JPS63111181A - Method for applying zinc on extruded aluminum stock - Google Patents

Method for applying zinc on extruded aluminum stock

Info

Publication number
JPS63111181A
JPS63111181A JP25933886A JP25933886A JPS63111181A JP S63111181 A JPS63111181 A JP S63111181A JP 25933886 A JP25933886 A JP 25933886A JP 25933886 A JP25933886 A JP 25933886A JP S63111181 A JPS63111181 A JP S63111181A
Authority
JP
Japan
Prior art keywords
zinc
extruded
bath
stock
extruded material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25933886A
Other languages
Japanese (ja)
Inventor
Shoichi Yamamoto
山本 菖一
Shunichi Umemoto
俊一 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25933886A priority Critical patent/JPS63111181A/en
Publication of JPS63111181A publication Critical patent/JPS63111181A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • C23C10/22Metal melt containing the element to be diffused

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To increase peeling strength of a coated Zn layer and to enhance corrosion resistance and also to enable free processing such as blending work after Zn treatment by mechanically subjecting an extruded Al stock to roughened surface processing at the specified surface roughness just after extruding the Al stock and thereafter treating it in a melted ZnF2 bath and then baking it. CONSTITUTION:An extruded stock 5 obtained by extruding a billet 1 of Al (alloy) is worked at 6-30mu surface roughness just after extrusion with a roughener 7 which mechanically performs roughened surface processing such as shot blasting. Then after immersing a short-sized extruded stock 5' which is obtained by cutting it at proper length into a melted ZnF2 bath 9, a Zn diffusion layer is formed by drawing up it from the bath 9 and successively baking it. Further the extruded stock 5 is desirably a flat tube having many holes. By this method, even when performing bending work or the like, free processing can be performed after Zn treatment because pitting corrosion is not caused.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルミニウム押出材への亜鉛被覆方法に関し
、特に、熱交換器のチューブに用いて好適なアルミニウ
ム押出材への亜鉛被覆方法に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for coating zinc extrusions on aluminum extrusions, and particularly relates to a method for coating zinc extrusions on aluminum extrusions suitable for use in tubes of heat exchangers. .

[従来の技術] アルミニウム及びアルミニウム合金は通常鋼に比較して
耐食性が良く、通常の用いられ方ならば、採材状態ある
いはアルマイト処理や塗装をした状態でも十分な耐食性
を有する。
[Prior Art] Aluminum and aluminum alloys have better corrosion resistance than ordinary steel, and if used in a normal manner, they have sufficient corrosion resistance even when they are taken from raw materials or when they are anodized or painted.

しかし、 0重工業地域や中近東、北米等の腐食性雰囲気が強い地
域で用いられる、主として輸送分野では耐食性に乏しく
孔食腐食を発生しやすい。
However, it has poor corrosion resistance and is prone to pitting corrosion, mainly in the transportation field, where it is used in areas with strong corrosive atmospheres such as heavy industrial areas, the Middle East, and North America.

■最近特に耐食性を重視される分野の一つとして自動車
用空調器、熱交換器がある。カークーラ川コンデンサ及
びエバポレータ等は、一般に、第4図に示すようなハー
モニカ断面形状で押出された多穴型材のチューブ5をサ
ーペン状に折り曲げ、そのチューブ5間にごく薄いアル
ミフィン12材を介在させて治具にコアを固定し、ろう
材の落融温度約650℃に保持し、2分の加熱条件にて
チューブ5とフィン材12とを一体化せしめている。
■Car air conditioners and heat exchangers are one of the fields where corrosion resistance has been particularly important recently. Car cooler condensers, evaporators, etc. are generally made by bending an extruded multi-hole tube 5 into a serpentine shape with a harmonica cross-sectional shape as shown in Fig. 4, and interposing a very thin aluminum fin 12 material between the tubes 5. The core is fixed to a jig, the melting temperature of the brazing filler metal is maintained at approximately 650° C., and the tube 5 and the fin material 12 are integrated under heating conditions for 2 minutes.

この場合、チューブ5よりイオン化傾向の大きいフィン
材12を用い、フィン材12を優先的に腐食させる犠牲
腐食効果を得るように配慮している。
In this case, consideration is given to using the fin material 12 which has a larger ionization tendency than the tube 5, and to obtain a sacrificial corrosion effect in which the fin material 12 is preferentially corroded.

しかしながら、チューブ5の屈曲部にはフィン材12が
存在しないため、裸材状思あるいはアルマイト処理や塗
装をした状態では耐食性に劣り、孔食腐食を発生しやす
い。
However, since the fin material 12 is not present at the bent portion of the tube 5, the corrosion resistance is poor in a bare state or in a state subjected to alumite treatment or painting, and pitting corrosion is likely to occur.

そこで、最近、アルミニウム表面に亜鉛を被覆すること
が行なわれている。
Therefore, recently, coating the aluminum surface with zinc has been carried out.

すなわち、  アルミニウム又はアルミニウム合金の表
面に亜鉛からなる被覆層を形成し、この亜鉛被覆層の犠
牲的腐食作用によりアルミニウム押出材の孔食を防止し
ようとする試みがなされている。
That is, an attempt has been made to form a coating layer made of zinc on the surface of aluminum or an aluminum alloy, and to prevent pitting corrosion of aluminum extrusions through the sacrificial corrosion effect of this zinc coating layer.

ところで、従来、アルミニウム押出材への亜鉛拡散層の
形成方法としては次の技術が知られている。
By the way, the following technique is conventionally known as a method for forming a zinc diffusion layer on an aluminum extrusion material.

アルミニウム又はアルミニウム合金材の押出材を、押出
直後にそのまま溶融亜鉛浴中に浸漬(以下浸漬法という
、)あるいは、蒸気亜鉛を蒸着させ(以下蒸着法という
。)し、浸漬あるいは蒸着後、押出材を、600℃に加
熱して亜鉛をアルミニウム押出材中に拡散することによ
り押出材表面に亜鉛拡散層を形成する方法(たとえば特
公昭59−31588号公報)。
Immediately after extrusion, an extruded aluminum or aluminum alloy material is immersed in a molten zinc bath (hereinafter referred to as the immersion method) or vaporized zinc is deposited (hereinafter referred to as the vapor deposition method), and after immersion or vapor deposition, the extruded material is A method of forming a zinc diffusion layer on the surface of an extruded aluminum material by heating the aluminum to 600°C to diffuse zinc into the extruded aluminum material (for example, Japanese Patent Publication No. 59-31588).

[発明が解決しようとする問題点] しかし、上記した亜鉛被覆層の形成方法には次のような
問題点がある。
[Problems to be Solved by the Invention] However, the method for forming the zinc coating layer described above has the following problems.

■L記従来技術においては、押出直後の押出材に、その
まま浸漬あるいは蒸着を行なうことにより亜鉛被覆を行
なわしめている。
(2) In the prior art, the extruded material immediately after extrusion is coated with zinc by immersion or vapor deposition.

しかし、押出直後の押出材の表面粗度は、0.5〜5ル
と小さく、そのままの状態で亜鉛を被覆すると剥離強度
が小さくなる。
However, the surface roughness of the extruded material immediately after extrusion is as small as 0.5 to 5 l, and if it is coated with zinc in that state, the peel strength will be low.

特に、例えば、上記した熱交換器のチューブとするため
にプレス加工や曲げ加工を施こすと、コーナ部に亜鉛被
覆層の割れを生ずる。
Particularly, for example, when pressing or bending is performed to form a tube for the above-mentioned heat exchanger, cracks occur in the zinc coating layer at the corners.

[問題点を解決するための手段] 上記問題点は、アルミニウム又はアルミニウム合金材を
押出し、 押出しにより得られた押出材を、押出直後に機械的に粗
面加工することにより押出材表面の表面粗度を6〜30
ルとし、 粗面加工後、溶融フッ化亜鉛の浴中に、該押出材を浸漬
し、  。
[Means for solving the problem] The above problem can be solved by extruding aluminum or aluminum alloy material and mechanically roughening the extruded material obtained by extrusion immediately after extrusion to improve the surface roughness of the surface of the extruded material. degree 6-30
After surface roughening, the extruded material is immersed in a bath of molten zinc fluoride.

該押出材を溶融フッ化亜鉛の浴から引上げ後、ベーキン
グを行なうことを特徴とするアルミニウム押出材への亜
鉛被覆方法によって解決される。
The problem is solved by a method for coating aluminum extrudates with zinc, which is characterized in that the extrudates are baked after being pulled out of a bath of molten zinc fluoride.

アルミニウム又はアルミニウム合金材の材質には特に限
定されない。例えば、純A文、A文−CU系、A l 
−M g系、An−Si系、A文−Mn系、A1−Mg
−5i系、An−Cu−Mg系、A!;L−Cu−Ni
系、A l −M g −Z n系、AM−Cu−3i
系の各合金に適用される。
There are no particular limitations on the material of aluminum or aluminum alloy material. For example, pure A sentence, A sentence-CU system, A l
-Mg series, An-Si series, A-Mn series, A1-Mg
-5i system, An-Cu-Mg system, A! ;L-Cu-Ni
system, A l -M g -Z n system, AM-Cu-3i
Applies to each alloy in the series.

本発明においては、押出により得られた押出材を、押出
直後に機械的に粗面加工する。
In the present invention, the extruded material obtained by extrusion is mechanically roughened immediately after extrusion.

押出直後に機械的粗面加工を行なうのは、押出直後のた
め押出材表面は清浄であり、酸化皮膜が存在しない、従
って、活性された状態でフッ化亜鉛浴中に浸漬すること
により!A#強度の強い亜鉛層が簡単に形成される。
Mechanical roughening is performed immediately after extrusion because the surface of the extruded material is clean and has no oxide film, so it is immersed in a zinc fluoride bath in an activated state! A# A strong zinc layer is easily formed.

粗面加工の手段としては、例えば、ショー2ドブラスト
、サンドブラストにより行なえばよい。
As a means for roughening the surface, for example, show blasting or sandblasting may be used.

このように機械的粗面加工により表面粗度を大きくする
と表面積が広くなるため、亜鉛の付着力が増大するもの
と考えられる。
It is thought that increasing the surface roughness by mechanical roughening increases the surface area, which increases the adhesion of zinc.

押出材表面の表面粗度を6〜30舊とするのは、6鉢未
満では、亜鉛被覆層の剥離強度が低下するためである 粗面加工後、高温に保持した溶融フッ化亜鉛の浴中に、
該押出材を浸漬する。
The reason why the surface roughness of the extruded material surface is set to 6 to 30 degrees is because the peel strength of the zinc coating layer decreases if the surface roughness is less than 6 degrees. To,
The extruded material is immersed.

浴の温度としては400〜600℃が好ましい。The temperature of the bath is preferably 400 to 600°C.

また、浸漬時間は1〜20分が好ましい。Moreover, the immersion time is preferably 1 to 20 minutes.

なお、浸漬中に押出材に、lfl音波をグーえるとより
−層剥離強度は向上する。
Note that if the extruded material is exposed to IFL sound waves during dipping, the delamination strength will be further improved.

該亜鉛が付着した押出材を浴から引上げ後、ベーキング
を行なう ベーキング時間、時間は常用されている時間温度でよい
0例えば、450−550℃×1〜1゜分でベーキング
すればよい。
After the extruded material to which zinc has been adhered is pulled out of the bath, the baking time may be any time and temperature that is commonly used.

かかるベーキングにより亜鉛はアルミニウム押出材中に
拡散し、押出材表面に亜鉛拡散層が形成される。
By such baking, zinc is diffused into the aluminum extrusion, and a zinc diffusion layer is formed on the surface of the extrusion.

なお、押出材の形状は、管、棒、多穴偏平チューブ等特
に限定されない、管の場合、被覆せられるべき押出材の
表面は、用途によって、内面、外面及び内外面のいずれ
かの場合がある。
The shape of the extruded material is not particularly limited, such as a pipe, rod, multi-hole flat tube, etc. In the case of a pipe, the surface of the extruded material to be coated may be either the inner surface, the outer surface, or the inner or outer surface depending on the use. be.

[発明の実施例] 以下に本発明の実施例を図面を用いて説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

第1図は押出工程を説明するための平面図である。FIG. 1 is a plan view for explaining the extrusion process.

図中、1はビレット、5は押出材である。In the figure, 1 is a billet and 5 is an extruded material.

ビレット1の加熱温度を約450℃とし、押出速度は3
 m/ m i nとしてA!;L−Cu系のビレット
lを、熱交換器の多穴偏平チューブに押出した。
The heating temperature of billet 1 was approximately 450°C, and the extrusion speed was 3
A as m/m i in! ; L-Cu-based billet 1 was extruded into a multi-hole flat tube of a heat exchanger.

押出により得られた押出材5は、第2図に示すように押
出直後に粗面化装置であるショツトブラスト装置7内に
導入され、その両面にショツトブラストが施こされる。
Immediately after extrusion, the extruded material 5 obtained by extrusion is introduced into a shot blasting device 7, which is a surface roughening device, as shown in FIG. 2, and shot blasting is applied to both surfaces thereof.

本例では、押出材5は長尺であるため、ショツトブラス
ト後適宜の長さに切断し、単尺押出材5°とした。
In this example, since the extruded material 5 is long, it was cut into an appropriate length after shot blasting to obtain a single length extruded material of 5°.

次いで、単尺押出材5′を、溶融フッ化亜鉛の浴9中に
浸漬した。浸漬中に単尺押出材5”には超音波を与えた
The extruded piece 5' was then immersed in a bath 9 of molten zinc fluoride. Ultrasonic waves were applied to the mono-length extruded material 5'' during immersion.

以上のように亜鉛を被覆した押出材につき以下の試験を
行なった。
The following tests were conducted on the extruded material coated with zinc as described above.

なお、上記実施例と同様の方法で押出したアルミニウム
合金の押出材を、従来例で述べた、浸漬法と、蒸着法を
用いて亜鉛を被覆した押出材につき実施例と同様の試験
を比較のため行なった。
In addition, the same test as in the example was conducted on an extruded aluminum alloy material extruded by the same method as in the above example, and an extrusion material coated with zinc using the dipping method and the vapor deposition method described in the conventional example. I saved up.

(亜鉛拡散層の状態) 押出材につき600℃×2分のベーキングを行ない亜鉛
を拡散させた後の拡散層の深さ及び亜鉛濃度を調べた。
(State of Zinc Diffusion Layer) The extruded material was baked at 600° C. for 2 minutes to diffuse zinc, and then the depth and zinc concentration of the diffusion layer were investigated.

・深さ 本実施例及び浸漬法の場合は表面から100゜の深さの
拡散層が得られた。一方、蒸着法の場合は拡散層の深さ
は表面から90用であった。
-Depth In this example and in the case of the immersion method, a diffusion layer with a depth of 100° from the surface was obtained. On the other hand, in the case of the vapor deposition method, the depth of the diffusion layer was 90 degrees from the surface.

・亜鉛濃度 本実施例の場合は1%の濃度を有していたが、浸漬及び
蒸着法の場合は0.8%以下の濃度を有していた。
- Zinc concentration In the case of this example, the concentration was 1%, but in the case of the immersion and vapor deposition methods, the concentration was 0.8% or less.

なお、以上の結果を表1に示す。Note that the above results are shown in Table 1.

(密着性) 密着性は曲げ試験により評価した。すなわち、亜鉛被覆
後に押出材に対し、90〜180’曲げの加工をし、そ
の際の亜鉛層の剥離を観察した。
(Adhesion) Adhesion was evaluated by a bending test. That is, after coating with zinc, the extruded material was bent by 90 to 180', and peeling of the zinc layer at that time was observed.

その結果を表1に示す。The results are shown in Table 1.

浸漬法によった場合はきわめて筒中に211aし、蒸着
法によった場合も筒単に剥離した。それに対し、本実施
例の場合は′A#は認められなかった。
When the immersion method was used, 211a formed in the tube, and when the vapor deposition method was used, the tube simply peeled off. On the other hand, 'A#' was not recognized in the case of this example.

なお、以にの結果を表1に示す。The results below are shown in Table 1.

(耐食性) チューブとフィン材とを、600’CXZ分の条件で第
5図に示すような構成でろう付け(600℃×2分)し
、ろう付は後JISHg661に規定されている塩水噴
霧試験を行なった。
(Corrosion resistance) The tube and fin material were brazed (600°C x 2 minutes) in the configuration shown in Figure 5 under the conditions of 600'CXZ, and the brazing was carried out after the salt spray test specified in JISH G661. I did it.

浸漬法及び蒸着法の場合は、600詩間で孔食が発生し
た。それに対し、本実施例の場合は8゜0時間経過後に
おいても孔食の発生は認められなかった。特にUベンド
においても、全面腐食のみで孔食の発生は認められなか
った。
In the case of the immersion method and the vapor deposition method, pitting corrosion occurred after 600 poems. In contrast, in the case of this example, no pitting corrosion was observed even after 8°0 hours had elapsed. In particular, even in the U-bend, only general corrosion was observed, and no pitting corrosion was observed.

[発明の効果] 本発明は上記のように構成したので、次の効果が得られ
る。
[Effects of the Invention] Since the present invention is configured as described above, the following effects can be obtained.

■耐食性が従来法に比べ優れている。■Corrosion resistance is superior to conventional methods.

■曲げ加工等を行なった場合にも孔食が発生しないので
、亜鉛処理後自由な加工を行なうことができる。
- Since pitting corrosion does not occur even when bending is performed, free processing can be performed after zinc treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は押出工程を説明するための平面図である。第2
図はショツトブラスト工程を示す側面図である。第3図
はフッ化亜鉛浴を示す側断面図である。第4図はチュー
ブを示す断面斜視図である。第5図はチューブにフィン
をろう付けした状態を示す側面図である。 1・φアルミニウムビレット、2・・ダイス、2′・φ
ダイスベアリング、3 @ iiコンテナ、4・・ステ
ム、5・・アルミ押出材、(チューブ)5′・・アルミ
単尺材、6・・ラインアウトテーブル、7φ・粗面化ケ
ース、8・・粗面化装置(ショツトブラスト装ff1)
、9@・亜鉛浴、10・・超音波装置、11・・加熱装
置、12・・アルミフィン。 第 1− 第2図 第3図 第4図
FIG. 1 is a plan view for explaining the extrusion process. Second
The figure is a side view showing the shot blasting process. FIG. 3 is a side sectional view showing a zinc fluoride bath. FIG. 4 is a cross-sectional perspective view showing the tube. FIG. 5 is a side view showing the state in which the fins are brazed to the tube. 1・φ aluminum billet, 2・・Dice, 2′・φ
Dice bearing, 3 @ ii container, 4... Stem, 5... Aluminum extrusion, (tube) 5'... Aluminum single length material, 6... Line out table, 7φ/Roughened case, 8... Rough Surface forming device (shot blasting device ff1)
, 9@・Zinc bath, 10.. Ultrasonic device, 11.. Heating device, 12.. Aluminum fin. Figure 1- Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、アルミニウム又はアルミニウム合金材を押出し、 押出しにより得られた押出材を、押出直後に機械的に粗
面加工することにより押出材表面の表面粗度を6〜30
μとし、 粗面加工後、溶融フッ化亜鉛の浴中に、該押出材を浸漬
し、 該押出材を溶融フッ化亜鉛の浴から引上げ後、ベーキン
グを行なうことを特徴とするアルミニウム押出材への亜
鉛被覆方法。 2、押出材は、熱交換器の多穴偏平チューブである特許
請求の範囲第1項記載のアルミニウム押出材への亜鉛被
覆方法。
[Claims] 1. Extruding aluminum or aluminum alloy material, and mechanically roughening the extruded material obtained by extrusion immediately after extrusion, so that the surface roughness of the surface of the extruded material is 6 to 30.
μ, and after surface roughening, the extruded material is immersed in a bath of molten zinc fluoride, and after the extruded material is pulled out of the bath of molten zinc fluoride, baking is performed. Zinc coating method. 2. The method for coating an aluminum extruded material with zinc according to claim 1, wherein the extruded material is a multi-hole flat tube of a heat exchanger.
JP25933886A 1986-10-29 1986-10-29 Method for applying zinc on extruded aluminum stock Pending JPS63111181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25933886A JPS63111181A (en) 1986-10-29 1986-10-29 Method for applying zinc on extruded aluminum stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25933886A JPS63111181A (en) 1986-10-29 1986-10-29 Method for applying zinc on extruded aluminum stock

Publications (1)

Publication Number Publication Date
JPS63111181A true JPS63111181A (en) 1988-05-16

Family

ID=17332715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25933886A Pending JPS63111181A (en) 1986-10-29 1986-10-29 Method for applying zinc on extruded aluminum stock

Country Status (1)

Country Link
JP (1) JPS63111181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124337A (en) * 1989-10-04 1991-05-27 Zexel Corp Manufacture of tube for heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124337A (en) * 1989-10-04 1991-05-27 Zexel Corp Manufacture of tube for heat exchanger
JPH0356808B2 (en) * 1989-10-04 1991-08-29

Similar Documents

Publication Publication Date Title
US4891275A (en) Aluminum shapes coated with brazing material and process of coating
EP0040461B1 (en) Electroplating of titanium and titanium alloy
US4395303A (en) Method of manufacturing thin-walled corrosion resistant metallic objects
US4615952A (en) Aluminum shapes coated with brazing material and process of coating
JPH04214194A (en) Manufacture of heat exchanger with fin
JPS63111181A (en) Method for applying zinc on extruded aluminum stock
US7353863B2 (en) Method of surface treating aluminum alloy base body of heat exchanger and heat exchanger produced by the method
JPH09137245A (en) Aluminum tubular body for heat exchanger and aluminum-made heat exchanger using the same body
JPS6022278B2 (en) Manufacturing method of aluminum alloy heat exchanger
JPS6363567A (en) Production of heat exchanger having excellent corrosion resistance
JP4777119B2 (en) Method for producing aluminum heat exchanger
JPS58163573A (en) Brazing method of aluminium material
US4873127A (en) Method of making heat transfer tube
JPH10263799A (en) Manufacture of heat exchanger excellent in corrosion resistance
JPS59229280A (en) Production of heat exchanger formed of aluminum
JPH0527717B2 (en)
JPS6297767A (en) Production of aluminum made heat exchanger
JP3628434B2 (en) Drawing tube excellent in corrosion resistance and method for producing the same
JPH09323116A (en) Manufacture of aluminum tubing coated with zinc layer on its inside surface
JPH0223265B2 (en)
JPH10258356A (en) Aluminum extrusion multiple-perforated tube for brazing, and its manufacture
JP2680763B2 (en) Aluminum shaped article coated with brazing material
JPH0413437B2 (en)
JPH0219489A (en) Surface treatment of aluminum material
JPH1062095A (en) Zn-coated aluminum tube