consumption of the anode is extremely small when producing fluorobenzene.

〔実施例〕〔Example〕

実施例1 501dのテフロン製電解槽にプロピオニトリル239
、  (n−04Ho)4NF・3HF 7 f、ベン
ぜン5Fを仕込んだ。陽極としてチタン板上にロジウム
をメッキしたものを用い、陰極としてチタンラス電極を
用い、電流密度xOA/dm”(通電面積15c!n2
)電気fl 6=57 Ahrでモノフルオロペンぜン
を得た。なお所定の電気量の約%の電流を流した時点で
電解液を、新しく調整した液(液組成は上記と同じ)に
更新した。
Example 1 Propionitrile 239 in a 501d Teflon electrolytic cell
, (n-04Ho)4NF.3HF 7f and benzene 5F were charged. A titanium plate plated with rhodium was used as the anode, a titanium lath electrode was used as the cathode, and the current density x OA/dm" (current carrying area 15c!n2
) Monofluoropenzene was obtained with electricity fl 6=57 Ahr. The electrolytic solution was replaced with a newly prepared solution (liquid composition was the same as above) when a current of approximately % of the predetermined amount of electricity was passed.

陽極の消耗はQ、Q76 ff/Ahであった。The consumption of the anode was Q, Q76 ff/Ah.

実施例2 陽極としてチタン板上に80%のロジウムと20%の白
金の合金をメッキした電極を用いた以外は実施例1と同
様な条件、同様な操作で電解フッ素化を行いモノフルオ
ロベンゼンを得た。結果を表に示した。
Example 2 Monofluorobenzene was electrolytically fluorinated under the same conditions and operations as in Example 1, except that an electrode made of a titanium plate plated with an alloy of 80% rhodium and 20% platinum was used as an anode. Obtained. The results are shown in the table.

実施例3 溶媒としてアセトニトリル232、支持塩として(02
H5)4NF・2.3HF7Fを用いた以外は実施例1
と同様々条件、同様な操作で電解フッ素化を行いモノフ
ルオロベンゼンを得た。結果を表に示した。
Example 3 Acetonitrile 232 as a solvent, (02
H5) Example 1 except that 4NF/2.3HF7F was used
Monofluorobenzene was obtained by electrolytic fluorination using the same conditions and operations as above. The results are shown in the table.

比較例1〜5 表に示した電極を用いその他は実施例1と同様な条件、
同様な操作で電解フッ素化を行い表に示した消耗結果を
得た。
Comparative Examples 1 to 5 The electrodes shown in the table were used and the other conditions were the same as in Example 1.
Electrolytic fluorination was carried out in a similar manner and the consumption results shown in the table were obtained.

table

Claims (1)

【特許請求の範囲】[Claims] ベンゼンを、ニトリル系化合物を溶媒として、支持塩に
一般式R^1R^2R^3R^4NF・xHF(式中R
^1、R^2、R^3、R^4はアルキル基であり、互
いに同一もしくは異つてもよい。xは1以上10以下で
ある。)で表わされるフツ化テトラアルキルアンモニウ
ム−フツ化水素を用い、ロジウムもしくはロジウムを8
0%以上含む合金よりなる陽極を用いて電解フッ素化す
ることを特徴とするフルオロベンゼンの製法
Using benzene and a nitrile compound as a solvent, the general formula R^1R^2R^3R^4NF xHF (in the formula R
^1, R^2, R^3, and R^4 are alkyl groups, and may be the same or different from each other. x is 1 or more and 10 or less. ) using tetraalkylammonium fluoride-hydrogen fluoride, rhodium or rhodium 8
A method for producing fluorobenzene characterized by electrolytic fluorination using an anode made of an alloy containing 0% or more
JP61256882A 1986-10-30 1986-10-30 Production of fluorobenzene Pending JPS63111192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256882A JPS63111192A (en) 1986-10-30 1986-10-30 Production of fluorobenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256882A JPS63111192A (en) 1986-10-30 1986-10-30 Production of fluorobenzene

Publications (1)

Publication Number Publication Date
JPS63111192A true JPS63111192A (en) 1988-05-16

Family

ID=17298721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256882A Pending JPS63111192A (en) 1986-10-30 1986-10-30 Production of fluorobenzene

Country Status (1)

Country Link
JP (1) JPS63111192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696156A1 (en) 2019-02-15 2020-08-19 Fujian Yongjing Technology Co., Ltd. New process for the manufacture of fluoroaryl compounds and derivatives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696156A1 (en) 2019-02-15 2020-08-19 Fujian Yongjing Technology Co., Ltd. New process for the manufacture of fluoroaryl compounds and derivatives
US11420917B2 (en) 2019-02-15 2022-08-23 Fujian Yongjing Technology Co., Ltd. Process for the manufacture of fluoroaryl compounds and derivatives

Similar Documents

Publication Publication Date Title
CA1321973C (en) Method for producing high purity quaternary ammonium hydroxides
US3899401A (en) Electrochemical production of pinacols
CA1335973C (en) Process for preparing quaternary ammonium hydroxides
US4938854A (en) Method for purifying quaternary ammonium hydroxides
JP4755458B2 (en) Method for producing 2-alkyne-1-acetal
JPS63111192A (en) Production of fluorobenzene
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
Baizer et al. Electrolytic Reductive Coupling: XV. Electroreductions of Aqueous Concentrated Solutions of Diethyl Maleate in the Presence of Sodium or Tetraethylammonium Cations
JPH0693484A (en) Electrolytic reduction method
JPH06506728A (en) Electrochemical synthesis of diaryliodonium salts
US4931155A (en) Electrolytic reductive coupling of quaternary ammonium compounds
RU2302405C1 (en) P-aminobenzoic acid ethyl ester (anestesine) production process
JPS59219485A (en) Manufacture of 2,5-dimethylhexanedinitrile
US4462875A (en) Preparation of nickel-oxide hydroxide electrode
US20080228009A1 (en) Process for Preparing 1,1,4,4-Tetraalkoxybut-2-Ene Derivatives
JPS6342712B2 (en)
SU1146304A1 (en) Method of obtaining trialkyl(aryl)-arsine difluorides
RU2350596C1 (en) Electrochemical method of fluoraliphatic bis-fluorsulphate production on electrocatalitic nanomaterials
JP2622115B2 (en) Method for producing benzyl alcohols
JPS63157891A (en) Production of m-hydroxybenzyl alcohol
JPH01234584A (en) Anode used in electrolytic reduction reaction of organic matter
JPS6050190A (en) Production of 2,5-dimethylhexanedinitrile
JPS63218639A (en) Production of 3-hydroxybenzyl alcohol
JPH0673584A (en) Production of hydroxypivalic ester
JPH028386A (en) Method for electrolytically reducing m-hydroxybenzoic acid